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computeBCConstraint Compute Burchard and Cornwell’s (2018) Two-Mode Constraint

Description

[Deprecated]

computeBCConstraint() has been deprecated starting on version 1.0.0 of the dream package.
Please use the netstats_tm_constraint() function and see the NEWS.md file for more details.

This function calculates the values for two-mode network constraint for weighted and unweighted
two-mode networks based on Burchard and Cornwell (2018).

Usage

computeBCConstraint(net, isolates = NA, returnCIJmat = FALSE, weighted = FALSE)

Arguments

net
isolates

returnCIJmat

weighted

A two-mode adjacency matrix or affiliation matrix.
What value should isolates be given? Preset to be NA.

TRUE/FALSE. TRUE indicates that the full constraint matrix, that is, the net-
work constraint from an alter j on node i, will be returned to the user. FALSE
indicates that the total constraint will be returned. Set to FALSE by default.

TRUE/FALSE. TRUE indicates the resulting statistic will be based on the weighted
formula (see the details section). FALSE indicates the statistic will be based on
the original non-weighted formula. Set to FALSE by default.
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Details
Following Burchard and Cornwell (2018), the formula for two-mode constraint is:
qj:(mow7«w>2
)]
where:
* ¢;; is the constraint of ego i with respect to actor j.

* |¢(5) N ¢(4)| is the number of opposite-class contacts that i and j both share.

* The denominator, |¢(*) |, represents the total number of opposite-class contacts of ego i ex-
cluding pendants, that is, level 2 groups that only have one member.

The total constraint for ego i is given by:
Ci = Z Cij
jeo(d)

The function returns the aggregate constraint for each actor; however, the user can specify the
function to return the constraint matrix by setting returnCIlJmat to TRUE.

The function can also compute constraint for weighted two-mode networks by setting weighted to
TRUE. The formula for two-mode weighted constraint is:

%:Cﬁzﬁmyxw

where w; is the average of the tie weights that i and j send to their shared opposite-class contacts.

Value

The vector of two-mode constraint scores for level 1 actors in a two-mode network.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc @arizona.edu

References

Burchard, Jake and Benjamin Cornwell. 2018. "Structural Holes and Bridging in Two-Mode Net-
works." Social Networks 55:11-20.

Examples

# For this example, we recreate Figure 2 in Burchard and Cornwell (2018: 13)
BCNet <- matrix(
C(1 !1 70!0!

nrow = 4, ncol = 4, byrow = TRUE)
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colnames(BCNet) <- c("1", "2", "3", "4")

rownames (BCNet) <- c("i", "j", "k", "m")

#library(sna) #To plot the two mode network, we use the sna R package
#gplot (BCNet, usearrows = FALSE,

# gmode = "twomode”, displaylabels = TRUE)
computeBCConstraint (BCNet)

#For this example, we recreate Figure 9 in Burchard and Cornwell (2018:18) for
#weighted two mode networks.
BCweighted <- matrix(c(1,2,1, 1,0,0,
9,2,1,0,0,1),

nrow = 4, ncol = 3,

byrow = TRUE)
rownames (BCweighted) <- c("i", "j", "k", "1")
computeBCConstraint(BCweighted, weighted = TRUE)

computeBCES Compute Burchard and Cornwell’s (2018) Two-Mode Effective Size

Description

[Deprecated]

computeBCES() has been deprecated starting on version 1.0.0 of the dream package. Please use the
netstats_tm_effective() function and see the NEWS.md file for more details.

This function calculates the values for two-mode effective size for weighted and unweighted two-
mode networks based on Burchard and Cornwell (2018).

Usage

computeBCES(
net,
inParallel = FALSE,
nCores = NULL,
isolates = NA,
weighted = FALSE

)
Arguments
net A two-mode adjacency matrix or affiliation matrix
inParallel TRUE/FALSE. TRUE indicates that parallel processing will be used to compute

the statistic with the foreach package. FALSE indicates that parallel processing
will not be used. Set to FALSE by default.
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nCores If inParallel = TRUE, the number of computing cores for parallel processing. If
this value is not specified, then the function internally provides it by dividing the
number of available cores in half.

isolates What value should isolates be given? Preset to be NA.

weighted TRUE/FALSE. TRUE indicates the resulting statistic will be based on the weighted
formula (see the details section). FALSE indicates the statistic will be based on
the original non-weighted formula. Set to FALSE by default.

Details
The formula for two-mode effective size is:
ES; =lo(i) = > i
j€a(i)
where:

e ES; is the effective size of ego i.
* |o(4)| is the number of same-class contacts of ego i.
Y jeo(i) Tid is the summation of the redundancy for each alter j in the two-mode ego network

of i.

This function allows the user to compute the scores in parallel through the foreach and doParallel
R packages. If the matrix is weighted, the user should specify weighted = TRUE. If the matrix
is weighted, following Burchard and Cornwell (2018), the formula for two-mode weighted redun-
dancy is:
o) na(d)
Tij = -
lo(2)] x wy

where w; is the average of the tie weights that i and j send to their shared opposite class contacts.

Value

The vector of two-mode effective size values for level 1 actors in a two-mode network.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu

References

Burchard, Jake and Benjamin Cornwell. 2018. "Structural Holes and Bridging in Two-Mode Net-
works." Social Networks 55:11-20.

Examples

# For this example, we recreate Figure 2 in Burchard and Cornwell (2018: 13)
BCNet <- matrix(
c(1,1,0,0,
1,0,1,0,
1,0,0,1,
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9,1,1,1),
nrow = 4, ncol = 4, byrow = TRUE)
colnames(BCNet) <- c("1", "2", "3", "4")
rownames (BCNet) <- c("i", "j", "k", "m")
#library(sna) #To plot the two mode network, we use the sna R package
#gplot (BCNet, usearrows = FALSE,
# gmode = "twomode”, displaylabels = TRUE)
computeBCES(BCNet)

#In this example, we recreate Figure 9 in Burchard and Cornwell (2018:18)
#for weighted two mode networks.
BCweighted <- matrix(c(1,2,1, 1,0,0,
0,2,1,0,0,1),
nrow = 4, ncol = 3,
byrow = TRUE)
rownames (BCweighted) <- c("i", "j", "k", "1")
computeBCES(BCweighted, weighted = TRUE)

computeBCRedund Compute Burchard and Cornwell’s (2018) Two-Mode Redundancy

Description

[Deprecated]

computeBCRedund () has been deprecated starting on version 1.0.0 of the dream package. Please
use the netstats_tm_redundancy() function and see the NEWS.md file for more details.

This function calculates the values for two mode redundancy for weighted and unweighted two-
mode networks based on Burchard and Cornwell (2018).

Usage

computeBCRedund(
net,
inParallel = FALSE,
nCores = NULL,
isolates = NA,
weighted = FALSE

)
Arguments
net A two-mode adjacency matrix or affiliation matrix.
inParallel TRUE/FALSE. TRUE indicates that parallel processing will be used to compute

the statistic with the foreach package. FALSE indicates that parallel processing
will not be used. Set to FALSE by default.
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nCores If inParallel = TRUE, the number of computing cores for parallel processing. If
this value is not specified, then the function internally provides it by dividing the
number of available cores in half.

isolates What value should isolates be given? Preset to be NA.

weighted TRUE/FALSE. TRUE indicates the resulting statistic will be based on the weighted
formula (see the details section). FALSE indicates the statistic will be based on
the original non-weighted formula. Set to FALSE by default.

Details

The formula for two-mode redundancy is:

Y o (1)]

where:

* 7;; is the redundancy of ego i with respect to actor j.

* |o(4) No(i)] is the number of same-class contacts (e.g., medical doctors in a hospital) that i
and j both share.

* |o(4)| is the number of same-class contacts of ego i.

The two-mode redundancy is ego-bound, that is, the redundancy is only based on the two-mode ego
network of i. Put differently, r;; only considers the perspective of the ego. This function allows the
user to compute the scores in parallel through the foreach and doParallel R packages. If the matrix
is weighted, the user should specify weighted = TRUE. Following Burchard and Cornwell (2018),
the formula for two-mode weighted redundancy is:

__let)nal)l
EEIGIE

where w; is the average of the tie weights that i and j send to their shared opposite class contacts.

Value

An n x n matrix with level 1 redundancy scores for actors in a two-mode network.

Author(s)

Kevin A. Carson kacarson @arizona.edu, Diego F. Leal dflc@arizona.edu

References

Burchard, Jake and Benjamin Cornwell. 2018. "Structural Holes and bridging in two-mode net-
works." Social Networks 55:11-20.
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Examples

# For this example, we recreate Figure 2 in Burchard and Cornwell (2018: 13)
BCNet <- matrix(
c(1,1,0,9,

nrow = 4, ncol = 4, byrow = TRUE)
colnames(BCNet) <- c("1", "2", "3", "4")
rownames (BCNet) <- c("i", "j", "k", "m")
#library(sna) #To plot the two mode network, we use the sna R package
#gplot (BCNet, usearrows = FALSE,
# gmode = "twomode”, displaylabels = TRUE)
#this values replicate those reported by Burchard and Cornwell (2018: 14)
computeBCRedund (BCNet)

#For this example, we recreate Figure 9 in Burchard and Cornwell (2018:18)
#for weighted two mode networks.
BCweighted <- matrix(c(1,2,1, 1,0,0,
0,2,1,0,0,1),
nrow = 4, ncol = 3,
byrow = TRUE)
rownames (BCweighted) <- c("i", "j", "k", "1")
computeBCRedund (BCweighted, weighted = TRUE)

computeBurtsConstraint
Compute Burt’s (1992) Constraint for Ego Networks from a Socioma-
trix

Description

[Deprecated]

computeBurtsConstraint() has been deprecated starting on version 1.0.0 of the dream package.
Please use the netstats_om_constraint() function and see the NEWS.md file for more details.

This function computes Burt’s (1992) one-mode ego constraint based upon a sociomatrix.

Usage

computeBurtsConstraint(
net,
inParallel = FALSE,
nCores = NULL,
isolates = NA,
pendants = 1



10 computeBurtsConstraint

Arguments
net A one-mode sociomatrix with network ties.
inParallel TRUE/FALSE. TRUE indicates that parallel processing will be used to compute
the statistic with the foreach package. FALSE indicates that parallel processing
will not be used. Set to FALSE by default.
nCores If inParallel = TRUE, the number of computing cores for parallel processing. If
this value is not specified, then the function internally provides it by dividing the
number of available cores in half.
isolates What value should isolates be given? Set to NA by default.
pendants What value should be given to pendant vertices? Pendant vertices are those
nodes who have one outgoing tie. Set to 1 by default.
Details

The formula for Burt’s (1992) one-mode ego constraint is:

2
Cij = <pij + Zpiqqu> FqFLF]

q

where:
° Lo . — Ziqg+Z2qi .3 .
Diq is formulated as: p;; = St 0 %
Finally, the aggregate constraint of an ego i is:

Ci = Zcij
J

While this function internally locates isolates (i.e., nodes who have no ties) and pendants, that
is, nodes who only have one outgoing tie, the user should specify what values for constraint are
returned for them via the isolates and pendants options.

Lastly, this function allows users to compute the values in parallel via the foreach, doParallel, and
parallel R packages.

Value

The vector of ego network constraint values.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu

References

Burt, Ronald. 1992. Structural Holes: The Social Structure of Competition. Harvard University
Press.
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Examples

# For this example, we recreate the ego network provided in Burt (1992: 56):
BurtEgoNet <- matrix(c(

0,1,0,0,1,1,1,
,0,0,1,0,0,1,

1,

1,

1,

1,

,0),

nrow = 7, ncol = 7)

colnames(BurtEgoNet) <- rownames(BurtEgoNet) <- c("A", "B", "C", "D", "E",
"F", "ego")

#the constraint value for the ego replicates that provided in Burt (1992: 56)

computeBurtsConstraint (BurtEgoNet)

1
0
o,
1
1
1

’

computeBurtsES Compute Burt’s (1992) Effective Size for Ego Networks from a So-
ciomatrix
Description
[Deprecated]

computeBurtsES() has been deprecated starting on version 1.0.0 of the dream package. Please use
the netstats_om_effective() function and see the NEWS.md file for more details.

This function computes Burt’s (1992) one-mode ego effective size based upon a sociomatrix (see
details).

Usage

computeBurtsES(
net,
inParallel = FALSE,
nCores = NULL,

isolates = NA,
pendants = 1
)
Arguments
net The one-mode sociomatrix with network ties.
inParallel TRUE/FALSE. TRUE indicates that parallel processing will be used to compute

the statistic with the foreach package. FALSE indicates that parallel processing
will not be used. Set to FALSE by default.
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nCores If inParallel = TRUE, the number of computing cores for parallel processing. If
this value is not specified, then the function internally provides it by dividing the
number of available cores in half.

isolates The numerical value that represents what value will isolates be given. Set to NA
by default.
pendants The numerical value that represents what value will pendant vertices be given.

Set to 1 by default. Pendant vertices are those nodes who have one outgoing tie.

Details

The formula for Burt’s (1992; see also Borgatti 1997) one-mode ego effective size is:
Ei :Z]-*Zpiqqu;Q7éi7éj
J q
where F; is the ego effective size for an ego i. p;, is formulated as:

(Ziq + Zqi) . .
T
225765 + 254)
and myq is:

o (2jq + 245)
Mjq = _ _
max(Zjk + 2kj)
While this function internally locates isolates (i.e., nodes who have no ties) and pendants (i.e., nodes
who only have one tie), the user should specify what values for constraint are returned for them via
the isolates and pendants options. Pendant vertices are those nodes who have one outgoing tie.

Value

The vector of ego network effective size values.

Author(s)

Kevin A. Carson kacarson @arizona.edu, Diego F. Leal dflc@arizona.edu

References

Burt, Ronald. 1992. Structural Holes: The Social Structure of Competition. Harvard University
Press.

Borgatti, Stephen. 1997. "Structural Holes: Unpacking Burt’s Redundancy Measures." Connections
20(1): 35-38.

Examples

# For this example, we recreate the ego network provided in Borgatti (1997):
BorgattiEgoNet <- matrix(
c(0,1,0,0,0,0,0,0,1,

1,0,0,0,0,0,0,0,1,

0,0,0,1,0,0,0,0,1,
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0,0,1,0,0,0,0,0,1,
0,0,0,0,0,1,0,0,1
0,0,0,0,1,0,0,0,1,
0,0,0,0,0,0,0,1,1,
0,0,0,0,0,0,1,0,1,
1,1,1,1,1,1,1,1,0),
nrow = 9, ncol = 9, byrow = TRUE)
colnames(BorgattiEgoNet) <- rownames(BorgattiEgoNet) <- c("A", "B", "C",
"b", "E", "F",
"G", "H", "ego")
#the effective size value for the ego replicates that provided in Borgatti (1997)
computeBurtsES(BorgattiEgoNet)

’

# For this example, we recreate the ego network provided in Burt (1992: 56):
BurtEgoNet <- matrix(c(

0,1,0,0,1,1,1,
1,0,0,1,0,0,1,
0,0,0,0,0,0,1
0,1,0,0,0,0,1,
1,0,0,0,0,0,1
1,0,0,0,0,0,1
1,1,1,1,1,1

’ )
’

» Yy ’

’ ’ ’0)’
nrow = 7, ncol = 7)
colnames(BurtEgoNet) <- rownames(BurtEgoNet) <- c("A", "B", "C", "D", "E",
1IFH’ Hegoll)
#the effective size value for the ego replicates that provided in Burt (1992: 56)
computeBurtsES(BurtEgoNet)

y by

computeFourCycles Compute the Four-Cycles Network Statistic for Event Dyads in a Re-
lational Event Sequence

Description

[Deprecated]

computeFourCycles() has been deprecated starting on version 1.0.0 of the dream package. Please
use the remstats_fourcycles() function and see the NEWS.md file for more details.

The function computes the four-cycles network sufficient statistic for a two-mode relational se-
quence with the exponential weighting function (Lerner and Lomi 2020). In essence, the four-
cycles measure captures the tendency for clustering to occur in the network of past events, whereby
an event is more likely to occur between a sender node a and receiver node b given that a has
interacted with other receivers in past events who have received events from other senders that in-
teracted with b (e.g., Duxbury and Haynie 2021, Lerner and Lomi 2020). The function allows users
to use two different weighting functions, reduce computational runtime, employ a sliding windows
framework for large relational sequences, and specify a dyadic cutoff for relational relevancy.
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Usage

computeFourCycles(
observed_time,
observed_sender,
observed_receiver,
processed_time,
processed_sender,
processed_receiver,
sliding_windows = FALSE,
processed_seqIDs = NULL,
counts = FALSE,
halflife = 2,
dyadic_weight = 0,
window_size = NA,
Lerneretal_2013 = FALSE,
priorStats = FALSE,
sender_OQOutDeg = NULL,
receiver_InDeg = NULL

Arguments

observed_time The vector of event times from the pre-processing event sequence.

observed_sender
The vector of event senders from the pre-processing event sequence.

observed_receiver
The vector of event receivers from the pre-processing event sequence

processed_time The vector of event times from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_sender

The vector of event senders from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_receiver
The vector of event receivers from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

sliding_windows
TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the resulting network statistic, while FALSE indicates
the approach will not be used. Set to FALSE by default. It’s important to note
that the sliding windows framework should only be used when the pre-processed
event sequence is ‘big’, such as the 360 million pre-processed event sequence
used in Lerner and Lomi (2020), as it aims to reduce the computational burden
of sorting ‘big’ datasets. In general, most pre-processed event sequences will
not need to use the sliding windows approach. There is not a strict cutoff for
‘big’ dataset. This definition depends on both the size of the observed event
sequence and the post-processing sampling dataset. For instance, according to
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our internal tests, when the event sequence is relatively large (i.e., 100,000 ob-
served events) with probability of sampling from the observed event sequence
set to 0.05 and using 10 controls per sampled event, the sliding windows frame-
work for computing repetition is about 11% faster than the non-sliding windows
framework. Yet, in a smaller dataset (i.e., 10,000 observed events) the sliding
windows framework is about 25% slower than the non-sliding framework with
the same conditions as before.
processed_seqlDs

If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the 5th event
in the sequence will have a value of 5 in this vector).

counts TRUE/FALSE. TRUE indicates that the counts of past events should be com-
puted (see the details section). FALSE indicates that the temporal exponential
weighting function should be used to downweigh past events (see the details
section). Set to FALSE by default.

halflife A numerical value that is the halflife value to be used in the exponential weight-
ing function (see details section). Preset to 2 (should be updated by the user
based on substantive context).

dyadic_weight A numerical value for the dyadic cutoff weight that represents the numerical
cutoff value for temporal relevancy based on the exponential weighting function.
For example, a numerical value of 0.01, indicates that an exponential weight less
than 0.01 will become 0 and that events with such value (or smaller values) will
not be included in the sum of the past event weights (see the details section). Set
to 0 by default.

window_size If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).

Lerneretal_2013
TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default.

priorStats TRUE/FALSE. Set to FALSE by default. TRUE indicates that the user has pre-
viously computed the sender outdegree and target indegree network statistics.
Set to FALSE by default. The four-cycles network statistics is computationally
burdensome. If priorStats =TRUE, the function speeds things up by setting the
statistic for an event dyad to O if either a) the current event sender was not a
sender in a previous event or b) the current event receiver was not a receiver in
a past event, then the four-cycles statistics for that event dyad will be 0.

sender_OutDeg If priorStats = TRUE, the vector of previously computed sender outdegree scores.

receiver_InDeg If priorStats = TRUE, the vector of previously computed receiver indegree scores.

Details

The function calculates the four-cycles network statistic for two-mode relational event models based
on the exponential weighting function used in either Lerner and Lomi (2020) or Lerner et al. (2013).
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computeFourCycles

Following Lerner and Lomi (2020), the exponential weighting function in relational event models
is:
— (tft/ ) Jin(2)

w(s,rt)=e T1/2

Following Lerner et al. (2013), the exponential weighting function in relational event models is:

—(t—¢"). In(2)
w(s,r,t) =e =T, @)

T2

In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, ¢’ is the past event times that meet the weight subset (in this case, all
events that have the same sender and receiver), and 77 /5 is the halflife parameter.

The formula for four-cycles for event e; is:

ourcyclese, = 3 w(s',r,t) - w(s,r',t) - w(s,r,
lese, frt "t rorlt

s’andr’

That is, the four-cycle measure captures all the past event structures in which the current event pair,
sender s and target r close a four-cycle. In particular, it finds all events in which: a past sender s’
had a relational event with target r, a past target »’ had a relational event with current sender s, and
finally, a relational event occurred between sender s’ and target r’.

Four-cycles are computationally expensive, especially for large relational event sequences (see
Lerner and Lomi 2020 for a discussion on this), therefore this function allows the user to input
previously computed target indegree and sender outdegree scores to reduce the runtime. Relational
events where either the event target or event sender were not involved in any prior relational events
(i.e., a target indegree or sender outdegree score of 0) will close no-four cycles. This function
exploits this feature.

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022; Lerner and Lomi 2020) can specify the dyadic weight cutoff, that is, the minimum
value for which the weight is considered relationally relevant. Users who do not know the specific
dyadic cutoff value to use, can use the computeRemDyadCut function.

Following Lerner and Lomi (2020), if the counts of the past events are requested, the formula for
four-cycles formation for event e; is:

|S"] |R'|
fourcycles., = ZZmin [d(s},r,t), d(s, 7, t), d(s;,7},1)]

i=1 j=1

where, d() is the number of past events that meet the specific set operations, d(s;,r,t) is the num-
ber of past events where the current event receiver received a tie from another sender s, d(s, 7"2., t)
is the number of past events where the current event sender sent a tie to another receiver r}, and
d(s;, %, t) is the number of past events where the sender s; sent a tie to the receiver ;. Moreover,
the counting equation can leverage relational relevancy, by specifying the halflife parameter, expo-
nential weighting function, and the dyadic cut off weight values (see the above sections for help
with this). If the user is not interested in modeling relational relevancy, then those value should be

left at their default values.
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Value

The vector of four-cycle statistics for the two-mode relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu

References

Duxbury, Scott and Dana Haynie. 2021. "Shining a Light on the Shadows: Endogenous Trade
Structure and the Growth of an Online Illegal Market." American Journal of Sociology 127(3):
787-827.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Lerner, Jiirgen and Alessandro Lomi. 2020. “Reliability of relational event model estimates under
sampling: How to fit a relational event model to 360 million dyadic events.” Network Science 8(1):
97-135.

Lerner, Jiirgen, Margit Bussman, Tom A.B. Snijders, and Ulrik Brandes. 2013. "Modeling Fre-
quency and Type of Interaction in Event Networks." The Corvinus Journal of Sociology and Social
Policy 4(1): 3-32.

Examples

data("WikiEvent2018.first100k")
WikiEvent2018 <- WikiEvent2018.first100k[1:1000,] #the first one thousand events
WikiEvent2018%$time <- as.numeric(WikiEvent2018%$time) #making the variable numeric
### Creating the EventSet By Employing Case-Control Sampling With M = 5 and
### Sampling from the Observed Event Sequence with P = 0.01
EventSet <- processTMEventSeq(

data = WikiEvent2018, # The Event Dataset

time = WikiEvent2018%$time, # The Time Variable

eventID = WikiEvent2018%$eventID, # The Event Sequence Variable

sender = WikiEvent2018$user, # The Sender Variable

receiver = WikiEvent2@18%$article, # The Receiver Variable

p_samplingobserved = 0.01, # The Probability of Selection

n_controls = 8, # The Number of Controls to Sample from the Full Risk Set

seed = 9999) # The Seed for Replication

#i### Estimating the Four-Cycle Statistic Without the Sliding Windows Framework

EventSet$fourcycle <- computeFourCycles(
observed_time = WikiEvent2018$time,
observed_sender = WikiEvent2018$user,
observed_receiver = WikiEvent2018$article,
processed_time = EventSet$time,
processed_sender = EventSet$sender,
processed_receiver = EventSet$receiver,
halflife = 2.592e+09, #halflife parameter
dyadic_weight = 0,
Lerneretal_2013 = FALSE)
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#i#t## Estimating the Four-Cycle Statistic With the Sliding Windows Framework

EventSet$cycle4SW <- computeFourCycles(
observed_time = WikiEvent2018$time,
observed_sender = WikiEvent2018$user,
observed_receiver = WikiEvent2018$article,
processed_time = EventSet$time,
processed_sender = EventSet$sender,
processed_receiver = EventSet$receiver,
processed_seqIDs = EventSet$sequencelD,
halflife = 2.592e+09, #halflife parameter
dyadic_weight = 0,
sliding_window = TRUE,
Lerneretal_2013 = FALSE)

#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.

cor(EventSet$fourcycle, EventSet$cycle4Sw)

#### Estimating the Four-Cycle Statistic with the Counts of Events Returned
EventSet$cycle4C <- computeFourCycles(
observed_time = WikiEvent2018$time,
observed_sender = WikiEvent2018$user,
observed_receiver = WikiEvent2018%article,
processed_time = EventSet$time,
processed_sender = EventSet$sender,
processed_receiver = EventSet$receiver,
processed_seqlDs = EventSet$sequencelD,
halflife = 2.592e+09, #halflife parameter
dyadic_weight = 0,
sliding_window = FALSE,
counts = TRUE,
Lerneretal_2013 = FALSE)

cbind(EventSet$fourcycle,
EventSet$cycledSw,
EventSet$cycle4C)

computeHomFourCycles  Compute Fujimoto, Snijders, and Valente’s (2018) Homophilous Four-
Cycles for Two-Mode Networks

Description

[Deprecated]

computeHomFourCycles() has been deprecated starting on version 1.0.0 of the dream package.
Please use the netstats_tm_homfourcycles() function and see the NEWS . md file for more details.
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This function computes the number of homophilous four-cycles in a two-mode network as proposed
by Fujimoto, Snijders, and Valente (2018: 380). See Fujimoto, Snijders, and Valente (2018) for
more details about this measure.

Usage

computeHomFourCycles(net, mem)

Arguments
net The two-mode adjacency matrix.
mem The vector of membership values that the homophilous four-cycles will be based
on.
Details

Following Fujimoto, Snijders, and Valente (2018: 380), the number of homophilous four-cycles for

actor i is:
DO viayiyiayiplvi = v;
J a#b
where y is the two-mode adjacency matrix, v is the vector of membership scores (e.g., sports/club

membership), a and b represent the level two groups, and Iv; = v; is the indicator function that is
1 if the values are the same and O if not.

Value

The vector of counts of homophilous four-cycles for the two-mode network.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu

References

Fujimoto, Kayo, Tom A.B. Snijders, and Thomas W. Valente. 2018. "Multivariate dynamics of
one-mode and two-mode networks: Explaining similarity in sports participation among friends."
Network Science 6(3): 370-395.

Examples

# For this example, we use the Davis Southern Women's Dataset.
data("southern.women”)

#creating a random binary membership vector

set.seed(9999)

membership <- sample(@:1, nrow(southern.women), replace = TRUE)
#the homophilous four-cycle values
computeHomFourCycles(southern.women, mem = membership)
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computeISP Compute Butts’ (2008) Incoming Shared Partners Network Statistic
for Event Dyads in a Relational Event Sequence

Description

[Deprecated]

computeISP() has been deprecated starting on version 1.0.0 of the dream package. Please use the
remstats_triads() function and see the NEWS.md file for more details.

This function calculates the incoming shared partners (ISP) network sufficient statistic for a rela-
tional event sequence (see Lerner and Lomi 2020; Butts 2008). In essence, the incoming shared
partners measure captures the tendency of triadic closure to occur in the network of past events,
in which the past triadic closure is based upon the incoming shared partners structure (see Butts
2008 for an empirical example). This measure allows for ISP scores to be computed only for the
sampled events, while creating the weights based on the full event sequence (see Lerner and Lomi
2020; Vu et al. 2015). The function allows users to use two different weighting functions, reduce
computational runtime, employ a sliding windows framework for large relational sequences, and
specify a dyadic cutoff for relational relevancy.

Usage

computeISP(
observed_time,
observed_sender,
observed_receiver,
processed_time,
processed_sender,
processed_receiver,
sliding_windows = FALSE,
processed_seqIDs = NULL,
counts = FALSE,
halflife = 2,
dyadic_weight = 0,
window_size = NA,
Lerneretal_2013 = FALSE

Arguments

observed_time The vector of event times from the pre-processing event sequence.
observed_sender

The vector of event senders from the pre-processing event sequence.
observed_receiver

The vector of event receivers from the pre-processing event sequence.

processed_time The vector of event times from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).
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processed_sender

The vector of event senders from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_receiver

sliding_windows

The vector of event receivers from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the resulting network statistic, while FALSE indicates
the ap- proach will not be used. Set to FALSE by default. It’s important to note
that the sliding windows framework should only be used when the pre-processed
event sequence is ‘big’, such as the 360 million pre-processed event sequence
used in Lerner and Lomi (2020), as it aims to reduce the computational burden
of sorting ‘big’ datasets. In general, most pre-processed event sequences will
not need to use the sliding windows approach. There is not a strict cutoff for
‘big’ dataset. This definition depends on both the size of the observed event
sequence and the post-processing sampling dataset. For instance, according to
our internal tests, when the event sequence is relatively large (i.e., 100,000 ob-
served events) with probability of sampling from the observed event sequence
set to 0.05 and using 10 controls per sampled event, the sliding windows frame-
work for computing repetition is about 11% faster than the non-sliding windows
framework. Yet, in a smaller dataset (i.e., 10,000 observed events) the sliding
windows framework is about 25% slower than the non-sliding framework with
the same conditions as before.

processed_seqlDs

counts

halflife

dyadic_weight

window_size

Lerneretal_2013

If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the 5th event
in the sequence will have a value of 5 in this vector).

TRUE/FALSE. TRUE indicates that the counts of past events should be com-
puted (see the details section). FALSE indicates that the temporal exponential
weighting function should be used to downweigh past events (see the details
section). Set to FALSE by default.

A numerical value that is the halflife value to be used in the exponential weight-
ing function (see details section). Preset to 2 (should be updated by the user
based on substantive context).

A numerical value for the dyadic cutoff weight that represents the numerical
cutoff value for temporal relevancy based on the exponential weighting function.
For example, a numerical value of 0.01, indicates that an exponential weight less
than 0.01 will become 0 and that events with such value (or smaller values) will
not be included in the sum of the past event weights (see the details section). Set
to 0 by default.

If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).

TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
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Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default

Details

This function calculates incoming shared partners scores for relational event sequences based on
the exponential weighting function used in either Lerner and Lomi (2020) or Lerner et al. (2013).

Following Lerner and Lomi (2020), the exponential weighting function in relational event models

is: o)
_(t_t/),L
w(s,rt)=e Ti/2

Following Lerner et al. (2013), the exponential weighting function in relational event models is:

—(t—t")- 2@ n(2)

t) = Ty N7/
ws,rt) = e T

In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, ¢’ is the past event times that meet the weight subset, and 77 /5 is the
halflife parameter.

The general formula for incoming shared partners for event e; is:

ISP, = \/z w(h, s, t) -w(h,r,t)
h

That is, as discussed in Butts (2008), incoming shared partners finds all past events where the current
sender and target were themselves the target in a relational event from the same / node

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022; Lerner and Lomi 2020) can specify the dyadic weight cutoff, that is, the minimum
value for which the weight is considered relationally relevant. Users who do not know the specific
dyadic cutoff value to use, can use the computeRemDyadCut function.

Following Butts (2008), if the counts of the past events are requested, the formula for incoming
shared partners for event e; is:

||
ISP, = min[d(h,s,t),d(h,r,1)]

i=1

Where, d() is the number of past events that meet the specific set operations, d(h, s, t) is the number
of past events where the current event sender received a tie from a third actor, A, and d(h, r, t) is the
number of past events where the current event receiver received a tie from a third actor, 4. The sum
loops through all unique actors that have formed past incoming shared partners structures with the
current event sender and receiver. Moreover, the counting equation can leverage relational relevancy
by specifying the halflife parameter, exponential weighting function, and the dyadic cut off weight
values. If the user is not interested in modeling relational relevancy, then those value should be left
at their defaults.

Value

The vector of incoming shared partner statistics for the relational event sequence.
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Author(s)

Kevin A. Carson kacarson @arizona.edu, Diego F. Leal dflc@arizona.edu

References

Butts, Carter T. 2008. "A Relational Event Framework for Social Action." Sociological Methodol-
ogy 38(1): 155-200.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Lerner, Jiirgen and Alessandro Lomi. 2020. “Reliability of relational event model estimates under
sampling: How to fit a relational event model to 360 million dyadic events.” Network Science 8(1):
97-135.

Lerner, Jirgen, Margit Bussman, Tom A.B. Snijders, and Ulrik Brandes. 2013. " Modeling Fre-
quency and Type of Interaction in Event Networks." The Corvinus Journal of Sociology and Social
Policy 4(1): 3-32.

Vu, Duy, Philippa Pattison, and Garry Robins. 2015. "Relational event models for social learning
in MOOQOCs." Social Networks 43: 121-135.

Examples

events <- data.frame(time = 1:18,
eventID = 1:18,
sender = c("A”, "B", "C",

"A", "D", "E",
"F", "B", "A",
"F", "D", "B",
"¢", "B", "D",
"H", "A", "D"),
target = c("B", "C", "D",
"E", "A", "F",
"D", "A", "C",
"G", "B", "C",
"H", "IT, A,

= , nen , uBn))

eventSet <- processOMEventSeq(data = events,
time = events$time,
eventID = events$eventID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 1,
seed = 9999)

# Computing Incoming Shared Partners Statistic without the sliding windows framework
eventSet$ISP <- computeISP(

observed_time = events$time,

observed_sender = events$sender,

observed_receiver = events$target,

processed_time = eventSet$time,
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processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,

Lerneretal_2013 = FALSE)

# Computing Incoming Shared Partners Statistic with the sliding windows framework

eventSet$ISP_SW <- computeISP(
observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
processed_seqlDs = eventSet$sequencelD,
dyadic_weight = 0,
sliding_window = TRUE,
Lerneretal_2013 = FALSE)

#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.

cor(eventSet$ISP |, eventSet$ISP_SW)

# Computing Incoming Shared Partners Statistics with the counts of events being returned
eventSet$ISPC <- computeISP(
observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
sliding_window = FALSE,
counts = TRUE,
Lerneretal_2013 = FALSE)

cbind(eventSet$ISP,
eventSet$ISP_SW,
eventSet$ISPC)
computeITP Compute Butts’ (2008) Incoming Two Paths Network Statistic for
Event Dyads in a Relational Event Sequence
Description

[Deprecated]
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computeITP() has been deprecated starting on version 1.0.0 of the dream package. Please use the
remstats_triads() function and see the NEWS.md file for more details.

The function computes the incoming two path (ITP) network sufficient statistic for a relational event
sequence (see Lerner and Lomi 2020; Butts 2008). In essence, the incoming two paths measure
captures the tendency of triadic closure to occur in the network of past events, in which the past
triadic closure is based upon the incoming two paths structure (see Butts 2008 for an empirical
example). This measure allows for ITP scores to be only computed for the sampled events, while
creating the weights based on the full event sequence (see Lerner and Lomi 2020; Vu et al. 2015).
The function allows users to use two different weighting functions, reduce computational runtime,
employ a sliding windows framework for large relational sequences, and specify a dyadic cutoff for
relational relevancy.

Usage

computeITP(
observed_time,
observed_sender,
observed_receiver,
processed_time,
processed_sender,
processed_receiver,
sliding_windows = FALSE,
processed_seqIDs = NULL,
counts = FALSE,
halflife = 2,
dyadic_weight = 0,
window_size = NA,
Lerneretal_2013 = FALSE

Arguments

observed_time The vector of event times from the pre-processing event sequence.
observed_sender
The vector of event senders from the pre-processing event sequence.
observed_receiver
The vector of event receivers from the pre-processing event sequence
processed_time The vector of event times from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).
processed_sender
The vector of event senders from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).
processed_receiver
The vector of event receivers from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).
sliding_windows
TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the resulting network statistic, while FALSE indicates
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the ap- proach will not be used. Set to FALSE by default. It’s important to note
that the sliding windows framework should only be used when the pre-processed
event sequence is ‘big’, such as the 360 million pre-processed event sequence
used in Lerner and Lomi (2020), as it aims to reduce the computational burden
of sorting ‘big’ datasets. In general, most pre-processed event sequences will
not need to use the sliding windows approach. There is not a strict cutoff for
‘big’ dataset. This definition depends on both the size of the observed event
sequence and the post-processing sampling dataset. For instance, according to
our internal tests, when the event sequence is relatively large (i.e., 100,000 ob-
served events) with probability of sampling from the observed event sequence
set to 0.05 and using 10 controls per sampled event, the sliding windows frame-
work for computing repetition is about 11% faster than the non-sliding windows
framework. Yet, in a smaller dataset (i.e., 10,000 observed events) the sliding
windows framework is about 25% slower than the non-sliding framework with
the same conditions as before.
processed_seqlDs

If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the 5th event
in the sequence will have a value of 5 in this vector).

counts TRUE/FALSE. TRUE indicates that the counts of past events should be com-
puted (see the details section). FALSE indicates that the temporal exponential
weighting function should be used to downweigh past events (see the details
section). Set to FALSE by default.

halflife A numerical value that is the halflife value to be used in the exponential weight-
ing function (see details section). Preset to 2 (should be updated by the user
based on substantive context).

dyadic_weight A numerical value for the dyadic cutoff weight that represents the numerical
cutoff value for temporal relevancy based on the exponential weighting function.
For example, a numerical value of 0.01, indicates that an exponential weight less
than 0.01 will become 0 and that events with such value (or smaller values) will
not be included in the sum of the past event weights (see the details section). Set
to 0 by default.

window_size If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).

Lerneretal_2013
TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the

Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default

Details

The function calculates incoming two paths scores for relational event sequences based on the
exponential weighting function used in either Lerner and Lomi (2020) or Lerner et al. (2013).
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Following Lerner and Lomi (2020), the exponential weighting function in relational event models
is:
_(t_t/),m

w(s,rt)=e T1/2

Following Lerner et al. (2013), the exponential weighting function in relational event models is:

—(t—¢"). n(2)
w(s,r,t) =e =0, )
T2

In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, ¢’ is the past event times that meet the weight subset, and 77/, is the
halflife parameter.

The general formula for incoming two paths for event e; is:

ITP,, = \/z w(r, h,t) - w(h,s,t)
h

That is, as discussed in Butts (2008), incoming two paths finds all past events where the current
sender was the receiver in a relational event where the sender was a node h and the current target
was the sender in a past relational event where the target was the same node h.

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022; Lerner and Lomi 2020) can specify the dyadic weight cutoff, that is, the minimum
value for which the weight is considered relationally relevant. Users who do not know the specific
dyadic cutoff value to use, can use the computeRemDyadCut function.

Following Butts (2008), if the counts of the past events are requested, the formula for incoming two
paths for event e; is:
|H|
ITP, = minld(r, h,t),d(h,s,1]
i=1

Where, d() is the number of past events that meet the specific set operations. d(r, h, t) is the number
of past events where the current event receiver sent a tie to a third actor, &, and d(h, s, ¢ is the number
of past events where the third actor / sent a tie to the current event sender. The sum loops through
all unique actors that have formed past incoming two path structures with the current event sender
and receiver. Moreover, the counting equation can be used in tandem with relational relevancy,
by specifying the halflife parameter, exponential weighting function, and the dyadic cut off weight
values. If the user is not interested in modeling relational relevancy, then those value should be left
at their baseline values.

Value

The vector of incoming two path statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu
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References

Butts, Carter T. 2008. "A Relational Event Framework for Social Action." Sociological Methodol-
ogy 38(1): 155-200.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.
Lerner, Jiirgen and Alessandro Lomi. 2020. “Reliability of relational event model estimates under
sampling: How to fit a relational event model to 360 million dyadic events.” Network Science 8(1):
97-135.

Lerner, Jirgen, Margit Bussman, Tom A.B. Snijders, and Ulrik Brandes. 2013. " Modeling Fre-
quency and Type of Interaction in Event Networks." The Corvinus Journal of Sociology and Social
Policy 4(1): 3-32.

Vu, Duy, Philippa Pattison, and Garry Robins. 2015. "Relational event models for social learning
in MOOCs." Social Networks 43: 121-135.

Examples

events <- data.frame(time = 1:18,
eventID = 1:18,
sender = C("A"’ "B“, IICII’

"A", "D", "E",
"F", "B", "A",
"F”, "D", "B",
"G", "B", "D",
"H", "A", "D"),
target = c("B", "C", "D",
"E", "A", "F",
"D", "A", "C",
"G", "B", "C",
"HY, MITL AT,

ngn men o ngny)

eventSet <- processOMEventSeq(data = events,
time = events$time,
eventID = events$eventlID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 1,
seed = 9999)

# Computing Incoming Two Paths Statistics without the sliding windows framework
eventSet$ITP <- computeITP(

observed_time = events$time,

observed_sender = events$sender,

observed_receiver = events$target,

processed_time = eventSet$time,

processed_sender = eventSet$sender,

processed_receiver = eventSet$receiver,

halflife = 2, #halflife parameter

dyadic_weight = 0,
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Lerneretal_2013 = FALSE)

# Computing Incoming Two Paths Statistics with the sliding windows framework

eventSet$ITP_SW <- computeITP(
observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
processed_seqIDs = eventSet$sequencelD,
dyadic_weight = 0,
sliding_window = TRUE,
Lerneretal_2013 = FALSE)

#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.

cor(eventSet$ITP, eventSet$ITP_SW)

# Computing Incoming Shared Partners Statistics with the counts of events being returned
eventSet$ITPC <- computeITP(
observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
sliding_window = FALSE,
counts = TRUE,
Lerneretal_2013 = FALSE)

cbind(eventSet$ITP,
eventSet$ITP_SW,
eventSet$ITPC)

computeLealBrokerage  Compute Potential for Intercultural Brokerage (PIB) Based on Leal
(2025)

Description

[Deprecated]

computelLealBrokerage() has been deprecated starting on version 1.0.0 of the dream package.
Please use the netstats_om_pib() function and see the NEWS.md file for more details.

Following Leal (2025), this function calculates node’s Potential for Intercultural Brokerage (PIB) in
a one-mode network, that is, brokerage based on nodes’ distinct group memberships. For example,
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users can examine PIB based on actors’ gender. The option count determines what is returned by
the function. If count is TRUE, then the count of ‘culturally’ dissimilar pairs brokered by ego is
included (i.e., ego’s total count of brokered open triangles where the alters at the two endpoints of
said open triangles are ‘culturally’ dissimilar from one another). If count is FALSE, the proportion
of ego’s brokered open triangles where the endpoints are ‘culturally’ dissimilar out of all of ego’s
brokered open triangles (regardless of the cultural identity of the alters) is returned. The formula
for computing interpersonal brokerage is presented in the details section.

Usage

computelLealBrokerage(
net,
g.mem,
symmetric = TRUE,
triad.type = NULL,

count = TRUE,
isolate = NA
)
Arguments
net The one-mode adjacency matrix.
g.mem The vector of membership values that the brokerage scores will be based on.
symmetric TRUE/FALSE. TRUE indicates that network matrix will be treated as symmet-
ric. FALSE indicates that the network matrix will be treated as asymmetric. Set
to TRUE by default.
triad.type The string value (or vector) that indicates what specific triadic (star) structures
the potential for cultural brokerage will be computed for. Possible values are
"ANY", "OTS", "ITS", "MTS" (see the details section). The function defaults
to “ANY”.
count TRUE/FALSE. TRUE indicates that the number of culturally brokered open tri-

angles will be returned. FALSE indicates that the proportion of culturally bro-
kered open triangles to all open triangles will be returned (see the details sec-
tion). Set to TRUE by default.

isolate If count = FALSE, the numerical value that will be given to isolates. This value
is set to NA by default, as 0/0 is undefined. The user can specify this value!

Details

Following Leal (2025), the formula for interpersonal brokerage is:

PIB, =3 Dy S # Oandi# £k

j<k DIk
where:

* Sy = 1 if there is an (un)directed two-path connecting actors j and k through actor i; 0
otherwise.
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* mjj = 1if actors j and k are on different sides of a symbolic boundary; 0 otherwise.

* Following Gould (1989), S;;i, represents the total number of two-paths between actors j and
k.

If the network is non-symmetric (i.e., the user specified symmetric = FALSE), then the function
can compute the cultural brokerage scores for different star structures. The possible values are:
"ANY", which computes the scores for all structures, where a tie exists between i and j, j and k, and
one does not exist between i and k. "OTS" computes the values for outgoing two-stars (i<-j->k or
the 021D triad according to the M.A.N. notation; see Wasserman and Faust 1994), where j is the
broker. "ITS" computes the values for incoming two-stars (i->j<-k or the 021U triad according to
the M.A.N. notation; see Wasserman and Faust 1994 ), where j is the broker. "MTS" computes PIB
for mixed triadic structures (i<-j<-k or i->j->k or the 021C triad according to the M.A.N. notation;
see Wasserman and Faust 1994). If not specified, the function defaults to the "ANY" category. This
function can also compute all of the formations at once.

Value

The vector of interpersonal cultural brokerage values for the one-mode network.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu

References

Gould, Roger. 1989. "Power and Social Structure in Community Elites." Social Forces 68(2):
531-552.

Leal, Diego F. 2025. "Locating Cultural Holes Brokers in Diffusion Dynamics Across Bright Sym-
bolic Boundaries." Sociological Methods & Research doi:10.1177/00491241251322517

Wasserman, Stanley and Katherine Faust. 1994. Social Network Analysis: Methods and Applica-
tions. Cambridge: Cambridge University Press.

Examples

# For this example, we recreate Figure 3 in Leal (2025)
LealNet <- matrix( c(
9’1!078!0!0’0!

nrow = 7, ncol = 7, byrow = TRUE)

colnames(LealNet) <- rownames(LealNet) <- c("A", "B", "C","D",
"E", "F", "G")

categorical_variable <- c(0,0,1,0,0,0,0)

#These values are exactly the same as reported by Leal (2025)

computelLealBrokerage(LealNet,
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mailto:dflc@arizona.edu
https://doi.org/10.1177/00491241251322517

32 computeNPaths

symmetric = TRUE,
g.mem = categorical_variable)

computeNPaths Compute the Number of Walks of Length K in a One-Mode Network

Description

[Deprecated]

computeNPaths () has been deprecated starting on version 1.0.0 of the dream package. Please use
the netstats_om_nwalks() function and see the NEWS.md file for more details.

This function calculates the number of walks of length k between any two vertices in an unweighted
one-mode network.

Usage

computeNPaths(net, k)

Arguments

net An unweighted one-mode network adjacency matrix.

k A numerical value that corresponds to the length of the paths to be computed.
Details

A nice result from graph theory is that the number of walks of length k between vertices i and j can
be found by:
k
Al

This function is similar to the functions provided in igraph that provide the walks between two
vertices. The main difference is that this function provides the counts of paths between all vertices
in the network. In addition, this function assumes that there are no self-loops (i.e., the diagonal of
the matrix is 0).

Value

An n X n matrix of counts of walks.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu
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Examples

# For this example, we generate a random one-mode graph with the sna package.
#creating the random network with 10 actors
set.seed(9999)
rnet <- matrix(sample(c(@,1), 10%10, replace = TRUE, prob = c(0.8,0.2)),
nrow = 10, ncol = 10, byrow = TRUE)
diag(rnet) <- 0 #setting self ties to 0@
#counting the paths of length 2
computeNPaths(rnet, k = 2)
#counting the paths of length 5
computeNPaths(rnet, k = 5)

computeOSP Compute Butts’ (2008) Outgoing Shared Partners Network Statistic
for Event Dyads in a Relational Event Sequence

Description

[Deprecated]

computeOSP () has been deprecated starting on version 1.0.0 of the dream package. Please use the
remstats_triads() function and see the NEWS.md file for more details.

The function computes the outgoing shared partners (OSP) network sufficient statistic for a rela-
tional event sequence (see Lerner and Lomi 2020; Butts 2008). In essence, the outgoing shared
partners measure captures the tendency of triadic closure to occur in the network of past events,
in which the past triadic closure is based upon the outgoing shared partners structure (see Butts
2008 for an empirical example). This measure allows for OSP scores to be only computed for the
sampled events, while creating the weights based on the full event sequence (see Lerner and Lomi
2020; Vu et al. 2015). The function allows users to use two different weighting functions, reduce
computational runtime, employ a sliding windows framework for large relational sequences, and
specify a dyadic cutoff for relational relevancy.

Usage

computeOSP(
observed_time,
observed_sender,
observed_receiver,
processed_time,
processed_sender,
processed_receiver,
sliding_windows = FALSE,
processed_seqIDs = NULL,
counts = FALSE,
halflife = 2,
dyadic_weight = 0,
window_size = NA,
Lerneretal_2013 = FALSE
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Arguments

observed_time The vector of event times from the pre-processing event sequence.
observed_sender

The vector of event senders from the pre-processing event sequence.
observed_receiver

The vector of event receivers from the pre-processing event sequence

processed_time The vector of event times from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_sender
The vector of event senders from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_receiver
The vector of event receivers from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

sliding_windows
TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the resulting network statistic, while FALSE indicates
the approach will not be used. Set to FALSE by default. It’s important to note
that the sliding windows framework should only be used when the pre-processed
event sequence is ‘big’, such as the 360 million pre-processed event sequence
used in Lerner and Lomi (2020), as it aims to reduce the computational burden
of sorting ‘big’ datasets. In general, most pre-processed event sequences will
not need to use the sliding windows approach. There is not a strict cutoff for
‘big’ dataset. This definition depends on both the size of the observed event
sequence and the post-processing sampling dataset. For instance, according to
our internal tests, when the event sequence is relatively large (i.e., 100,000 ob-
served events) with probability of sampling from the observed event sequence
set to 0.05 and using 10 controls per sampled event, the sliding windows frame-
work for computing repetition is about 11% faster than the non-sliding windows
framework. Yet, in a smaller dataset (i.e., 10,000 observed events) the sliding
windows framework is about 25% slower than the non-sliding framework with
the same conditions as before.

processed_seqlDs
If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the 5th event
in the sequence will have a value of 5 in this vector).

counts TRUE/FALSE. TRUE indicates that the counts of past events should be com-
puted (see the details section). FALSE indicates that the temporal exponential
weighting function should be used to downweigh past events (see the details
section). Set to FALSE by default.

halflife A numerical value that is the halflife value to be used in the exponential weight-
ing function (see details section). Preset to 2 (should be updated by the user
based on substantive context).

dyadic_weight A numerical value for the dyadic cutoff weight that represents the numerical
cutoff value for temporal relevancy based on the exponential weighting function.
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For example, a numerical value of 0.01, indicates that an exponential weight less
than 0.01 will become 0 and that events with such value (or smaller values) will
not be included in the sum of the past event weights (see the details section). Set
to 0 by default.

window_size If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).

Lerneretal_2013
TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the

Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default

Details

The function calculates the outgoing shared partners statistics for relational event sequences based
on the exponential weighting function used in either Lerner and Lomi (2020) or Lerner et al. (2013).

Following Lerner and Lomi (2020), the exponential weighting function in relational event models
is:

—(t—t"). In2)

w(s,rt)=e 12

Following Lerner et al. (2013), the exponential weighting function in relational event models is:

—(t—¢"). n(2)
w(s,r,t) =e SRRV In(2)

T2

In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, ¢’ is the past event times that meet the weight subset, and 77/, is the
halflife parameter.

The general formula for outgoing shared partners for event e; is:

OSP,, = \/Z w(s, h,t) - w(r, h,t)
h

That is, as discussed in Butts (2008), outgoing shared partners finds all past events where the current
sender and target sent a relational tie (i.e., were a sender in a relational event) to the same / node.

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022; Lerner and Lomi 2020) can specify the dyadic weight cutoff, that is, the minimum
value for which the weight is considered relationally relevant. Users who do not know the specific
dyadic cutoff value to use, can use the computeRemDyadCut function.

Following Butts (2008), if the counts of the past events are requested, the formula for outgoing

shared partners for event e; is:

||
OSPe; = min|d(s, h,t),d(s, h,1)]
=1
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Where, d() is the number of past events that meet the specific set operations. d(s,h,t) is the
number of past events where the current event sender sent a tie to a third actor, &, and d(r, h, t) is
the number of past events where the current event receiver sent a tie to a third actor, 4. The sum
loops through all unique actors that have formed past outgoing shared partners structures with the
current event sender and receiver. Moreover, the counting equation can be used in tandem with
relational relevancy, by specifying the halflife parameter, exponential weighting function, and the
dyadic cut off weight values. If the user is not interested in modeling relational relevancy, then
those value should be left at their defaults.

Value

The vector of outgoing shared partner statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson @arizona.edu, Diego F. Leal dflc@arizona.edu

References

Butts, Carter T. 2008. "A Relational Event Framework for Social Action." Sociological Methodol-
ogy 38(1): 155-200.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Lerner, Jiirgen and Alessandro Lomi. 2020. “Reliability of relational event model estimates under
sampling: How to fit a relational event model to 360 million dyadic events.” Network Science 8(1):
97-135.

Lerner, Jiirgen, Margit Bussman, Tom A.B. Snijders, and Ulrik Brandes. 2013. " Modeling Fre-
quency and Type of Interaction in Event Networks." The Corvinus Journal of Sociology and Social
Policy 4(1): 3-32.

Vu, Duy, Philippa Pattison, and Garry Robins. 2015. "Relational event models for social learning
in MOOCs." Social Networks 43: 121-135.

Examples

events <- data.frame(time = 1:18,
eventID = 1:18,
sender = c("A", "B", "C",

"A", "D", "E",
YIFII’ IVBII, IIA"y
”F”7 ”D”’ ”B"Y
IIGII’ IIBII, IIDH’
IIHII’ IIAII’ "D”)y
target = c("B", "C", "D",
”EII’ HA”, IIFH’
“DH’ HAII’ "CIY’
“G"l ”B"? ”C”7
HHII’ IIJ'”, IIAH’

npn mgn o wgny)
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eventSet <- processOMEventSeq(data = events,
time = events$time,
eventID = events$eventID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 1,
seed = 9999)

# Computing Outgoing Shared Partners Statistics without the sliding windows framework
eventSet$0SP <- computeOSP(

observed_time = events$time,

observed_sender = events$sender,

observed_receiver = events$target,

processed_time = eventSet$time,

processed_sender = eventSet$sender,

processed_receiver = eventSet$receiver,

halflife = 2, #halflife parameter

dyadic_weight = 0,

Lerneretal_2013 = FALSE)
# Computing Outgoing Shared Partners Statistics with the sliding windows framework
eventSet$0SP_SW <- computeOSP(

observed_time = events$time,

observed_sender = events$sender,

observed_receiver = events$target,

processed_time = eventSet$time,

processed_sender = eventSet$sender,

processed_receiver = eventSet$receiver,

halflife = 2, #halflife parameter

processed_seqlDs = eventSet$sequencelD,

dyadic_weight = 0,

sliding_window = TRUE,

Lerneretal_2013 = FALSE)

#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.

cor(eventSet$0SP , eventSet$OSP_SW)

# Computing Outgoing Shared Partners Statistics with the counts of events being returned
eventSet$0SP_C <- computeOSP(
observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
sliding_window = FALSE,
counts = TRUE,
Lerneretal_2013 = FALSE)
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cbind(eventSet$0SP,
eventSet$0SP_SW,
eventSet$0SP_C)

computeOTP

computeOTP Compute Butts’ (2008) Outgoing Two Paths Network Statistic for
Event Dyads in a Relational Event Sequence
Description
[Deprecated]

computeOTP () has been deprecated starting on version 1.0.0 of the dream package. Please use the
remstats_triads() function and see the NEWS.md file for more details.

The function computes the outgoing two paths (OTP) network sufficient statistic for a relational
event sequence (see Lerner and Lomi 2020; Butts 2008). In essence, the outgoing two paths measure
captures the tendency of triadic closure to occur in the network of past events, in which the past
triadic closure is based upon the outgoing two paths structure (see Butts 2008 for an empirical
example). This measure allows for OTP scores to be only computed for the sampled events, while
creating the weights based on the full event sequence (see Lerner and Lomi 2020; Vu et al. 2015).
The function allows users to use two different weighting functions, reduce computational runtime,
employ a sliding windows framework for large relational sequences, and specify a dyadic cutoff for

relational relevancy.

Usage

computeOTP(
observed_time,
observed_sender,
observed_receiver,
processed_time,
processed_sender,

processed_receiver,
FALSE,

sliding_windows =
processed_seqlDs =
counts = FALSE,
halflife = 2,
dyadic_weight = 0,
window_size = NA,

NULL,

Lerneretal_2013 = FALSE

Arguments

observed_time The vector of event times from the pre-processing event sequence.

observed_sender

The vector of event senders from the pre-processing event sequence.
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observed_receiver

The vector of event receivers from the pre-processing event sequence

processed_time The vector of event times from the post-processing event sequence (i.e., the

event sequence that contains the observed and null events).

processed_sender

The vector of event senders from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_receiver

sliding_windows

The vector of event receivers from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the resulting network statistic, while FALSE indicates
the approach will not be used. Set to FALSE by default. It’s important to note
that the sliding windows framework should only be used when the pre-processed
event sequence is ‘big’, such as the 360 million pre-processed event sequence
used in Lerner and Lomi (2020), as it aims to reduce the computational burden
of sorting ‘big’ datasets. In general, most pre-processed event sequences will
not need to use the sliding windows approach. There is not a strict cutoff for
‘big’ dataset. This definition depends on both the size of the observed event
sequence and the post-processing sampling dataset. For instance, according to
our internal tests, when the event sequence is relatively large (i.e., 100,000 ob-
served events) with probability of sampling from the observed event sequence
set to 0.05 and using 10 controls per sampled event, the sliding windows frame-
work for computing repetition is about 11% faster than the non-sliding windows
framework. Yet, in a smaller dataset (i.e., 10,000 observed events) the sliding
windows framework is about 25% slower than the non-sliding framework with
the same conditions as before.

processed_seqlDs

counts

halflife

dyadic_weight

If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the 5th event
in the sequence will have a value of 5 in this vector).

TRUE/FALSE. TRUE indicates that the counts of past events should be com-
puted (see the details section). FALSE indicates that the temporal exponential
weighting function should be used to downweigh past events (see the details
section). Set to FALSE by default.

A numerical value that is the halflife value to be used in the exponential weight-
ing function (see details section). Preset to 2 (should be updated by the user
based on substantive context).

A numerical value for the dyadic cutoff weight that represents the numerical
cutoff value for temporal relevancy based on the exponential weighting function.
For example, a numerical value of 0.01, indicates that an exponential weight less
than 0.01 will become 0 and that events with such value (or smaller values) will
not be included in the sum of the past event weights (see the details section). Set
to 0 by default.
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window_size If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).

Lerneretal_2013
TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default

Details

The function calculates the outgoing two paths statistic for relational event sequences based on the
exponential weighting function used in either Lerner and Lomi (2020) or Lerner et al. (2013).

Following Lerner and Lomi (2020), the exponential weighting function in relational event models
is:

,(t,t') n(2)

w(s,rt)=e T2

Following Lerner et al. (2013), the exponential weighting function in relational event models is:

—(t—¢"). n(2)
w(s,r,t) =e =0, @)

T2

In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, #’ is the past event times that meet the weight subset, and 7T} /2 is the
halflife parameter.

The general formula for outgoing two paths for event e; is:

OTP,, = \/Z w(s, h,t) - w(h,rt)
h

That is, as discussed in Butts (2008), outgoing two paths finds all past events where the current
sender sends a relational tie to node 4 and the current target receives a relational tie from the same
h node.

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022; Lerner and Lomi 2020) can specify the dyadic weight cutoff, that is, the minimum
value for which the weight is considered relationally relevant. Users who do not know the specific
dyadic cutoff value to use, can use the computeRemDyadCut function.

Following Butts (2008), if the counts of the past events are requested, the formula for outgoing two
paths for event e; is:

|H|

OTP,, =Y minld(s, h,t),d(h,71)]

i=1
Where, d() is the number of past events that meet the specific set operations. d(s, h, t) is the number
of past events where the current event sender sent a tie to a third actor, &, and d(h, r, t) is the number
of past events where the third actor & sent a tie to the current event receiver. The sum loops through
all unique actors that have formed past outgoing two path structures with the current event sender
and receiver. Moreover, the counting equation can be used in tandem with relational relevancy,
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by specifying the halflife parameter, exponential weighting function, and the dyadic cut off weight
values. If the user is not interested in modeling relational relevancy, then those values should be left
at their defaults.

Value

The vector of outgoing two path statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson @arizona.edu, Diego F. Leal dflc@arizona.edu

References

Butts, Carter T. 2008. "A Relational Event Framework for Social Action." Sociological Methodol-
ogy 38(1): 155-200.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Lerner, Jiirgen and Alessandro Lomi. 2020. “Reliability of relational event model estimates under
sampling: How to fit a relational event model to 360 million dyadic events.” Network Science 8(1):
97-135.

Lerner, Jirgen, Margit Bussman, Tom A.B. Snijders, and Ulrik Brandes. 2013. " Modeling Fre-
quency and Type of Interaction in Event Networks." The Corvinus Journal of Sociology and Social
Policy 4(1): 3-32.

Vu, Duy, Philippa Pattison, and Garry Robins. 2015. "Relational event models for social learning
in MOOCs." Social Networks 43: 121-135.

Examples

events <- data.frame(time = 1:18,
eventID = 1:18,
sender = c("A”, "B", "C",

"A”, ”D”, "E",
an’ ern’ "A",
”F“, an’ nBuy
”G”, an’ "D”,
"H" A an)
’ ’ ’
tar‘get - C(“B”, ”C”, "D”,
= AN =
’ ’ ’
"n" A nen
’ ’ ’
"G g nen
’ ’ ’
"y uJ-n AN
’ ’ ’

= , nen , "B”))

eventSet <- processOMEventSeq(data = events,
time = events$time,
eventID = events$eventID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
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n_controls = 1,
seed = 9999)

# Computing Outgoing Two Paths Statistics without the sliding windows framework
eventSet$0TP <- computeOTP(

observed_time = events$time,

observed_sender = events$sender,

observed_receiver = events$target,

processed_time = eventSet$time,

processed_sender = eventSet$sender,

processed_receiver = eventSet$receiver,

halflife = 2, #halflife parameter

dyadic_weight = 0,

Lerneretal_2013 = FALSE)
# Computing Outgoing Two Paths Statistics with the sliding windows framework
eventSet$0TP_SW <- computeOTP(

observed_time = events$time,

observed_sender = events$sender,

observed_receiver = events$target,

processed_time = eventSet$time,

processed_sender = eventSet$sender,

processed_receiver = eventSet$receiver,

halflife = 2, #halflife parameter

processed_seqlDs = eventSet$sequencelD,

dyadic_weight = 0,

sliding_window = TRUE,

Lerneretal_2013 = FALSE)

#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.

cor(eventSet$0TP , eventSet$0TP_SW)

# Computing Outgoing Two Paths Statistics with the counts of events being returned
eventSet$0TPC <- computeOTP(
observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
sliding_window = FALSE,
counts = TRUE,
Lerneretal_2013 = FALSE)

cbind(eventSet$0TP,
eventSet$0TP_SW,
eventSet$0TPC)
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computePersistence Compute Butts’ (2008) Persistence Network Statistic for Event Dyads
in a Relational Event Sequence

Description

[Deprecated]

computePersistence() has been deprecated starting on version 1.0.0 of the dream package. Please
use the remstats_persistence() function and see the NEWS.md file for more details.

This function computes the persistence network sufficient statistic for a relational event sequence
(see Butts 2008). Persistence measures the proportion of past ties sent from the event sender that
went to the current event receiver. Furthermore, this measure allows for persistence scores to be
only computed for the sampled events, while creating the weights based on the full event sequence.
Moreover, the function allows users to specify relational relevancy for the statistic and employ a
sliding windows framework for large relational sequences.

Usage

computePersistence(
observed_time,
observed_sender,
observed_receiver,
processed_time,
processed_sender,
processed_receiver,
sender = TRUE,
dependency = FALSE,
relationalTimeSpan = NULL,
nopastEvents = NA,
sliding_windows = FALSE,
processed_seqIDs = NULL,
window_size = NA

Arguments

observed_time The vector of event times from the pre-processing event sequence.
observed_sender
The vector of event senders from the pre-processing event sequence.
observed_receiver
The vector of event receivers from the pre-processing event sequence
processed_time The vector of event times from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).
processed_sender
The vector of event senders from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).
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processed_receiver

sender

dependency

The vector of event receivers from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

TRUE/FALSE. TRUE indicates that the persistence statistic will be computed in
reference to the sender’s past relational history (see details section). FALSE in-
dicates that the persistence statistic will be computed in reference to the target’s
past relational history (see details section). Set to TRUE by default.

TRUE/FALSE. TRUE indicates that temporal relevancy will be modeled (see the
details section). FALSE indicates that temporal relevancy will not be modeled,
that is, all past events are relevant (see the details section). Set to FALSE by
default.

relationalTimeSpan

nopastEvents

sliding_windows

If dependency = TRUE, a numerical value that corresponds to the temporal span
for relational relevancy, which must be the same measurement unit as the ob-
served_time and processed_time objects. When dependency = TRUE, the rel-
evant events are events that have occurred between current event time, ¢, and
t-relationalTimeSpan. For example, if the time measurement is the number of
days since the first event and the value for relationalTimeSpan is set to 10, then
only those events which occurred in the past 10 days are included in the compu-
tation of the statistic.

The numerical value that specifies what value should be given to events in which
the sender has sent not past ties (i’s neighborhood when sender = TRUE) or has
not received any past ties (j’s neighborhood when sender = FALSE). Set to NA
by default.

TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the resulting network statistic, while FALSE indicates
the approach will not be used. Set to FALSE by default. It’s important to note
that the sliding windows framework should only be used when the pre-processed
event sequence is ‘big’, such as the 360 million pre-processed event sequence
used in Lerner and Lomi (2020), as it aims to reduce the computational burden
of sorting ‘big’ datasets. In general, most pre-processed event sequences will
not need to use the sliding windows approach. There is not a strict cutoff for
‘big’ dataset. This definition depends on both the size of the observed event
sequence and the post-processing sampling dataset. For instance, according to
our internal tests, when the event sequence is relatively large (i.e., 100,000 ob-
served events) with probability of sampling from the observed event sequence
set to 0.05 and using 10 controls per sampled event, the sliding windows frame-
work for computing repetition is about 11% faster than the non-sliding windows
framework. Yet, in a smaller dataset (i.e., 10,000 observed events) the sliding
windows framework is about 25% slower than the non-sliding framework with
the same conditions as before.

processed_seqlDs

If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the 5th event
in the sequence will have a value of 5 in this vector).
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window_size If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).

Details

The function calculates the persistence network sufficient statistic for a relational event sequence
based on Butts (2008).

The formula for persistence for event e; with reference to the sender’s past relational history is:

d(s(ei)’ T(ei)v At)
d(s(ei), Ar)

Persistence., =

where d(s(e;),r(e;), Az) is the number of past events where the current event sender sent a tie to
the current event receiver, and d(s(e;), A;) is the number of past events where the current sender
sent a tie.

The formula for persistence for event e; with reference to the target’s past relational history is:

d(s(e;),r(ei), At)
d(r(ei), Ar)

Persistence,, =

where d(s(e;), r(e;), At) is the number of past events where the current event sender sent a tie to
the current event receiver, and d(r(e;), A¢) is the number of past events where the current receiver
recieved a tie.

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022) can specify the relational time span, that is, length of time for which events are
considered relationally relevant. This should be specified via the option relationalTimeSpan with
dependency set to TRUE.

Value

The vector of persistence network statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson @arizona.edu, Diego F. Leal dflc@arizona.edu

References

Butts, Carter T. 2008. "A relational event framework for social action." Sociological Methodology
38(1): 155-200.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.
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Examples

# A Dummy One-Mode Event Dataset
events <- data.frame(time = 1:18,
eventID = 1:18,
sender = c("A", "B", "C",

”A,'Y ”D“) “EHY
”F”7 ”B”’ "A”?
IIFH’ IVDII, VIBII’
”G,'Y ”B“) “DHY
”H”7 ”A”’ "D”)’
target = C("B”’ IVCII, VIDII’
”E,'Y ”A“) “FHY
"D", "A", "C",
IIGH’ IVBII, IICII’
”HHY ”J“) “AHY

WEm mn mBMY)

# Creating the Post-Processing Event Dataset with Null Events
eventSet <- processOMEventSeq(data = events,
time = events$time,
eventID = events$eventID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 6,
seed = 9999)

#Compute Persistence with respect to the sender's past relational history without

#the sliding windows framework and no temporal dependency

eventSet$persist <- computePersistence(observed_time = events$time,
observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,
sender = TRUE,
nopastEvents = 0)

#Compute Persistence with respect to the sender's past relational history with

#the sliding windows framework and no temporal dependency

eventSet$persistSW <- computePersistence(observed_time = events$time,
observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,
sender = TRUE,
sliding_windows = TRUE,
processed_seqlDs = eventSet$sequencelD,
nopastEvents = @)
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#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.
cor(eventSet$persist,eventSet$persistSW)

#Compute Persistence with respect to the sender's past relational history without

#the sliding windows framework and temporal dependency

eventSet$persistDep <- computePersistence(observed_time = events$time,
observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,
sender = TRUE,
dependency = TRUE,
relationalTimeSpan = 5, #the past 5 events
nopastEvents = @)

#Compute Persistence with respect to the receiver's past relational history without

#the sliding windows framework and no temporal dependency

eventSet$persistT <- computePersistence(observed_time = events$time,
observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,
sender = FALSE,
nopastEvents = @)

#Compute Persistence with respect to the receiver's past relational history with

#the sliding windows framework and no temporal dependency

eventSet$persistSWT <- computePersistence(observed_time = events$time,
observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,
sender = FALSE,
sliding_windows = TRUE,
processed_seqlDs = eventSet$sequencelD,
nopastEvents = @)

#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.
cor(eventSet$persistT,eventSet$persistSWT)

#Compute Persistence with respect to the receiver's past relational history without

#the sliding windows framework and temporal dependency

eventSet$persistDepT <- computePersistence(observed_time = events$time,
observed_receiver = events$target,
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observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,

sender = FALSE,

dependency = TRUE,

relationalTimeSpan = 5, #the past 5 events
nopastEvents = @)

computePrefAttach Compute Butts’ (2008) Preferential Attachment Network Statistic for
Event Dyads in a Relational Event Sequence

Description

[Deprecated]

computePrefAttach() has been deprecated starting on version 1.0.0 of the dream package. Please
use the remstats_prefattachment () function and see the NEWS.md file for more details.

The function computes the preferential attachment network sufficient statistic for a relational event
sequence (see Butts 2008). Preferential attachment measures the tendency towards a positive feed-
back loop in which actors involved in more past events are more likely to be involved in future
events (see Butts 2008 for an empirical example and discussion).This measure allows for prefer-
ential attachment scores to be only computed for the sampled events, while creating the statistics
based on the full event sequence. Moreover, the function allows users to specify relational relevancy
for the statistic and employ a sliding windows framework for large relational sequences.

Usage

computePrefAttach(
observed_time,
observed_sender,
observed_receiver,
processed_time,
processed_sender,
processed_receiver,
dependency = FALSE,
relationalTimeSpan = NULL,
sliding_windows = FALSE,
processed_seqIDs = NULL,
window_size = NA

Arguments

observed_time The vector of event times from the pre-processing event sequence.
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The vector of event senders from the pre-processing event sequence.

observed_receiver

processed_time

The vector of event receivers from the pre-processing event sequence

The vector of event times from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_sender

The vector of event senders from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_receiver

The vector of event receivers from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

dependency TRUE/FALSE. TRUE indicates that temporal relevancy will be modeled (see the
details section). FALSE indicates that temporal relevancy will not be modeled,
that is, all past events are relevant (see the details section). Set to FALSE by
default.

relationalTimeSpan

sliding_windows

If dependency = TRUE, a numerical value that corresponds to the temporal span
for relational relevancy, which must be the same measurement unit as the ob-
served_time and processed_time objects. When dependency = TRUE, the rel-
evant events are events that have occurred between current event time, ¢, and
t - relationalTimeSpan. For example, if the time measurement is the number
of days since the first event and the value for relationalTimeSpan is set to 10,
then only those events which occurred in the past 10 days are included in the
computation of the statistic.

TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the resulting network statistic, while FALSE indicates
the approach will not be used. Set to FALSE by default. It’s important to note
that the sliding windows framework should only be used when the pre-processed
event sequence is ‘big’, such as the 360 million pre-processed event sequence
used in Lerner and Lomi (2020), as it aims to reduce the computational burden
of sorting ‘big’ datasets. In general, most pre-processed event sequences will
not need to use the sliding windows approach. There is not a strict cutoff for
‘big’ dataset. This definition depends on both the size of the observed event
sequence and the post-processing sampling dataset. For instance, according to
our internal tests, when the event sequence is relatively large (i.e., 100,000 ob-
served events) with probability of sampling from the observed event sequence
set to 0.05 and using 10 controls per sampled event, the sliding windows frame-
work for computing repetition is about 11% faster than the non-sliding windows
framework. Yet, in a smaller dataset (i.e., 10,000 observed events) the sliding
windows framework is about 25% slower than the non-sliding framework with
the same conditions as before.

processed_seqlDs

If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the 5th event
in the sequence will have a value of 5 in this vector).
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window_size If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).

Details

The function calculates preferential attachment for a relational event sequence based on Butts
(2008).

Following Butts (2008), the formula for preferential attachment for event e; is:
_dt(r(eq), Ay) +d(r(e;), Ar)
S (dF (i, A+ d (1, Ap))

€4

where d*(r(e;), A¢) is the past outdegree of the receiver for e;, d~ (r(e;), A¢) is the past indegree

of the receiver for e;, Zﬁll (d* (i, A) + d~ (4, A;)) is the sum of the past outdegree and indegree
for all past event senders in the relational history.

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022) can specify the relational time span, that is, length of time for which events are
considered relationally relevant. This should be specified via the option relationalTimeSpan with
dependency set to TRUE.

Value

The vector of event preferential attachment statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu

References

Butts, Carter T. 2008. "A relational event framework for social action." Sociological Methodology
38(1): 155-200.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Examples

# A Dummy One-Mode Event Dataset
events <- data.frame(time = 1:18,
eventID = 1:18,
sender = c("A", "B", "C",

”A", "D”, ”E“,
"F“, an’ "A",
”F”r ”D”! ”B"r
”G", an’ ”D“,
an’ "A", "D"),

target = c("B", "C", "D",
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npn nmaAn negn
E", "A", "FT,
npy nmAn nen
D ’ A ’ C ’
”G”, ”B”, ”C",
"y nJ-n nAN

’ ’ ’

g omgw o ongny)y

# Creating the Post-Processing Event Dataset with Null Events
eventSet <- processOMEventSeq(data = events,
time = events$time,
eventID = events$eventID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 6,
seed = 9999)

# Compute Preferential Attachment Statistic without Sliding Windows Framework and
# No Temporal Dependency
eventSet$pref <- computePrefAttach(observed_time = events$time,
observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,
dependency = FALSE)

# Compute Preferential Attachment Statistic with Sliding Windows Framework and

# No Temporal Dependency

eventSet$prefSW <- computePrefAttach(observed_time = events$time,
observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,
dependency = FALSE,
sliding_windows = TRUE,
processed_seqIDs = eventSet$sequencelD)

#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.
cor(eventSet$pref,eventSet$prefSW) #the correlation of the values

# Compute Preferential Attachment Statistic without Sliding Windows Framework and

# Temporal Dependency

eventSet$prefdep <- computePrefAttach(observed_time = events$time,
observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,
dependency = TRUE,



52 computeReceiverIndegree

relationalTimeSpan = 10)

# Compute Preferential Attachment Statistic with Sliding Windows Framework and

# Temporal Dependency

eventSet$prefidep <- computePrefAttach(observed_time = events$time,
observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,
dependency = TRUE,
relationalTimeSpan = 10,
sliding_windows = TRUE,
processed_seqIDs = eventSet$sequencelD)

#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.
cor(eventSet$prefdep,eventSet$prefidep) #the correlation of the values

computeReceiverIndegree
Compute the Indegree Network Statistic for Event Receivers in a Re-
lational Event Sequence

Description

[Deprecated]

computeReceiverIndegree() has been deprecated starting on version 1.0.0 of the dream package.
Please use the remstats_degree () function and see the NEWS . md file for more details.

The function computes the indegree network sufficient statistic for event receivers in a relational
event sequence (see Lerner and Lomi 2020; Butts 2008). This measure allows for the indegree
scores to be computed only for the sampled events, while creating the weights based on the full
event sequence (see Lerner and Lomi 2020; Vu et al. 2015). The function allows users to use two
different weighting functions, reduce computational runtime, employ a sliding windows framework
for large relational sequences, and specify a dyadic cutoff for relational relevancy.

Usage

computeReceiverIndegree(

observed_time,
observed_receiver,
processed_time,
processed_receiver,
sliding_windows = FALSE,
processed_seqIDs = NULL,
counts = FALSE,
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halflife =

dyadic_weig
window_size
Lerneretal_201

Arguments

observed_time

=

= 0,
NA,
3 = FALSE

The vector of event times from the pre-processing event sequence.

observed_receiver

The vector of event receivers from the pre-processing event sequence

processed_time The vector of event times from the post-processing event sequence (i.e., the

event sequence that contains the observed and null events).

processed_receiver

sliding_windows

The vector of event receivers from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the resulting network statistic, while FALSE indicates
the approach will not be used. Set to FALSE by default. It’s important to note
that the sliding windows framework should only be used when the pre-processed
event sequence is ‘big’, such as the 360 million pre-processed event sequence
used in Lerner and Lomi (2020), as it aims to reduce the computational burden
of sorting ‘big’ datasets. In general, most pre-processed event sequences will
not need to use the sliding windows approach. There is not a strict cutoff for
‘big’ dataset. This definition depends on both the size of the observed event
sequence and the post-processing sampling dataset. For instance, according to
our internal tests, when the event sequence is relatively large (i.e., 100,000 ob-
served events) with probability of sampling from the observed event sequence
set to 0.05 and using 10 controls per sampled event, the sliding windows frame-
work for computing repetition is about 11% faster than the non-sliding windows
framework. Yet, in a smaller dataset (i.e., 10,000 observed events) the sliding
windows framework is about 25% slower than the non-sliding framework with
the same conditions as before.

processed_seqlDs

counts

halflife

If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the 5th event
in the sequence will have a value of 5 in this vector).

TRUE/FALSE. TRUE indicates that the counts of past events should be com-
puted (see the details section). FALSE indicates that the temporal exponential
weighting function should be used to downweigh past events (see the details
section). Set to FALSE by default.

A numerical value that is the halflife value to be used in the exponential weight-
ing function (see details section). Preset to 2 (should be updated by the user
based on substantive context).
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dyadic_weight A numerical value for the dyadic cutoff weight that represents the numerical
cutoff value for temporal relevancy based on the exponential weighting function.
For example, a numerical value of 0.01, indicates that an exponential weight less
than 0.01 will become 0 and that events with such value (or smaller values) will
not be included in the sum of the past event weights (see the details section). Set
to 0 by default.

window_size If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).

Lerneretal_2013
TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default

Details

The function calculates receiver indegree scores for relational event sequences based on the expo-
nential weighting function used in either Lerner and Lomi (2020) or Lerner et al. (2013).

Following Lerner and Lomi (2020), the exponential weighting function in relational event models

is: o)
—(t—t/)~"7
w(s,rt)=e T1/2

Following Lerner et al. (2013), the exponential weighting function in relational event models is:

—(t—t')- 2 (2
w(s,rt)=e =0 )

T2
In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, ¢’ is the past event times that meet the weight subset, and 77 /2 is the
halflife parameter.

The formula for receiver indegree for event e; is:

recieverindegree., = w(s',r,t)

That is, all past events in which the event receiver is the current receiver.

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022; Lerner and Lomi 2020) can specify the dyadic weight cutoff, that is, the minimum
value for which the weight is considered relationally relevant. Users who do not know the specific
dyadic cutoff value to use, can use the computeRemDyadCut function.

Following Butts (2008), if the counts of the past events are requested, the formula for receiver
indegree for event e; is:
repetitione, = d(r’ = r,t")

where, d() is the number of past events where the past event receiver, r’, is the current event receiver
(target). Moreover, the counting equation can be used in tandem with relational relevancy, by
specifying the halflife parameter, exponential weighting function, and the dyadic cut off weight
values. If the user is not interested in modeling relational relevancy, then those value should be left
at their defaults.
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Value

The vector of receiver indegree statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu

References

Butts, Carter T. 2008. "A Relational Event Framework for Social Action." Sociological Methodol-
ogy 38(1): 155-200.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Lerner, Jiirgen and Alessandro Lomi. 2020. “Reliability of relational event model estimates under
sampling: How to fit a relational event model to 360 million dyadic events.” Network Science 8(1):
97-135.

Lerner, Jirgen, Margit Bussman, Tom A.B. Snijders, and Ulrik Brandes. 2013. " Modeling Fre-
quency and Type of Interaction in Event Networks." The Corvinus Journal of Sociology and Social
Policy 4(1): 3-32.

Vu, Duy, Philippa Pattison, and Garry Robins. 2015. "Relational event models for social learning
in MOOCs." Social Networks 43: 121-135.

Examples

events <- data.frame(time = 1:18,
eventID = 1:18,
sender = C("A"’ "B", IICIIy

nman npn ngn
A D E
’ ’ ’
"F”, an’ "A",
"F", ern’ nBuy
”G“, ”B“, nDuy
"y A "D”)
’ ’ ’
target - C("B”, ”C", an’
nE" AN ngn
’ ’ ’
"pr AN nen
) ’ ’
"G" ng nen
’ ’ ’
"y nyn nAN
’ ’ ’
= nen an))
’ ’

eventSet <- processOMEventSeq(data = events,
time = events$time,
eventID = events$eventlID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 1,
seed = 9999)

# Computing Target Indegree Statistics without the sliding windows framework
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eventSet$target_indegree <- computeReceiverIndegree(
observed_time = events$time,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
Lerneretal_2013 = FALSE)

# Computing Target Indegree Statistics with the sliding windows framework
eventSet$target_indegreeSW <- computeReceiverIndegree(
observed_time = events$time,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
processed_seqlDs = eventSet$sequencelD,
dyadic_weight = 0,
sliding_window = TRUE,
Lerneretal_2013 = FALSE)

#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.

cor(eventSet$target_indegree , eventSet$target_indegreeSw )

# Computing Target Indegree Statistics with the counts of events being returned
eventSet$target_indegreeC <- computeReceiverIndegree(
observed_time = events$time,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
processed_seqlDs = eventSet$sequencelD,
dyadic_weight = 0,
sliding_window = TRUE,
Lerneretal_2013 = FALSE,
counts = TRUE)

cbind(eventSet$target_indegree,
eventSet$target_indegreeSW,
eventSet$target_indegreeC)

computeReceiverOQutdegree

Compute the Outdegree Network Statistic for Event Receivers in a Re-
lational Event Sequence

Description

[Deprecated]
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computeReceiverOutdegree() has been deprecated starting on version 1.0.0 of the dream pack-
age. Please use the remstats_degree() function and see the NEWS.md file for more details.

The function computes the receiver outdegree network sufficient statistic for a relational event se-
quence (see Lerner and Lomi 2020; Butts 2008). This measure allows for outdegree scores to
be only computed for the sampled events, while creating the weights based on the full event se-
quence (see Lerner and Lomi 2020; Vu et al. 2015). The function allows users to use two different
weighting functions, reduce computational runtime, employ a sliding windows framework for large
relational sequences, and specify a dyadic cutoff for relational relevancy.

Usage

computeReceiverOutdegree(
observed_time,
observed_sender,
observed_receiver,
processed_time,
processed_sender,
processed_receiver,
sliding_windows = FALSE,
processed_seqIDs = NULL,
counts = FALSE,
halflife = 2,
dyadic_weight =
window_size = NA
Lerneretal_2013

o,

= FALSE

Arguments

observed_time The vector of event times from the pre-processing event sequence.
observed_sender

The vector of event senders from the pre-processing event sequence.
observed_receiver

The vector of event receivers from the pre-processing event sequence

processed_time The vector of event times from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_sender
The vector of event senders from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_receiver
The vector of event receivers from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

sliding_windows
TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the resulting network statistic, while FALSE indicates
the approach will not be used. Set to FALSE by default. It’s important to note
that the sliding windows framework should only be used when the pre-processed
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event sequence is ‘big’, such as the 360 million pre-processed event sequence
used in Lerner and Lomi (2020), as it aims to reduce the computational burden
of sorting ‘big’ datasets. In general, most pre-processed event sequences will
not need to use the sliding windows approach. There is not a strict cutoff for
‘big’ dataset. This definition depends on both the size of the observed event
sequence and the post-processing sampling dataset. For instance, according to
our internal tests, when the event sequence is relatively large (i.e., 100,000 ob-
served events) with probability of sampling from the observed event sequence
set to 0.05 and using 10 controls per sampled event, the sliding windows frame-
work for computing repetition is about 11% faster than the non-sliding windows
framework. Yet, in a smaller dataset (i.e., 10,000 observed events) the sliding
windows framework is about 25% slower than the non-sliding framework with
the same conditions as before.

processed_seqlDs

counts

halflife

dyadic_weight

window_size

Lerneretal_2013

Details

If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the 5th event
in the sequence will have a value of 5 in this vector).

TRUE/FALSE. TRUE indicates that the counts of past events should be com-
puted (see the details section). FALSE indicates that the temporal exponential
weighting function should be used to downweigh past events (see the details
section). Set to FALSE by default.

A numerical value that is the halflife value to be used in the exponential weight-
ing function (see details section). Preset to 2 (should be updated by the user
based on substantive context).

A numerical value for the dyadic cutoff weight that represents the numerical
cutoff value for temporal relevancy based on the exponential weighting function.
For example, a numerical value of 0.01, indicates that an exponential weight less
than 0.01 will become 0 and that events with such value (or smaller values) will
not be included in the sum of the past event weights (see the details section). Set
to 0 by default.

If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).

TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default

The function calculates reciever outdegree scores for relational event sequences based on the expo-
nential weighting function used in either Lerner and Lomi (2020) or Lerner et al. (2013).

Following Lerner and Lomi (2020), the exponential weighting function in relational event models

is:

(447, In(2)
(t—t") 72

w(s,r,t) =e
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Following Lerner et al. (2013), the exponential weighting function in relational event models is:
,(tft’)»% In(2)

w(s,r,t)=c¢
(s,7m,1) Ti/s

In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, ¢’ is the past event times that meet the weight subset, and 77/, is the
halflife parameter.

The formula for receiver outdegree for event e; is:
receiveroutdegree., = w(r’,r,t)

That is, all past events in which the past receiver is the current sender and the event receiver can be
any past actor.

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022; Lerner and Lomi 2020) can specify the dyadic weight cutoff, that is, the minimum
value for which the weight is considered relationally relevant. Users who do not know the specific
dyadic cutoff value to use, can use the computeRemDyadCut function.

Following Butts (2008), if the counts of the past events are requested, the formula for receiver
outdegree for event e; is:
receiveroutdegreee; = d(s' = r,t")

Where, d() is the number of past events where the event sender, s’, is the current event receiver, r’.
Moreover, the counting equation can be used in tandem with relational relevancy, by specifying the
halflife parameter, exponential weighting function, and the dyadic cut off weight values. If the user
is not interested in modeling relational relevancy, then those value should be left at their baseline
values.

Value

The vector of receiver outdegree statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc @arizona.edu

References

Butts, Carter T. 2008. "A Relational Event Framework for Social Action." Sociological Methodol-
ogy 38(1): 155-200.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Lerner, Jiirgen and Alessandro Lomi. 2020. “Reliability of relational event model estimates under
sampling: How to fit a relational event model to 360 million dyadic events.” Network Science 8(1):
97-135.

Lerner, Jirgen, Margit Bussman, Tom A.B. Snijders, and Ulrik Brandes. 2013. " Modeling Fre-
quency and Type of Interaction in Event Networks." The Corvinus Journal of Sociology and Social
Policy 4(1): 3-32.

Vu, Duy, Philippa Pattison, and Garry Robins. 2015. "Relational event models for social learning
in MOOCs." Social Networks 43: 121-135.
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Examples

events <- data.frame(time = 1:18,
eventID = 1:18,
sender = c("A”, "B", "C",

”A”7 ”D”’ "E”?
IIFH’ IVBII, VIAII’
”F,'Y ”D“) “BHY
”G”7 ”B”’ "D”?
IIHII, IIAII’ IIDII)’
target = c("B", "C", "D",
"E", "A", "F",
IIDII, IIAII’ IICII’
"G”! “BHY ”C”!
"HY, "I, OMAT,

= , uCu , uBn))

eventSet <- processOMEventSeq(data = events,
time = events$time,
eventID = events$eventID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 1,
seed = 9999)

computeReceiverOutdegree

# Computing Target Outdegree Statistics without the sliding windows framework

eventSet$target_outdegree <- computeReceiverQOutdegree(
observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,

Lerneretal_2013 = FALSE)

# Computing Target Outdegree Statistics with the sliding windows framework

eventSet$target_outdegreeSW <- computeReceiverOutdegree(
observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
processed_seqlDs = eventSet$sequencelD,
dyadic_weight = 0,
sliding_window = TRUE,
Lerneretal_2013 = FALSE)

#The results with and without the sliding windows are the

same

(see

correlation
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#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.
cor(eventSet$target_outdegreeSW , eventSet$target_outdegree)

# Computing Target Outdegree Statistic with the counts of events being returned
eventSet$target_outdegreeC <- computeReceiverOutdegree(

observed_time = events$time,

observed_sender = events$sender,

observed_receiver = events$target,

processed_time = eventSet$time,

processed_sender = eventSet$sender,

processed_receiver = eventSet$receiver,

halflife = 2, #halflife parameter

dyadic_weight = 0,

sliding_window = FALSE,

counts = TRUE,

Lerneretal_2013 = FALSE)

cbind(eventSet$target_outdegree,
eventSet$target_outdegreeSw,
eventSet$target_outdegreeC)

computeRecency Compute Butts’ (2008) Recency Network Statistic for Event Dyads in
a Relational Event Sequence

Description

[Deprecated]

computeRecency () has been deprecated starting on version 1.0.0 of the dream package. Please use
the remstats_recency() function and see the NEWS.md file for more details.

This function computes the recency network sufficient statistic for a relational event sequence (see
Butts 2008; Vu et al. 2015; Meijerink-Bosman et al. 2022). The recency statistic captures the
tendency in which more recent events (i.e., an exchange between two medical doctors) are more
likely to reoccur in comparison to events that happened in the distant past (see Butts 2008 for a
discussion). This measure allows for recency scores to be only computed for the sampled events,
while creating the statistics based on the full event sequence. Moreover, the function allows users
to specify relational relevancy for the statistic and employ a sliding windows framework for large
relational sequences.

Usage

computeRecency (
observed_time,
observed_sender,
observed_receiver,
processed_time,
processed_sender,
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processed_receiver,

type = c("raw.diff"”, "inv.diff.plus1”, "rank.ordered.count"),
i_neighborhood = TRUE,

dependency = FALSE,

relationalTimeSpan = NULL,

nopastEvents = NA,

sliding_windows = FALSE,

processed_seqIDs = NULL,

window_size = NA

Arguments

observed_time The vector of event times from the pre-processing event sequence.

observed_sender
The vector of event senders from the pre-processing event sequence.

observed_receiver
The vector of event receivers from the pre-processing event sequence

processed_time The vector of event times from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_sender
The vector of event senders from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_receiver
The vector of event receivers from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

type A string value that specifies which recency formula will be used to compute the
statistics. The options are "raw.diff", "inv.diff.plus1”, "rank.ordered.count” (see
the details section).

i_neighborhood TRUE/FALSE. TRUE indicates that the recency statistic will be computed in
reference to the sender’s past relational history (see details section). FALSE in-
dicates that the persistence statistic will be computed in reference to the target’s
past relational history (see details section). Set to TRUE by default.

dependency TRUE/FALSE. TRUE indicates that temporal relevancy will be modeled (see the
details section). FALSE indicates that temporal relevancy will not be modeled,
that is, all past events are relevant (see the details section). Set to FALSE by
default.

relationalTimeSpan
If dependency = TRUE, a numerical value that corresponds to the temporal span
for relational relevancy, which must be the same measurement unit as the ob-
served_time and processed_time objects. When dependency = TRUE, the rel-
evant events are events that have occurred between current event time, ¢, and
t - relationalTimeSpan. For example, if the time measurement is the number
of days since the first event and the value for relationalTimeSpan is set to 10,
then only those events which occurred in the past 10 days are included in the
computation of the statistic.
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The numerical value that specifies what value should be given to events in
which the sender has sent not past ties (i’s neighborhood when i_neighborhood =
TRUE) or has not received any past ties (j’s neighborhood when i_neighborhood
= FALSE). Set to NA by default.

TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the resulting network statistic, while FALSE indicates
the approach will not be used. Set to FALSE by default. It’s important to note
that the sliding windows framework should only be used when the pre-processed
event sequence is ‘big’, such as the 360 million pre-processed event sequence
used in Lerner and Lomi (2020), as it aims to reduce the computational burden
of sorting ‘big’ datasets. In general, most pre-processed event sequences will
not need to use the sliding windows approach. There is not a strict cutoff for
‘big’ dataset. This definition depends on both the size of the observed event
sequence and the post-processing sampling dataset. For instance, according to
our internal tests, when the event sequence is relatively large (i.e., 100,000 ob-
served events) with probability of sampling from the observed event sequence
set to 0.05 and using 10 controls per sampled event, the sliding windows frame-
work for computing repetition is about 11% faster than the non-sliding windows
framework. Yet, in a smaller dataset (i.e., 10,000 observed events) the sliding
windows framework is about 25% slower than the non-sliding framework with
the same conditions as before.

processed_seqlDs

window_size

Details

If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the 5th event
in the sequence will have a value of 5 in this vector).

If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).

This function calculates the recency network sufficient statistic for a relational event based on Butts
(2008), Vu et al. (2015), or Meijerink-Bosman et al. (2022). Depending on the type and neighbor-
hood requested, different formulas will be used.

In the below equations, when i_neighborhood is TRUE:

t* =max(t € {(s,r',t')e E:s =snr' =r At <t})

When i_neighborhood is FALSE, the following formula is used:

t* =max(t € {(s,r',t')e E:s =rAr =sAt <t})

The formula for recency for event e; with type set to "raw.diff" and i_neighborhood is TRUE (Vu

et al. 2015):

recencye; = te, —t*
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where t*, is the most recent time in which the past event has the same receiver and sender as the
current event. If there are no past events within the current dyad, then the value defaults to the
nopastEvents argument.

The formula for recency for event e; with type set to "raw.diff" and i_neighborhood is FALSE (Vu
et al. 2015):
recencye, = te, —t*

where t*, is the most recent time in which the past event’s sender is the current event receiver and
the past event receiver is the current event sender. If there are no past events within the current dyad,
then the value defaults to the nopastEvents argument.

The formula for recency for event e; with type set to "inv.diff.plus1" and i_neighborhood is TRUE
(Meijerink-Bosman et al. 2022):

1

recencly, — ———
Ye,; te — " + 1

where t*, is the most recent time in which the past event has the same receiver and sender as the
current event. If there are no past events within the current dyad, then the value defaults to the
nopastEvents argument.

The formula for recency for event e; with type set to "inv.diff.plus1" and i_neighborhood is FALSE
(Meijerink-Bosman et al. 2022):

1

ecenc =
e e = T e T

where t*, is the most recent time in which the past event’s sender is the current event receiver and
the past event receiver is the current event sender. If there are no past events within the current dyad,
then the value defaults to the nopastEvents argument.

The formula for recency for event e; with type set to "rank.ordered.count” and i_neighborhood is
TRUE (Butts 2008):
recencye, = p(s(ei), r(e;), Ay) ™"

where p(s(e;),r(e;), A¢), is the current event receiver’s rank amongst the current sender’s recent
relational events. That is, as Butts (2008: 174) argues, "p(s(e;),7(e;), A¢) isj’s recency rank among
i’s in-neighborhood. Thus, if j is the last person to have called i, then p(s(e;), r(e;), A;) ~! = 1. This
falls to 1/2 if j is the second most recent person to call i, 1/3 if j is the third most recent person, etc."
Moreover, if j is not in i’s neighborhood, the value defaults to infinity. If there are no past events
with the current sender, then the value defaults to the nopastEvents argument.

The formula for recency for event e; with type set to "rank.ordered.count” and i_neighborhood is
FALSE (Butts 2008):
recencye, = p(r(e;), s(e:), Ay) ™"

where p(r(e;), s(e;), A¢), is the current event sender’s rank amongst the current receiver’s recent
relational events. That is, this measure is the same as above where the dyadic pair is flipped for the
past relational events. Moreover, if j is not in i’s neighborhood, the value defaults to infinity. If there
are no past events with the current sender, then the value defaults to the nopastEvents argument.

Finally, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022) can specify the relational time span, that is, length of time for which events are
considered relationally relevant. This should be specified via the option relationalTimeSpan with
dependency set to TRUE.
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Value

The vector of recency network statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson @arizona.edu, Diego F. Leal dflc@arizona.edu

References

Butts, Carter T. 2008. "A relational event framework for social action." Sociological Methodology
38(1): 155-200.
Meijerink-Bosman, Marlyne, Roger Leenders, and Joris Mulder. 2022. "Dynamic relational event

modeling: Testing, exploring, and applying." PLOS One 17(8): €02723009.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Vu, Duy, Philippa Pattison, and Garry Robbins. 2015. "Relational event models for social learning
in MOOCs." Social Networks 43: 121-135.

Examples

# A Dummy One-Mode Event Dataset
events <- data.frame(time = 1:18,
eventID = 1:18,
sender = c("A", "B", "C",

"A", "D", "E",
"F", "B", "A",
"F”, "D", "B",
"G", "B", "D",
"H", "A", "D"),
target = c("B", "C", "D",
"E", "A", "F",
"D", "A", "C",
"G", "B", "C",
"H,MTM,MAM,

WEn mcn "BMY)

# Creating the Post-Processing Event Dataset with Null Events
eventSet <- processOMEventSeq(data = events,

time = events$time,

eventID = events$eventID,

sender = events$sender,

receiver = events$target,

p_samplingobserved = 1.00,

n_controls = 6,

seed = 9999)

# Compute Recency Statistic without Sliding Windows Framework and
# No Temporal Dependency
eventSet$recency_rawdiff <- computeRecency(
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observed_time = events$time,
observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,
type = "raw.diff”,

dependency = FALSE,

i_neighborhood = TRUE,

nopastEvents = 0)

# Compute Recency Statistic without Sliding Windows Framework
# No Temporal Dependency
eventSet$recency_inv <- computeRecency(
observed_time = events$time,
observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,
type = "inv.diff.plus1”,

dependency = FALSE,

i_neighborhood = TRUE,

nopastEvents = @)

computeRecency

and

# Compute Recency Statistic without Sliding Windows Framework and

# No Temporal Dependency
eventSet$recency_rank <- computeRecency(
observed_time = events$time,
observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,
type = "rank.ordered.count”,

dependency = FALSE,

i_neighborhood = TRUE,

nopastEvents = @)

# Compute Recency Statistic with Sliding Windows Framework and
eventSet$recency_rawdiffSW <- computeRecency(
observed_time = events$time,
observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,

type = "raw.diff",

dependency = FALSE,

i_neighborhood = TRUE,

sliding_windows = TRUE,

processed_seqIDs = eventSet$sequencelD,

No Temporal Dependency
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nopastEvents = 0)

# Compute Recency Statistic with Sliding Windows Framework and No Temporal Dependency
eventSet$recency_invSW <- computeRecency(
observed_time = events$time,
observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,

type = "inv.diff.plus1”,

dependency = FALSE,

i_neighborhood = TRUE,

sliding_windows = TRUE,

processed_seqlIDs = eventSet$sequencelD,
nopastEvents = @)

# Compute Recency Statistic with Sliding Windows Framework and No Temporal Dependency
eventSet$recency_rankSW <- computeRecency(
observed_time = events$time,
observed_receiver = events$target,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_receiver = eventSet$receiver,
processed_sender = eventSet$sender,

type = "rank.ordered.count”,

dependency = FALSE,

i_neighborhood = TRUE,

sliding_windows = TRUE,

processed_seqIDs = eventSet$sequencelD,
nopastEvents = @)

computeReciprocity Compute the Reciprocity Network Statistic for Event Dyads in a Rela-
tional Event Sequence

Description

[Deprecated]

computeReciprocity() has been deprecated starting on version 1.0.0 of the dream package. Please
use the remstats_reciprocity() function and see the NEWS.md file for more details.

This function calculates the reciprocity network sufficient statistic for a relational event sequence
(see Lerner and Lomi 2020; Butts 2008). The reciprocity statistic captures the tendency in which a
sender a sends a tie to receiver b given that b sent a tie to a in the past (i.e., an exchange between
two medical doctors). This measure allows for reciprocity scores to be only computed for the
sampled events, while creating the weights based on the full event sequence (see Lerner and Lomi
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2020; Vu et al. 2015). The function allows users to use two different weighting functions, reduce
computational runtime, employ a sliding windows framework for large relational sequences, and
specify a dyadic cutoff for relational relevancy.

Usage

computeReciprocity(
observed_time,
observed_sender,
observed_receiver,
processed_time,
processed_sender,
processed_receiver,
sliding_windows = FALSE,
processed_seqIDs = NULL,
counts = FALSE,
halflife = 2,
dyadic_weight =
window_size = NA
Lerneretal_2013

o,

FALSE

Arguments

observed_time The vector of event times from the pre-processing event sequence.
observed_sender

The vector of event senders from the pre-processing event sequence.
observed_receiver

The vector of event receivers from the pre-processing event sequence

processed_time The vector of event times from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_sender
The vector of event senders from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events)

processed_receiver
The vector of event receivers from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

sliding_windows
TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the resulting network statistic, while FALSE indicates
the approach will not be used. Set to FALSE by default. It’s important to note
that the sliding windows framework should only be used when the pre-processed
event sequence is ‘big’, such as the 360 million pre-processed event sequence
used in Lerner and Lomi (2020), as it aims to reduce the computational burden
of sorting ‘big’ datasets. In general, most pre-processed event sequences will
not need to use the sliding windows approach. There is not a strict cutoff for
‘big’ dataset. This definition depends on both the size of the observed event
sequence and the post-processing sampling dataset. For instance, according to



computeReciprocity 69

our internal tests, when the event sequence is relatively large (i.e., 100,000 ob-
served events) with probability of sampling from the observed event sequence
set to 0.05 and using 10 controls per sampled event, the sliding windows frame-
work for computing repetition is about 11% faster than the non-sliding windows
framework. Yet, in a smaller dataset (i.e., 10,000 observed events) the sliding
windows framework is about 25% slower than the non-sliding framework with
the same conditions as before.
processed_seqlDs

If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the 5th event
in the sequence will have a value of 5 in this vector).

counts TRUE/FALSE. TRUE indicates that the counts of past events should be com-
puted (see the details section). FALSE indicates that the temporal exponential
weighting function should be used to downweigh past events (see the details
section). Set to FALSE by default.

halflife A numerical value that is the halflife value to be used in the exponential weight-
ing function (see details section). Preset to 2 (should be updated by the user
based on substantive context).

dyadic_weight A numerical value for the dyadic cutoff weight that represents the numerical
cutoff value for temporal relevancy based on the exponential weighting function.
For example, a numerical value of 0.01, indicates that an exponential weight less
than 0.01 will become 0 and that events with such value (or smaller values) will
not be included in the sum of the past event weights (see the details section). Set
to 0 by default.

window_size If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).

Lerneretal_2013
TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default

Details

This function calculates reciprocity scores for relational event models based on the exponential
weighting function used in either Lerner and Lomi (2020) or Lerner et al. (2013).

Following Lerner and Lomi (2020), the exponential weighting function in relational event models
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In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, ¢’ is the past event times that meet the weight subset, and 77/, is the
halflife parameter.

The formula for reciprocity for event e; is:

reciprocity., = w(r, s,t)

That is, all past events in which the past sender is the current receiver and the past receiver is the
current sender.

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022; Lerner and Lomi 2020) can specify the dyadic weight cutoff, that is, the minimum
value for which the weight is considered relationally relevant. Users who do not know the specific
dyadic cutoff value to use, can use the computeRemDyadCut function.

Following Butts (2008), if the counts of the past events are requested, the formula for reciprocity
for event ¢; is:

reciprocity., = d(r = s',s =1',t')

Where, d() is the number of past events where the event sender, s’, is the current event receiver, r,
and the event receiver (target), 7, is the current event sender, s. Moreover, the counting equation
can be used in tandem with relational relevancy, by specifying the halflife parameter, exponential
weighting function, and the dyadic cut off weight values. If the user is not interested in modeling
relational relevancy, then those value should be left at their baseline values.

Value

The vector of reciprocity statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu

References

Butts, Carter T. 2008. "A Relational Event Framework for Social Action." Sociological Methodol-
ogy 38(1): 155-200.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Lerner, Jiirgen and Alessandro Lomi. 2020. “Reliability of relational event model estimates under
sampling: How to fit a relational event model to 360 million dyadic events.” Network Science 8(1):
97-135.

Lerner, Jiirgen, Margit Bussman, Tom A.B. Snijders, and Ulrik Brandes. 2013. " Modeling Fre-
quency and Type of Interaction in Event Networks." The Corvinus Journal of Sociology and Social
Policy 4(1): 3-32.

Vu, Duy, Philippa Pattison, and Garry Robins. 2015. "Relational event models for social learning
in MOOCs." Social Networks 43: 121-135.
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Examples

events <- data.frame(time = 1:18, eventID = 1:18,
sender = C(HAH’ IIBII, VICII’

”A,'Y "D“) “EHY
”F”7 ”B”’ "A”?
IIFH’ IIDII, VIBII’
”G,'Y ”B“) “DHY
”H”Y ”A"7 "D”)?
target = C("B“, IICII’ IIDII’
"E”! “A"Y ”F”!
"D", "A", "C",
IIGII, IIBII’ IICII’
"H”! “J"Y ”A”!

ngm omgw o wgny)Y

eventSet <- processOMEventSeq(data = events,
time = events$time,
eventID = events$eventID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 1,
seed = 9999)

# Computing Reciprocity Statistics without the sliding windows framework

eventSet$recip <- computeReciprocity(
observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
Lerneretal_2013 = FALSE)

# Computing Reciprocity Statistics with the sliding windows framework

eventSet$recipSW <- computeReciprocity(
observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
processed_seqlDs = eventSet$sequencelD,
dyadic_weight = 0,
sliding_window = TRUE,
Lerneretal_2013 = FALSE)

#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
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#big' so that memory allotment is more efficient.
cor(eventSet$recipSW , eventSet$recip)

# Computing Reciprocity Statistics with the counts of events being returned
eventSet$recipC <- computeReciprocity(
observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
sliding_window = FALSE,
counts = TRUE,
Lerneretal_2013 = FALSE)

cbind(eventSet$recip,
eventSet$recipSw,
eventSet$recipC)

computeRemDyadCut A Helper Function to Assist Researchers in Finding Dyadic Weight
Cutoff Values

Description

[Deprecated]

computeRemDyadCut () has been deprecated starting on version 1.0.0 of the dream package. Please
use the remstats_dyadcut () function and see the NEWS.md file for more details.

A user-helper function to assist researchers in finding the dyadic cutoff value to compute sufficient
statistics for relational event models based upon temporal dependency.

Usage

computeRemDyadCut (halflife = 2, relationalWidth, Lerneretal_2013 = FALSE)

Arguments

halflife A numerical value that is the halflife value to be used in the exponential weight-
ing function (see details section). Preset to 2 (should be updated by the user
based on substantive context).

relationalWidth
The numerical value that corresponds to the time range for which the user spec-
ifies for temporal relevancy.
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Lerneretal_2013
TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default

Details

This function is specifically designed as a user-helper function to assist researchers in finding the
dyadic cutoff value for creating sufficient statistics based upon temporal dependency. In other
words, this function estimates a dyadic cutoff value for relational relevance, that is, the minimum
dyadic weight for past events to be potentially relevant (i.e., to possibly have an impact) on the
current event. All non-relevant events (i.e., events too distant in the past from the current event to
be considered relevant, that is, those below the cutoff value) will have a weight of 0. This cutoff
value is based upon two user-specified values: the events’ halflife (i..e, halflife) and the relation-
ally relevant event or time span (i.e., relationalWidth). Ideally, both the values for halflife
and relationalWidth would be based on the researcher’s command of the relevant substantive
literature. Importantly, halflife and relationalWidth must be in the same units of measurement
(e.g., days). If not, the function will not return the correct answer.

For example, let’s say that the user defines the halflife to be 15 days (i.e., two weeks) and the
relationally relevant event or time span (i.e., relationalWidth) to be 30 days (i.e., events that
occurred more than 1 month in the past are not considered relationally relevant for the current
event). The user would then specify halflife = 15 and relationalWidth = 30.

Following Lerner and Lomi (2020), the exponential weighting function in relational event models
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Following Lerner et al. (2013), the exponential weighting function in relational event models is:
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In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, ¢’ is the past event times that meet the weight subset, and 77 /2 is the
halflife parameter. The task of this function is to find the weight, w(s, r, t), that corresponds to the
time difference provided by the user.

Value

The dyadic weight cutoff based on user specified values.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu

References

Lerner, Jiirgen and Alessandro Lomi. 2020. “Reliability of relational event model estimates under
sampling: How to fit a relational event model to 360 million dyadic events.” Network Science 8(1):
97-135.
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Lerner, Jiirgen, Margit Bussman, Tom A.B. Snijders, and Ulrik Brandes. 2013. " Modeling Fre-
quency and Type of Interaction in Event Networks." The Corvinus Journal of Sociology and Social
Policy 4(1): 3-32.

Examples

#To replicate the example in the details section:
# with the Lerner et al. 2013 weighting function
computeRemDyadCut (halflife = 15,
relationalWidth = 30,
Lerneretal_2013 = TRUE)

# without the Lerner et al. 2013 weighting function
computeRemDyadCut (halflife = 15,
relationalWidth
Lerneretal_2013

30,
FALSE)

# A result to test the function (should come out to 0.50)
computeRemDyadCut (halflife = 30,

relationalWidth = 30,

Lerneretal_2013 = FALSE)

# Replicating Lerner and Lomi (2020):

#"We set T1/2 to 30 days so that an event counts as (close to) one in the very next instant of time,
#it counts as 1/2 one month later, it counts as 1/4 two months after the event, and so on. To reduce
#the memory consumption needed to store the network of past events, we set a dyadic weight to

#zero if its value drops below 0.01. If a single event occurred in some dyad this would happen after
#6.64xT1/2, that is after more than half a year.” (Lerner and Lomi 2020: 104).

# Based upon Lerner and Lomi (2020: 104), the result should be around 0.01. Since the

# time values in Lerner and Lomi (2020) are in milliseconds, we have to change

# all measurements into milliseconds

computeRemDyadCut(halflife = (30%24*60x60%x1000), #30 days in milliseconds
relationalWidth = (6.64x30%24%60*x60%x1000), #Based upon the paper
#using the Lerner and Lomi (2020) weighting function
Lerneretal_2013 = FALSE)

computeRepetition Compute Butts’ (2008) Repetition Network Statistic for Event Dyads
in a Relational Event Sequence

Description

[Deprecated]

computeRepetition() has been deprecated starting on version 1.0.0 of the dream package. Please
use the remstats_repetition() function and see the NEWS.md file for more details.
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This function computes the repetition network sufficient statistic for a relational event sequence (see
Lerner and Lomi 2020; Butts 2008). Repetition measures the increased tendency for events between
S and R to occur given that S and R have interacted in the past. Furthermore, this measure allows
for repetition scores to be only computed for the sampled events, while creating the weights based
on the full event sequence (see Lerner and Lomi 2020; Vu et al. 2015). The function allows users
to use two different weighting functions, reduce computational runtime, employ a sliding windows
framework for large relational sequences, and specify a dyadic cutoff for relational relevancy.

Usage

computeRepetition(
observed_time,
observed_sender,
observed_receiver,
processed_time,
processed_sender,
processed_receiver,
sliding_windows = FALSE,
processed_seqIDs = NULL,
halflife = 2,
counts = FALSE,
dyadic_weight = 0,
window_size = NA,
Lerneretal_2013 = FALSE

Arguments

observed_time The vector of event times from the pre-processing event sequence.
observed_sender
The vector of event senders from the pre-processing event sequence.
observed_receiver
The vector of event receivers from the pre-processing event sequence
processed_time The vector of event times from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).
processed_sender
The vector of event senders from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).
processed_receiver
The vector of event receivers from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).
sliding_windows
TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the resulting network statistic, while FALSE indicates
the approach will not be used. Set to FALSE by default. It’s important to note
that the sliding windows framework should only be used when the pre-processed
event sequence is ‘big’, such as the 360 million pre-processed event sequence
used in Lerner and Lomi (2020), as it aims to reduce the computational burden
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of sorting ‘big’ datasets. In general, most pre-processed event sequences will
not need to use the sliding windows approach. There is not a strict cutoff for
‘big’ dataset. This definition depends on both the size of the observed event
sequence and the post-processing sampling dataset. For instance, according to
our internal tests, when the event sequence is relatively large (i.e., 100,000 ob-
served events) with probability of sampling from the observed event sequence
set to 0.05 and using 10 controls per sampled event, the sliding windows frame-
work for computing repetition is about 11% faster than the non-sliding windows
framework. Yet, in a smaller dataset (i.e., 10,000 observed events) the sliding
windows framework is about 25% slower than the non-sliding framework with
the same conditions as before.

processed_seqlDs

halflife

counts

dyadic_weight

window_size

Lerneretal_2013

Details

If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the 5th event
in the sequence will have a value of 5 in this vector).

A numerical value that is the halflife value to be used in the exponential weight-
ing function (see details section). Preset to 2 (should be updated by the user
based on substantive context).

TRUE/FALSE. TRUE indicates that the counts of past events should be com-
puted (see the details section). FALSE indicates that the temporal exponential
weighting function should be used to downweigh past events (see the details
section). Set to FALSE by default.

A numerical value for the dyadic cutoff weight that represents the numerical
cutoff value for temporal relevancy based on the exponential weighting function.
For example, a numerical value of 0.01, indicates that an exponential weight less
than 0.01 will become 0 and that events with such value (or smaller values) will
not be included in the sum of the past event weights (see the details section). Set
to 0 by default.

If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).

TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default

This function calculates the repetition scores for relational event models based on the exponential
weighting function used in either Lerner and Lomi (2020) or Lerner et al. (2013).

Following Lerner and Lomi (2020), the exponential weighting function in relational event models
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Following Lerner et al. (2013), the exponential weighting function in relational event models is:
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In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, ¢’ is the past event times that meet the weight subset (in this case, all
events that have the same sender and receiver), and T} /5 is the halflife parameter.

The formula for repetition for event e; is:

repetition., = w(s,r,t)

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022; Lerner and Lomi 2020) can specify the dyadic weight cutoff, that is, the minimum
value for which the weight is considered relationally relevant. Users who do not know the specific
dyadic cutoff value to use, can use the computeRemDyadCut function.

Following Butts (2008), if the counts of the past events are requested, the formula for repetition for
event e; is:

repetitione, = d(s = s',r =1',t")
Where, d() is the number of past events where the event sender, s’, is the current event sender,
s, the event receiver (target), r’, is the current event receiver, r. Moreover, the counting equation
can be used in tandem with relational relevancy, by specifying the halflife parameter, exponential

weighting function, and the dyadic cut off weight values. If the user is not interested in modeling
relational relevancy, then those value should be left at their baseline values.

Value

The vector of repetition statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu

References

Butts, Carter T. 2008. "A Relational Event Framework for Social Action." Sociological Methodol-
ogy 38(1): 155-200.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Lerner, Jiirgen and Alessandro Lomi. 2020. “Reliability of relational event model estimates under
sampling: How to fit a relational event model to 360 million dyadic events.” Network Science 8(1):
97-135.

Lerner, Jirgen, Margit Bussman, Tom A.B. Snijders, and Ulrik Brandes. 2013. " Modeling Fre-
quency and Type of Interaction in Event Networks." The Corvinus Journal of Sociology and Social
Policy 4(1): 3-32.

Vu, Duy, Philippa Pattison, and Garry Robins. 2015. "Relational event models for social learning
in MOOCs." Social Networks 43: 121-135.
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Examples

data("WikiEvent2018.first100k")
WikiEvent2018 <- WikiEvent2018.first100k[1:10000,] #the first ten thousand events
WikiEvent2018%$time <- as.numeric(WikiEvent2018%$time) #making the variable numeric
### Creating the EventSet By Employing Case-Control Sampling With M = 5 and
### Sampling from the Observed Event Sequence with P = 0.01
EventSet <- processTMEventSeq(
data = WikiEvent2018, # The Event Dataset
time = WikiEvent2018%$time, # The Time Variable
eventID = WikiEvent2018%$eventID, # The Event Sequence Variable
sender = WikiEvent2018$user, # The Sender Variable
receiver = WikiEvent2018$article, # The Receiver Variable
p_samplingobserved = 0.01, # The Probability of Selection
n_controls = 5, # The Number of Controls to Sample from the Full Risk Set
seed = 9999) # The Seed for Replication
#### Estimating Repetition Scores Without the Sliding Windows Framework
EventSet$rep <- computeRepetition(
observed_time = WikiEvent2018$time,
observed_sender = WikiEvent2018$user,
observed_receiver = WikiEvent2018%article,
processed_time = EventSet$time,
processed_sender = EventSet$sender,
processed_receiver = EventSet$receiver,
halflife = 2.592e+09, #halflife parameter
dyadic_weight = 0,
Lerneretal_2013 = FALSE)

EventSet$sw_rep <- computeRepetition(
observed_time = WikiEvent2018%$time,
observed_sender = WikiEvent2018$user,
observed_receiver = WikiEvent2018$article,
processed_time = EventSet$time,
processed_sender = EventSet$sender,
processed_receiver = EventSet$receiver,
processed_seqlDs = EventSet$sequencelD,
halflife = 2.592e+09, #halflife parameter
dyadic_weight = 0,
sliding_window = TRUE,

Lerneretal_2013 = FALSE)

#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.

cor(EventSet$sw_rep, EventSet$rep)

#### Estimating Repetition Scores with the Counts of Events Returned
EventSet$repC <- computeRepetition(

observed_time = WikiEvent2018%$time,

observed_sender = WikiEvent2018$user,

observed_receiver = WikiEvent2018%article,

processed_time = EventSet$time,

processed_sender = EventSet$sender,
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processed_receiver = EventSet$receiver,
halflife = 2.592e+09, #halflife parameter
dyadic_weight = 0,

Lerneretal_2013 = FALSE,

counts = TRUE)

cbind(EventSet$rep,
EventSet$sw_rep,
EventSet$repC)

computeSenderIndegree Compute the Indegree Network Statistic for Event Senders in a Rela-
tional Event Sequence

Description

[Deprecated]

computeSenderIndegree() has been deprecated starting on version 1.0.0 of the dream package.
Please use the remstats_degree () function and see the NEWS . md file for more details.

The function computes the indegree network sufficient statistic for event senders in a relational
event sequence (see Lerner and Lomi 2020; Butts 2008). This measure allows for indegree scores
to be only computed for the sampled events, while creating the weights based on the full event
sequence (see Lerner and Lomi 2020; Vu et al. 2015). The function allows users to use two
different weighting functions, reduce computational runtime, employ a sliding windows framework
for large relational sequences, and specify a dyadic cutoff for relational relevancy.

Usage

computeSenderIndegree(
observed_time,
observed_sender,
observed_receiver,
processed_time,
processed_sender,
processed_receiver,
sliding_windows = FALSE,
processed_seqIDs = NULL,
counts = FALSE,
halflife = 2,
dyadic_weight = 0,
window_size = NA,
Lerneretal_2013 = FALSE
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Arguments

observed_time The vector of event times from the pre-processing event sequence.
observed_sender

The vector of event senders from the pre-processing event sequence.
observed_receiver

The vector of event receivers from the pre-processing event sequence

processed_time The vector of event times from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_sender
The vector of event senders from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_receiver
The vector of event receivers from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

sliding_windows
TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the resulting network statistic, while FALSE indicates
the approach will not be used. Set to FALSE by default. It’s important to note
that the sliding windows framework should only be used when the pre-processed
event sequence is ‘big’, such as the 360 million pre-processed event sequence
used in Lerner and Lomi (2020), as it aims to reduce the computational burden
of sorting ‘big’ datasets. In general, most pre-processed event sequences will
not need to use the sliding windows approach. There is not a strict cutoff for
‘big’ dataset. This definition depends on both the size of the observed event
sequence and the post-processing sampling dataset. For instance, according to
our internal tests, when the event sequence is relatively large (i.e., 100,000 ob-
served events) with probability of sampling from the observed event sequence
set to 0.05 and using 10 controls per sampled event, the sliding windows frame-
work for computing repetition is about 11% faster than the non-sliding windows
framework. Yet, in a smaller dataset (i.e., 10,000 observed events) the sliding
windows framework is about 25% slower than the non-sliding framework with
the same conditions as before.

processed_seqlDs
If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the 5th event
in the sequence will have a value of 5 in this vector).

counts TRUE/FALSE. TRUE indicates that the counts of past events should be com-
puted (see the details section). FALSE indicates that the temporal exponential
weighting function should be used to downweigh past events (see the details
section). Set to FALSE by default.

halflife A numerical value that is the halflife value to be used in the exponential weight-
ing function (see details section). Preset to 2 (should be updated by the user
based on substantive context).

dyadic_weight A numerical value for the dyadic cutoff weight that represents the numerical
cutoff value for temporal relevancy based on the exponential weighting function.
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For example, a numerical value of 0.01, indicates that an exponential weight less
than 0.01 will become 0 and that events with such value (or smaller values) will
not be included in the sum of the past event weights (see the details section). Set
to 0 by default.

window_size If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).

Lerneretal_2013
TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default

Details

The function calculates sender indegree scores for relational event sequences based on the expo-
nential weighting function used in either Lerner and Lomi (2020) or Lerner et al. (2013).

Following Lerner and Lomi (2020), the exponential weighting function in relational event models
is:
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Following Lerner et al. (2013), the exponential weighting function in relational event models is:
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In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, ¢’ is the past event times that meet the weight subset, and 77/, is the
halflife parameter.

The formula for sender indegree for event e; is:

senderindegree., = w(s', s,t)

That is, all past events in which the event receiver is the current sender.

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022; Lerner and Lomi 2020) can specify the dyadic weight cutoff, that is, the minimum
value for which the weight is considered relationally relevant. Users who do not know the specific
dyadic cutoff value to use, can use the computeRemDyadCut function.

Following Butts (2008), if the counts of the past events are requested, the formula for sender inde-
gree for event e; is:

senderindegree., = d(r' = s,t")

Where, d() is the number of past events where the event receiver, r’, is the current event sender s .
Moreover, the counting equation can be used in tandem with relational relevancy, by specifying the
halflife parameter, exponential weighting function, and the dyadic cut off weight values. If the user
is not interested in modeling relational relevancy, then those value should be left at their defaults.
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Value

The vector of sender indegree statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu

References
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Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Lerner, Jiirgen and Alessandro Lomi. 2020. “Reliability of relational event model estimates under
sampling: How to fit a relational event model to 360 million dyadic events.” Network Science 8(1):
97-135.

Lerner, Jirgen, Margit Bussman, Tom A.B. Snijders, and Ulrik Brandes. 2013. " Modeling Fre-
quency and Type of Interaction in Event Networks." The Corvinus Journal of Sociology and Social
Policy 4(1): 3-32.

Vu, Duy, Philippa Pattison, and Garry Robins. 2015. "Relational event models for social learning
in MOOCs." Social Networks 43: 121-135.

Examples

events <- data.frame(time = 1:18,
eventID = 1:18,
sender = C("A"’ "B", IICIIy

nman npn ngn
A D E
’ ’ ’
"F”, an’ "A",
"F", ern’ nBuy
”G“, ”B“, nDuy
"y A "D”)
’ ’ ’
target - C("B”, ”C", an’
nE" AN ngn
’ ’ ’
"pr AN nen
) ’ ’
"G" ng nen
’ ’ ’
"y nyn nAN
’ ’ ’
= nen an))
’ ’

eventSet <- processOMEventSeq(data = events,
time = events$time,
eventID = events$eventlID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 1,
seed = 9999)

# Computing Sender Indegree Statistics without the sliding windows framework
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eventSet$sender.indegree <- computeSenderIndegree(
observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
Lerneretal_2013 = FALSE)

# Computing Sender Indegree Statistics with the sliding windows framework
eventSet$sender.indegree.SW <- computeSenderIndegree(
observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
processed_seqIDs = eventSet$sequencelD,
dyadic_weight = 0,
sliding_window = TRUE,
Lerneretal_2013 = FALSE)

#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.
cor(eventSet$sender.indegree.SW,eventSet$sender.indegree)

# Computing Sender Indegree Statistics with the counts of events being returned
eventSet$sender.indegreeC <- computeSenderIndegree(
observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
Lerneretal_2013 =
counts = TRUE)

FALSE,

cbind(eventSet$sender.indegree.SW,
eventSet$sender. indegree,
eventSet$sender.indegreeC)

computeSenderQutdegree
Compute the Outdegree Network Statistic for Event Senders in a Rela-
tional Event Sequence
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Description

[Deprecated]

computeSenderOutdegree() has been deprecated starting on version 1.0.0 of the dream package.
Please use the remstats_degree () function and see the NEWS . md file for more details.

The function computes the sender outdegree network sufficient statistic for a relational event se-
quence (see Lerner and Lomi 2020; Butts 2008). This measure allows for outdegree scores to
be only computed for the sampled events, while creating the weights based on the full event se-
quence (see Lerner and Lomi 2020; Vu et al. 2015). The function allows users to use two different
weighting functions, reduce computational runtime, employ a sliding windows framework for large
relational sequences, and specify a dyadic cutoff for relational relevancy.

Usage

computeSenderQutdegree(
observed_time,
observed_sender,
processed_time,
processed_sender,
sliding_windows = FALSE,
processed_seqIDs = NULL,
counts = FALSE,
halflife = 2,
dyadic_weight =
window_size = NA
Lerneretal_2013

0,

= FALSE

Arguments

observed_time The vector of event times from the pre-processing event sequence.
observed_sender
The vector of event senders from the pre-processing event sequence.

processed_time The vector of event times from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

processed_sender
The vector of event senders from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

sliding_windows
TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the resulting network statistic, while FALSE indicates
the approach will not be used. Set to FALSE by default. It’s important to note
that the sliding windows framework should only be used when the pre-processed
event sequence is ‘big’, such as the 360 million pre-processed event sequence
used in Lerner and Lomi (2020), as it aims to reduce the computational burden
of sorting ‘big’ datasets. In general, most pre-processed event sequences will
not need to use the sliding windows approach. There is not a strict cutoff for
‘big’ dataset. This definition depends on both the size of the observed event
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sequence and the post-processing sampling dataset. For instance, according to
our internal tests, when the event sequence is relatively large (i.e., 100,000 ob-
served events) with probability of sampling from the observed event sequence
set to 0.05 and using 10 controls per sampled event, the sliding windows frame-
work for computing repetition is about 11% faster than the non-sliding windows
framework. Yet, in a smaller dataset (i.e., 10,000 observed events) the sliding
windows framework is about 25% slower than the non-sliding framework with
the same conditions as before.
processed_seqlDs

If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the 5th event
in the sequence will have a value of 5 in this vector).

counts TRUE/FALSE. TRUE indicates that the counts of past events should be com-
puted (see the details section). FALSE indicates that the temporal exponential
weighting function should be used to downweigh past events (see the details
section). Set to FALSE by default.

halflife A numerical value that is the halflife value to be used in the exponential weight-
ing function (see details section). Preset to 2 (should be updated by the user
based on substantive context).

dyadic_weight A numerical value for the dyadic cutoff weight that represents the numerical
cutoff value for temporal relevancy based on the exponential weighting function.
For example, a numerical value of 0.01, indicates that an exponential weight less
than 0.01 will become 0 and that events with such value (or smaller values) will
not be included in the sum of the past event weights (see the details section). Set
to 0 by default.

window_size If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).

Lerneretal_2013
TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default

Details

The function calculates sender outdegree scores for relational event sequences based on the expo-
nential weighting function used in either Lerner and Lomi (2020) or Lerner et al. (2013).

Following Lerner and Lomi (2020), the exponential weighting function in relational event models

1S: )
N In(2
—(t=t): T2

w(s,r,t) =e
Following Lerner et al. (2013), the exponential weighting function in relational event models is:

—(t—¢"). (@)
IU(S,T, t) =e (=) Tiy2 . M
Ti/2



86 computeSenderOutdegree

In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, ¢’ is the past event times that meet the weight subset, and 77/, is the
halflife parameter.

The formula for sender outdegree for event e; is:

senderoutdegree., = w(s,r’,t)

That is, all past events in which the past sender is the current sender and the event target can be any
past user.

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022; Lerner and Lomi 2020) can specify the dyadic weight cutoff, that is, the minimum
value for which the weight is considered relationally relevant. Users who do not know the specific
dyadic cutoff value to use, can use the computeRemDyadCut function.

Following Butts (2008), if the counts of the past events are requested, the formula for sender outde-
gree for event e; is:

senderoutdegree,., = d(s = s',t')

Where, d() is the number of past events where the sender s is the current event sender, s. Moreover,
the counting equation can be used in tandem with relational relevancy, by specifying the halflife
parameter, exponential weighting function, and the dyadic cutoff weight values. If the user is not
interested in modeling relational relevancy, then those value should be left at their defaults.

Value

The vector of sender outdegree statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu

References

Butts, Carter T. 2008. "A Relational Event Framework for Social Action." Sociological Methodol-
ogy 38(1): 155-200.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Lerner, Jiirgen and Alessandro Lomi. 2020. “Reliability of relational event model estimates under
sampling: How to fit a relational event model to 360 million dyadic events.” Network Science 8(1):
97-135.

Lerner, Jirgen, Margit Bussman, Tom A.B. Snijders, and Ulrik Brandes. 2013. " Modeling Fre-
quency and Type of Interaction in Event Networks." The Corvinus Journal of Sociology and Social
Policy 4(1): 3-32.

Vu, Duy, Philippa Pattison, and Garry Robins. 2015. "Relational event models for social learning
in MOOCs." Social Networks 43: 121-135.
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Examples

events <- data.frame(time = 1:18,
eventID = 1:18,
sender = c("A”, "B", "C",

”A”7 ”D”’ "E”?
IIFH’ IVBII, VIAII’
”F,'Y ”D“) “BHY
”G”7 ”B”’ "D”?
IIHII, IIAII’ IIDII)’
target = c("B", "C", "D",
"E", "A", "F",
IIDII, IIAII’ IICII’
"G”! “BHY ”C”!
"HY, "I, OMAT,

= , uCu , uBn))

eventSet <- processOMEventSeq(data = events,
time = events$time,
eventID = events$eventID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 1,
seed = 9999)

# Computing Sender Outdegree Statistics without the sliding windows framework
eventSet$sender_outdegree <- computeSenderOutdegree(

observed_time = events$time,

observed_sender = events$sender,

processed_time = eventSet$time,

processed_sender = eventSet$sender,

halflife = 2, #halflife parameter

dyadic_weight = 9,

Lerneretal_2013 = FALSE)

# Computing Sender Outdegree Statistics with the sliding windows framework
eventSet$sender_outdegreeSW <- computeSenderOutdegree(
observed_time = events$time,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
halflife = 2, #halflife parameter
processed_seqlDs = eventSet$sequencelD,
dyadic_weight = 0,
sliding_window = TRUE,
Lerneretal_2013 = FALSE)

#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.
cor(eventSet$sender_outdegreeSW , eventSet$sender_outdegree)
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# Computing Sender Outdegree Statistic with the counts of events being returned
eventSet$sender_outdegreeC <- computeSenderOutdegree(

observed_time = events$time,
observed_sender = events$sender,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
halflife = 2, #halflife parameter
dyadic_weight = 0,

sliding_window = FALSE,

counts = TRUE,

Lerneretal_2013 = FALSE)

cbind(eventSet$sender_outdegree,

eventSet$sender_outdegreeSWw,
eventSet$sender_outdegreeC)

computeTMDegree

Compute Degree Centrality Values for Two-Mode Networks

Description

[Deprecated]

computeTMDegree() has been deprecated starting on version 1.0.0 of the dream package. Please
use the netstats_tm_degreecent () function and see the NEWS.md file for more details.

This function computes the degree centrality values for two-mode networks following Knoke and
Yang (2020). The computed degree centrality is based on the specified level. That is, in an affiliation
matrix, the density can be computed on the symmetric g x g co-membership matrix of level 1 actors
(e.g., medical doctors) or on the symmetric 4 x h shared actors matrix for level 2 groups (e.g.,
hospitals) based on their shared members.

Usage

computeTMDegree(net, levell = TRUE)

TRUE/FALSE. TRUE indicates that the degree centrality will be computed for

level 1 nodes. FALSE indicates that the degree centrality will be computed for

Arguments
net A two-mode adjacency matrix
leveli
level 2 nodes. Set to TRUE by default.
Details

Following Knoke and Yang (2020), the computation of degree for two-mode affiliation networks is
level specific. A two-mode affiliation matrix X with dimensions g x h, where g is the number of
level 1 nodes (e.g., medical doctors) and / is the number of level 2 nodes (i.e., hospitals). If the
function is defined on the level 1 nodes, the degree centrality of an actor i is computed as:

X¢=xxT
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g
CHg) =Y _a? (i#7)
i=1
In contrast, if it is defined on the level 2 nodes, the degree centrality of an actor i is computed as:

X7 =XTXx

Value

The vector of two-mode level-specific degree centrality values.

Author(s)

Kevin A. Carson kacarson @arizona.edu, Diego F. Leal dflc@arizona.edu

References

Knoke, David and Song Yang. 2020. Social Network Analysis. Sage: Quantitative Applications in
the Social Sciences (154)

Examples

#Replicating the biparitate graph presented in Knoke and Yang (2020: 109)
knoke_yang_PC <- matrix(c(1,1,0,0, 1,1,0,0,

1,1,1,0, 0,0,1,1,

0,0,1,1), byrow = TRUE,

nrow = 5, ncol = 4)
colnames(knoke_yang_PC) <- c("Rubio-R","McConnell-R", "Reid-D", "Sanders-D")
rownames (knoke_yang_PC) <- c("UPS", "MS", "HD", "SEU", "ANA")
computeTMDegree (knoke_yang_PC, levell = TRUE) #this value matches the book
computeTMDegree (knoke_yang_PC, levell = FALSE) #this value matches the book

computeTMDens Compute Level-Specific Graph Density for Two-Mode Networks

Description

[Deprecated]

computeTMDens () has been deprecated starting on version 1.0.0 of the dream package. Please use
the netstats_tm_density() file and see the NEWS.md for more details.

This function computes the density of a two-mode network following Wasserman and Faust (1994)
and Knoke and Yang (2020). The density is computed based on the specified level. That is, in an
affiliation matrix, density can be computed on the symmetric g x g matrix of co-membership for the
level 1 actors or on the symmetric 2 x h matrix of shared actors for level 2 groups.
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Usage

computeTMDens(net, binary = FALSE, levell = TRUE)

Arguments
net A two-mode adjacency matrix.
binary TRUE/FALSE. TRUE indicates that the transposed matrices will be binarized

(see Wasserman and Faust 1995: 316). FALSE indicates that the transposed
matrices will not be binarized. Set to FALSE by default.

leveli TRUE/FALSE. TRUE indicates that the graph density will be computed for level
1 nodes. FALSE indicates that the graph density will be computed for level 2
nodes. Set to FALSE by default.

Details

Following Wasserman and Faust (1994) and Knoke and Yang (2020), the computation of density for
two-mode networks is level specific. A two-mode matrix X with dimensions g x h, where g is the
number of level 1 nodes (e.g., medical doctors) and /4 is the number of level 2 nodes (i.e., hospitals).
If the function is defined on the level 1 nodes, the density is computed as:

X9=xx"

g 9 .9
py — &=l j=1Tij

g(g—1)
In contrast, if it is defined on the level 2 nodes, the density is:

Xh=xTx

h h
_ Zi:l Zj:l x?g

D h(h—1)

Moreover, as discussed in Wasserman and Faust (1994: 316), the density can be based on the
dichotomous relations instead of the shared membership values. This can be specified by binary =
TRUE.

Value

The level-specific network density for the two-mode graph.

Author(s)

Kevin A. Carson kacarson @arizona.edu, Diego F. Leal dflc@arizona.edu

References
Wasserman, Stanley and Katherine Faust. 1994. Social Network Analysis: Methods and Applica-
tions. Cambridge University Press.

Knoke, David and Song Yang. 2020. Social Network Analysis. Sage: Quantitative Applications in
the Social Sciences (154).
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Examples

#Replicating the biparitate graph presented in Knoke and Yang (2020: 109)
knoke_yang_PC <- matrix(c(1,1,0,0, 1,1,0,0,
1,1,1,0, 0,0,1,1,
0,0,1,1), byrow = TRUE,
nrow = 5, ncol = 4)
colnames(knoke_yang_PC) <- c("Rubio-R","McConnell-R", "Reid-D", "Sanders-D")
rownames (knoke_yang_PC) <- c("UPS", "MS", "HD", "SEU", "ANA")
#compute two-mode density for level 1
#note: this value does not match that of Knoke and Yang (which we believe
#is a typo in that book), but does match that of Wasserman and
#Faust (1995: 317) for the ceo dataset.
computeTMDens (knoke_yang_PC, levell = TRUE)
#compute two-mode density for level 2.
#note: this value matches that of the book
computeTMDens (knoke_yang_PC, levell = FALSE)

computeTMEgoDis Compute Fujimoto, Snijders, and Valente’s (2018) Ego Homophily
Distance for Two-Mode Networks

Description

[Deprecated]

computeTMEgoDis () has been deprecated starting on version 1.0.0 of the dream package. Please
use the netstats_tm_egodistance() function and see the NEWS.md file for more details.

This function computes the ego homophily distance in two-mode networks as proposed by Fuji-
moto, Snijders, and Valente (2018: 380). See Fujimoto, Snijders, and Valente (2018) for more
details about this measure.

Usage

computeTMEgoDis(net, mem, standardize = FALSE)

Arguments
net The two-mode adjacency matrix.
mem The vector of membership values that the homophilous four cycles will be based

on.

standardize TRUE/FALSE. TRUE indicates that the sores will be standardized by the num-
ber of level 2 nodes the level 1 node is connected to. FALSE indicates that the
scores will not be standardized. Set to FALSE by default.
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Details

The formula for ego homophily distance in two-mode networks is:
Ego2Dist; = Zyial — |vi — pial

where:

* > sums across all level 2 nodes in the network
* 9;q is the 1 if node i is tied to node a and O else.

* v; is the value of the respondent. Within the function this is predefined to be 1 if there are
multiple categories.

* p;a is the proportion of same-category actors that are tied to node a not including the ego
itself.

* |v; — p;al is equal to 1 if all the level 1 nodes that are tied to the level 2 node share the same
categorical membership and O if all level 1 nodes are a different category.

If the ego is a level 2 isolate or a level 2 pendant, that is, only one level 1 node (e.g., patient) is
connected to that specific level 2 node (e.g., medical doctor), then they are given a value of 0. In
particular, the contribution to the ego distance for a pendant is 0. The ego distance value can be
standardized by the number of groups which would provide the average ego distance as a proportion
between 0 and 1.

Value

The vector of two-mode ego homophily distance.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic@arizona.edu

References

Fujimoto, Kayo, Tom A.B. Snijders, and Thomas W. Valente. 2018. "Multivariate dynamics of
one-mode and two-mode networks: Explaining similarity in sports participation among friends."
Network Science 6(3): 370-395.

Examples

# For this example, we use the Davis Southern Women's Dataset.
data("southern.women")

#creating a random binary membership vector

set.seed(9999)

membership <- sample(@:1, nrow(southern.women), replace = TRUE)

#the ego 2 mode distance non-standardized
computeTMEgoDis(southern.women, mem = membership)

#the ego 2 mode distance standardized

computeTMEgoDis(southern.women, mem = membership, standardize = TRUE)
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computeTriads Compute the Triadic Closure Network Statistic for Event Dyads in a
Relational Event Sequence

Description

[Deprecated]

computeTriads() has been deprecated starting on version 1.0.0 of the dream package. Please use
the remstats_triads() function and see the NEWS.md file for more details.

This function computes the triadic closure network sufficient statistic for a relational event sequence
(see Lerner and Lomi 2020; Butts 2008). This measure allows for triadic scores to be only computed
for the sampled events, while creating the weights based on the full event sequence (see Lerner and
Lomi 2020; Vu et al. 2015). The function allows users to use two different weighting functions,
reduce computational runtime, employ a sliding windows framework for large relational sequences,
and specify a dyadic cutoff for relational relevancy.

Usage

computeTriads(
observed_time,
observed_sender,
observed_receiver,
processed_time,
processed_sender,
processed_receiver,
sliding_windows = FALSE,
processed_seqIDs = NULL,
counts = FALSE,
halflife = 2,
dyadic_weight = 0,
window_size = NA,
Lerneretal_2013 = FALSE

Arguments

observed_time The vector of event times from the pre-processing event sequence.
observed_sender
The vector of event senders from the pre-processing event sequence.
observed_receiver
The vector of event receivers from the pre-processing event sequence
processed_time The vector of event times from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).
processed_sender
The vector of event senders from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).



94

computeTriads

processed_receiver

sliding_windows

The vector of event receivers from the post-processing event sequence (i.e., the
event sequence that contains the observed and null events).

TRUE/FALSE. TRUE indicates that the sliding windows computational approach
will be used to compute the resulting network statistic, while FALSE indicates
the approach will not be used. Set to FALSE by default. It’s important to note
that the sliding windows framework should only be used when the pre-processed
event sequence is ‘big’, such as the 360 million pre-processed event sequence
used in Lerner and Lomi (2020), as it aims to reduce the computational burden
of sorting ‘big’ datasets. In general, most pre-processed event sequences will
not need to use the sliding windows approach. There is not a strict cutoff for
‘big’ dataset. This definition depends on both the size of the observed event
sequence and the post-processing sampling dataset. For instance, according to
our internal tests, when the event sequence is relatively large (i.e., 100,000 ob-
served events) with probability of sampling from the observed event sequence
set to 0.05 and using 10 controls per sampled event, the sliding windows frame-
work for computing repetition is about 11% faster than the non-sliding windows
framework. Yet, in a smaller dataset (i.e., 10,000 observed events) the sliding
windows framework is about 25% slower than the non-sliding framework with
the same conditions as before.

processed_seqlDs

counts

halflife

dyadic_weight

window_size

Lerneretal_2013

If sliding_windows is set to TRUE, the vector of event sequence IDs from the
post-processing event sequence. The event sequence IDs represents the index
for when the event occurred in the observed event sequence (e.g., the Sth event
in the sequence will have a value of 5 in this vector).

TRUE/FALSE. TRUE indicates that the counts of past events should be com-
puted (see the details section). FALSE indicates that the temporal exponential
weighting function should be used to downweigh past events (see the details
section). Set to FALSE by default.

A numerical value that is the halflife value to be used in the exponential weight-
ing function (see details section). Preset to 2 (should be updated by the user
based on substantive context).

A numerical value for the dyadic cutoff weight that represents the numerical
cutoff value for temporal relevancy based on the exponential weighting function.
For example, a numerical value of 0.01, indicates that an exponential weight less
than 0.01 will become 0 and that events with such value (or smaller values) will
not be included in the sum of the past event weights (see the details section). Set
to 0 by default.

If sliding_windows is set to TRUE, the sizes of the windows that are used for
the sliding windows computational framework. If NA, the function internally
divides the dataset into ten slices (may not be optimal).

TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default
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Details
This function calculates triadic scores for relational event sequences based on the exponential
weighting function used in either Lerner and Lomi (2020) or Lerner et al. (2013).

Following Lerner and Lomi (2020), the exponential weighting function in relational event models

18
_(t_t/).m

w(s,rt)=e T1/2

Following Lerner et al. (2013), the exponential weighting function in relational event models is:

_(t—t’)~% . In(2)

w(s,r,t) =e€

In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, ¢’ is the past event times that meet the weight subset, and 77/, is the
halflife parameter.

The general formula for triadic structures for event e; is:

triadice, = \/Z w(s,r,t) - w(s',rt)
k

That is, this function combines all triadic structures discussed in Butts (2008) into a single sum-
mation such that the computed scores include incoming shared partners, outgoing shared partners,
incoming two paths, and outgoing two paths.

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022; Lerner and Lomi 2020) can specify the dyadic weight cutoff, that is, the minimum
value for which the weight is considered relationally relevant. Users who do not know the specific
dyadic cutoff value to use, can use the computeRemDyadCut function.

Following Butts (2008), if the counts of the past events are requested, the formula for triadic struc-

tures for event ¢; is:
|H|

TS., = Z min [d(s,r’,t),d(s,7,t)]
i=1

where, d() is the number of past events that meet the specific set operations. Notably, this function
combines all triadic structures discussed in Butts (2008) into a single summation, such that the
computed scores include incoming shared partners, outgoing shared partners, incoming two paths,
and outgoing two paths. The sum loops through all unique actors that have formed past sent or
received ties from the current event sender and receiver. Moreover, the counting equation can be
used in tandem with relational relevancy, by specifying the halflife parameter, exponential weighting
function, and the dyadic cut off weight values. If the user is not interested in modeling relational
relevancy, then those value should be left at their baseline values.

Value

The vector of triadic closure network statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu
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Examples

events <- data.frame(time = 1:18,
eventID = 1:18,
sender = C("A"’ "B“, IICII’

"A", "D", "E",
"F", "B", "A",
"F”, "D", "B",
"G", "B", "D",
"H", "A", "D"),
target = c("B", "C", "D",
"E", "A", "F",
"D", "A", "C",
"G", "B", "C",
"HY, MITL AT,

ngn men o ngny)

eventSet <- processOMEventSeq(data = events,
time = events$time,
eventID = events$eventlID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 1,
seed = 9999)

# Computing Triadic Statistics without the sliding windows framework
eventSet$triadic <- computeTriads(

observed_time = events$time,

observed_sender = events$sender,

observed_receiver = events$target,

processed_time = eventSet$time,

processed_sender = eventSet$sender,

processed_receiver = eventSet$receiver,

halflife = 2, #halflife parameter

dyadic_weight = 0,
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Lerneretal_2013 = FALSE)

# Computing Triadic Statistics with the sliding windows framework

eventSet$triadicSW <- computeTriads(
observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
processed_seqIDs = eventSet$sequencelD,
dyadic_weight = 0,
sliding_window = TRUE,
Lerneretal_2013 = FALSE)

#The results with and without the sliding windows are the same (see correlation
#below). Using the sliding windows method is recommended when the data are
#big' so that memory allotment is more efficient.

cor(eventSet$triadic , eventSet$triadicSw)

# Computing Triadic Statistics with the counts of events being returned
eventSet$triadicC <- computeTriads(
observed_time = events$time,
observed_sender = events$sender,
observed_receiver = events$target,
processed_time = eventSet$time,
processed_sender = eventSet$sender,
processed_receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
sliding_window = FALSE,
counts = TRUE,
Lerneretal_2013 = FALSE)

cbind(eventSet$triadic,
eventSet$triadicSWw,
eventSet$triadicC)

create_riskset Process and Create Risk Sets for a One- and Two-Mode Relational
Event Sequences

Description

[Stable]

This function creates one- and two-mode post-sampling eventset with options for case-control sam-
pling (Vu et al. 2015) and sampling from the observed event sequence (Lerner and Lomi 2020).
Case-control sampling samples an arbitrary m number of controls from the risk set for any event
(Vu et al. 2015). Lerner and Lomi (2020) proposed sampling from the observed event sequence



98

create_riskset

where observed events are sampled with probability p. Importantly, this function generates risk
sets that assume that the risk set for each event is fixed across all time points, that is, all actors
active at any time point across the event sequence are in the set of potential events. Users interested
in generating time-/event-varying risks sets should consult the processOMEventSeq function for
one-mode event sequences and the processTMEventSeq function for two-mode event sequences.
Future versions of the dream package will incorporate this option into this function in a principled

manner.
Usage
create_riskset(
type = c("two-mode"”, "one-mode"),
time,
eventID,
sender,
receiver,
p_samplingobserved = 1,
n_controls,
combine = TRUE,
seed = 9999
)
Arguments
type "two-mode" indicates that this is a two-mode event sequence. "one-mode" indi-
cates that the event sequence is one-mode.
time The vector of event time values from the observed event sequence.
eventID The vector of event IDs from the observed event sequence (typically a numerical
event sequence that goes from 1 to n).
sender The vector of event senders from the observed event sequence.
receiver The vector of event receivers from the observed event sequence.

p_samplingobserved

n_controls

combine

seed

Details

The numerical value for the probability of selection for sampling from the ob-
served event sequence. Set to 1 by default indicating that all observed events
from the event sequence will be included in the post-processing event sequence.
The numerical value for the number of null event controls for each (sampled)
observed event.

TRUE/FALSE. TRUE indicates that the post-sampling (processing) event se-
quence should be merged with the pre-processing dataset. FALSE only returns
the post-processing event sequence (that is, only the sampled events).

The random number seed for user replication.

This function processes observed events from the set E, where each event e; is defined as:

where:

e; € E = (SZ',TZ',ti, G[E,t])
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e s; is the sender of the event.
¢ r; is the receiver of the event.

* t; represents the time of the event.

G[E;t] = {e1,ea,...,er | t' < t} is the network of past events, that is, all events that
occurred prior to the current event, e;.

Following Butts (2008) and Butts and Marcum (2017), for one-mode event sequences, the risk
(support) set is defined as all possible events at time ¢, A;, as the full Cartesian product of prior
senders and receivers in the set G[E; t] that could have occurred at time ¢. Formally:

Ay =A{(s,r) | s€ SxreR}
where S is the set of potential event senders and R is the set of potential event receivers. In this

function, the full risk set is considered fixed across all time points.

For two-mode event sequences, the risk (support) set is defined as all possible events at time ¢, Ay,
as the cross product of two disjoint sets, namely, prior senders and receivers, in the set G[E; ¢] that
could have occurred at time ¢. Formally:

Ay ={(s,r) | s€ SxreR}
where S is the set of potential event senders and R is the set of potential event receivers. In this

function, the full risk set is considered fixed across all time points.

Case-control sampling maintains the full set of observed events, that is, all events in £, and samples
an arbitrary number m of non-events from the support set A; (Vu et al. 2015; Lerner and Lomi
2020). This process generates a new support set, S A;, for any relational event e; contained in F
given a network of past events G[E; t]. S A; is formally defined as:

SA C{(s,7)|s€ SxreR}

and in the process of sampling from the observed events, n number of observed events are sampled
from the set E with known probability 0 < p < 1. More formally, sampling from the observed set
generates a new set SE C F.

Value
A post-processing data.table object with the following columns:

 time - The event time for the sampled and observed events.

¢ eventID - The numerical event sequence ID for the sampled and observed events.
* sender - The event senders of the sampled and observed events.

* receiver - The event targets (receivers) of the sampled and observed events.

* observed - Boolean indicating if the event is an observed or control event. (1 = observed; 0 =
control)

* sampled - Boolean indicating if the event is sampled or not sampled. (1 = sampled; 0 = not
sampled)

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu
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Examples

data("WikiEvent2018.first100k")
WikiEvent2018.first100k$time <- as.numeric(WikiEvent2018.first100k$time)
### Creating the EventSet By Employing Case-Control Sampling With M = 10 and
### Sampling from the Observed Event Sequence with P = 0.01
EventSet <- create_riskset(
type = "two-mode"”,
time = WikiEvent2018.first100k$time, # The Time Variable
eventID = WikiEvent2018.first100k$eventID, # The Event Sequence Variable
sender = WikiEvent2018.first100k$user, # The Sender Variable
receiver = WikiEvent2018.first100k$article, # The Receiver Variable
p_samplingobserved = 0.01, # The Probability of Selection
n_controls = 10, # The Number of Controls to Sample from the Full Risk Set
seed = 9999) # The Seed for Replication

#i## Creating A New EventSet with more observed events and less control events
### Sampling from the Observed Event Sequence with P = 0.02
### Employing Case-Control Sampling With M = 2
EventSet1 <- create_riskset(
type = "two-mode”,
time = WikiEvent2018.first100k$time, # The Time Variable
eventID = WikiEvent2018.first100k$eventID, # The Event Sequence Variable
sender = WikiEvent2018.first100k$user, # The Sender Variable
receiver = WikiEvent2018.first100k$article, # The Receiver Variable
p_samplingobserved = 0.02, # The Probability of Selection
n_controls = 2, # The Number of Controls to Sample from the Full Risk Set
seed = 9999) # The Seed for Replication

dream dream: A Package for Dynamic Relational Event Analysis and Model-
ing




dream 101

Description

The dream package provides users with helpful functions for relational and event analysis. In partic-
ular, dream provides users with helper functions for large relational event analysis, such as recently
proposed sampling procedures for creating relational risk sets. Alongside the set of functions for
relational event analysis, this package includes functions for the structural analysis of one- and
two-mode networks, such as network constraint and effective size measures. This package was
developed with support from the National Science Foundation’s (NSF) Human Networks and Data
Science Program (HNDS) under award number 2241536 (PI: Diego F. Leal). Any opinions, find-
ings, and conclusions, or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the NSE.

dream functions

The dream package *API’ is structured into six categories, where the prefix identifies what category
the specific function corresponds to (see below):

* remstats_

* netstats_om_

* netstats_tm_

* estimate_

e simulate_

* create_
The remstats_ functions compute relational/network statistics for relational event sequences. For
instance, remstats_fourcycles computes the four-cycles network statistic for a two-mode re-
lational event sequence. The create_ function creates a risk-set for one- and two-mode relational
event sequences based on a set of sampling procedures. The netstats_om_ series of functions com-
pute static network statics for one-mode networks (i.e., netstats_om_pib computes Leal (2025)
measure for potential for intercultural brokerage). The netstats_om_ set of functions compute
static network statics for two-mode networks (i.e., netstats_om_effective computes Burchard
and Cornwell (2018) measure for two-mode ego effective size). The estimate_ functions esti-
mate relational event models for relational event sequences. Currently, the only function in this
set is estimate_rem_logit, which estimates the ordinal timing relational event model and, under
certain conditions, can estimate a Cox-proportional hazard model for exact timing relational event
models (see Bianchi et al. (2024) and Butts (2008) for more information on these models). Fi-

nally, the simulate_ functions simulate one-mode relational event sequences based upon results of
a relational event model.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc @arizona.edu

See Also
Useful links:

e https://github.com/kevinCarson/dream
* Report bugs at https://github.com/kevinCarson/dream/issues
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https://www.sciencedirect.com/science/article/abs/pii/S0378873317302241
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https://www.annualreviews.org/content/journals/10.1146/annurev-statistics-040722-060248
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9531.2008.00203.x
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estimateREM Fit a Relational Event Model (REM) to Event Sequence Data

Description

[Deprecated]

estimateREM() has been deprecated starting on version 1.0.0 of the dream package. Please use the
estimate_rem_logit() function and see the NEWS.md file for more details.

This function estimates the ordinal timing relational event model by maximizing the likelihood
function given by Butts (2008) via maximum likelihood estimation. A nice outcome is that the
ordinal timing relational event model is equivalent to the conditional logistic regression (see Greene
2003; for R functions, see clogit). In addition, based on this outcome and the structure of the data,
this function can estimate the Cox proportional hazards model (see Box-Steffensmeier and Jones
2004; for R functions, see coxph) given that the likelihood functions are equivalent. An important
assumption this model makes is that only one event occurs at each time point. If this is unfeasible
for the user’s specific dataset, we encourage the user to see the clogit function for the Breslow
approximation technique (Box-Steffensmeier and Jones 2004). Future versions of the package will
include options for interval timing relational event models and tied event data (e.g., multiple events
at one time point).

Usage

estimateREM(
formula,
event.cluster,
data,
ordinal = TRUE,
multiple.events = FALSE,
newton.rhapson = TRUE,
optim.method = "BFGS",
optim.control = list(),
tolerance = 1e-09,
maxit = 20,
starting.beta = NULL,

)
Arguments
formula A formula object with the dependent variable on the left hand side of ~ and the
covariates on the right hand side. This is the same argument found in 1m and
glm.

event.cluster An integer or factor vector that groups each observed event with its correspond-
ing control (null) events. This vector defines the strata in the event sequence,
ensuring that each stratum contains one observed event and its associated null
alternatives. It is used to structure the likelihood by stratifying events based on
their occurrence in time.
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data

ordinal

multiple.events

newton.rhapson

optim.method

optim.control

tolerance

maxit

starting.beta

Details
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The data.frame that contains the variable included in the formula argument.

TRUE/FALSE. Currently, this function supports only the estimation of ordinal
timing relational event models (see Butts 2008). Future versions of the package
will include estimation options for interval timing relational event models. At
this time, this argument is preset to TRUE and should not be modified by the
user.

TRUE/FALSE. Currently, this function assumes that only one event occurs per
event cluster (i.e., time point). Future versions of the package will include esti-
mation options for multiple events per time point, commonly referred to as tied
events, via the Breslow approximation technique (see Box-Steffensmeier and
Jones 2004). At this moment, this argument is preset to FALSE and should not
be modified by the user.

TRUE/FALSE. TRUE indicates an internal Newton-Rhapson iteration proce-
dure with line searching is used to find the set of maximum likelihood estimates.
FALSE indicates that the log likelihood function will be optimized via the optim
function. The function defaults to TRUE.

If newton.rhapson is FALSE, what optim method should be used in conjunction
with the optim function. Defaults to "BFGS". See the optim function for the
set of options.

If newton.rhapson is FALSE, a list of control to be used in the optim function.
See the optim function for the set of controls.

If newton.rhapson is TRUE, the stopping criterion for the absolute difference
in the log likelihoods for each Newton-Rhapson iteration. The optimization
procedure stops when the absolute change in the log likelihoods is less than
tolerance (see Greene 2003).

If newton.rhapson is TRUE, the maximum number of iterations for the Newton-
Rhapson optimization procedure (see Greene 2003).

A numeric vector that represents the starting parameter estimates for the Newton-
Rhapson optimization procedure. This may be a beneficial argument if the opti-
mization procedure fails, since the Newton-Rhapson optimization procedure is
sensitive to starting values. Preset to NULL.

Additional arguments.

This function maximizes the ordinal timing relational event model likelihood function provided in
the seminal REM paper by Butts (2008). The likelihood function is:

|E] A
LElp) =] s
il;[l Ze’ERSei Aer

where, following Butts (2008) and Duxbury (2020), E is the relational event sequence, )., is the
hazard rate for event i, which is formulated to be equal to exp(37 2(z,Y")), that is, the linear combi-
nation of user-specific covariates, z(z,Y"), and associated REM parameters, (. Following Duxbury
(2020), z(z,Y") is a mapping function that represents the endogenous network statistics computed
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on the network of past events,x, and exogenous covariates, Y. The user provides these covariates
via the formula argument.

This function provides two numerical optimization techniques to find the maximum likelihood esti-
mates for the associated parameters. First, this function allows the user to use the optim function to
find the associated parameters based on the above likelihood function. Secondly, and by default, this
function employs a Newton-Rhapson iteration algorithm with line-searching to find the unknown
parameters (see Greene 2003 for a discussion of this algorithm). If desired, the user can provide the
initial searching values for both algorithms with the starting.beta argument.

It’s important to note that the modeling concerns of the conditional logistic regression apply to the
ordinal timing relational event model, such as no within-sequence fixed effects, that is, a variable
that does not vary within event cluster (i.e., a variable that is the same for both the null and observed
events). The function internally checks for this and provides the user with a warning if any requested
effects has no total within-event variance. Moreover, any observed events that have no associated
control events are removed from the analysis as they provide no information to the log likelihood
(see Greene 2003). The function removes these events from the sequence prior to estimation.

Value
An object of class "dream" as a list containing the following components:

optimization.method The optimzation method used to find the parameters..
converged TRUE/FALSE. TRUE indicates that the REM converged.

loglikelihood.null The log likelihood of the null model (i.e., the model where the parameters are
assumed to be 0).

loglikelihood.full The log likelihood of the estimated model.

chi.stat The chi-statistic of the likelihood ratio test.

loglikelihood.test The p-value of the likelihood ratio test.

df.null The degrees of freedom of the null model.

df.full The degrees of freedom of the full model.

parameters The MLE parameter estimates.

hessian The estimated hessian matrix.

gradient The estimated gradient vector.

se.parameter The standard errors of the MLE parameter estimates.
covariance.mat The estimated variance-covariance matrix.

z.values The z-scores for the MLE parameter estimates.

p.values The p-values for the MLE parameter estimates.

AIC The AIC of the estimated REM.

BIC The BIC of the estimated REM.

n.events The number of observed events in the relational event sequence.
null.events The number of control events in the relational event sequence.
newton.iterations The number of Newton-Rhapson iterations.

search.algo A data.frame object that contains the Newton-Rhapson searching algorithm results.
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Author(s)
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Examples

#Creating a psuedo one-mode relational event sequence with ordinal timing
relational.seq <- simulateRESeq(n_actors = 8,
n_events = 50,
inertia = TRUE,
inertia_p = 0.10,
sender_outdegree = TRUE,
sender_outdegree_p = 0.05)

#Creating a post-processing event sequence for the above relational sequence
post.processing <- processOMEventSeq(data = relational.seq,
time = relational.seq$eventID,
eventID = relational.seq$eventlID,
sender = relational.seq$sender,
receiver = relational.seq$target,
n_controls = 5)

#Computing the sender-outdegree statistic for the above post-processing

#one-mode relational event sequence

post.processing$sender.outdegree <- computeSenderOQutdegree(
observed_time = relational.seqg$eventID,
observed_sender = relational.seq$sender,
processed_time = post.processing$time,
processed_sender = post.processing$sender,
counts = TRUE)

#Computing the inertia/repetition statistic for the above post-processing

#one-mode relational event sequence

post.processing$inertia <- computeRepetition(
observed_time = relational.seq$eventID,
observed_sender = relational.seqg$sender,
observed_receiver = relational.seqg$target,
processed_time = post.processing$time,
processed_sender = post.processing$sender,
processed_receiver = post.processing$receiver,
counts = TRUE)
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#Fitting a (ordinal) relational event model to the above one-mode relational
#event sequence
rem <- estimateREM(observed~sender.outdegreetinertia,
event.cluster = post.processing$time,
data=post.processing)
summary(rem) #summary of the relational event model

#Fitting a (ordinal) relational event model to the above one-mode relational
#event sequence via the optim function
reml <- estimateREM(observed~sender.outdegree+inertia,
event.cluster = post.processing$time,
data=post.processing,
newton.rhapson=FALSE) #use the optim function
summary(reml1) #summary of the relational event model

estimate_rem_logit Fit a Relational Event Model (REM) to Event Sequence Data

Description

[Stable]

This function estimates the ordinal timing relational event model by maximizing the likelihood
function given by Butts (2008) via maximum likelihood estimation. A nice outcome is that the
ordinal timing relational event model is equivalent to the conditional logistic regression (see Greene
2003; for R functions, see clogit). In addition, based on this outcome and the structure of the data,
this function can estimate the Cox proportional hazards model (see Box-Steffensmeier and Jones
2004; for R functions, see coxph) given that the likelihood functions are equivalent. An important
assumption this model makes is that only one event occurs at each time point. If this is unfeasible
for the user’s specific dataset, we encourage the user to see the clogit function for the Breslow
approximation technique (Box-Steffensmeier and Jones 2004). Future versions of the package will
include options for interval timing relational event models and tied event data (e.g., multiple events
at one time point).

Usage

estimate_rem_logit(
formula,
event.cluster,
data,
ordinal = TRUE,
multiple.events = FALSE,
newton.rhapson = TRUE,
optim.method = "BFGS",
optim.control = list(),
tolerance = 1e-09,
maxit = 20,
starting.beta = NULL,
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)
Arguments
formula A formula object with the dependent variable on the left hand side of ~ and the
covariates on the right hand side. This is the same argument found in 1m and
glm.

event.cluster An integer or factor vector that groups each observed event with its correspond-
ing control (null) events. This vector defines the strata in the event sequence,
ensuring that each stratum contains one observed event and its associated null
alternatives. It is used to structure the likelihood by stratifying events based on
their occurrence in time.

data The data.frame that contains the variable included in the formula argument.

ordinal TRUE/FALSE. Currently, this function supports only the estimation of ordinal
timing relational event models (see Butts 2008). Future versions of the package
will include estimation options for interval timing relational event models. At
this time, this argument is preset to TRUE and should not be modified by the
user.

multiple.events
TRUE/FALSE. Currently, this function assumes that only one event occurs per
event cluster (i.e., time point). Future versions of the package will include esti-
mation options for multiple events per time point, commonly referred to as tied
events, via the Breslow approximation technique (see Box-Steffensmeier and
Jones 2004). At this moment, this argument is preset to FALSE and should not
be modified by the user.

newton.rhapson TRUE/FALSE. TRUE indicates an internal Newton-Rhapson iteration proce-
dure with line searching is used to find the set of maximum likelihood estimates.
FALSE indicates that the log likelihood function will be optimized via the optim
function. The function defaults to TRUE.

optim.method  If newton.rhapson is FALSE, what optim method should be used in conjunction
with the optim function. Defaults to "BFGS". See the optim function for the
set of options.

optim.control If newton.rhapson is FALSE, a list of control to be used in the optim function.
See the optim function for the set of controls.

tolerance If newton.rhapson is TRUE, the stopping criterion for the absolute difference
in the log likelihoods for each Newton-Rhapson iteration. The optimization
procedure stops when the absolute change in the log likelihoods is less than
tolerance (see Greene 2003).

maxit If newton.rhapson is TRUE, the maximum number of iterations for the Newton-
Rhapson optimization procedure (see Greene 2003).

starting.beta A numeric vector that represents the starting parameter estimates for the Newton-
Rhapson optimization procedure. This may be a beneficial argument if the opti-
mization procedure fails, since the Newton-Rhapson optimization procedure is
sensitive to starting values. Preset to NULL.

Additional arguments.
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Details

This function maximizes the ordinal timing relational event model likelihood function provided in
the seminal REM paper by Butts (2008). The likelihood function is:
|E| A,

L(E|B) = lj S

where, following Butts (2008) and Duxbury (2020), E is the relational event sequence, )., is the
hazard rate for event i, which is formulated to be equal to exp(57 z(x, Y)), that is, the linear combi-
nation of user-specific covariates, z(z, Y'), and associated REM parameters, (. Following Duxbury
(2020), z(z,Y") is a mapping function that represents the endogenous network statistics computed
on the network of past events,x, and exogenous covariates, Y. The user provides these covariates
via the formula argument.

This function provides two numerical optimization techniques to find the maximum likelihood esti-
mates for the associated parameters. First, this function allows the user to use the optim function to
find the associated parameters based on the above likelihood function. Secondly, and by default, this
function employs a Newton-Rhapson iteration algorithm with line-searching to find the unknown
parameters (see Greene 2003 for a discussion of this algorithm). If desired, the user can provide the
initial searching values for both algorithms with the starting.beta argument.

It’s important to note that the modeling concerns of the conditional logistic regression apply to the
ordinal timing relational event model, such as no within-sequence fixed effects, that is, a variable
that does not vary within event cluster (i.e., a variable that is the same for both the null and observed
events). The function internally checks for this and provides the user with a warning if any requested
effects has no total within-event variance. Moreover, any observed events that have no associated
control events are removed from the analysis as they provide no information to the log likelihood
(see Greene 2003). The function removes these events from the sequence prior to estimation.

Value

An object of class "dream" as a list containing the following components:

optimization.method The optimzation method used to find the parameters..
converged TRUE/FALSE. TRUE indicates that the REM converged.

loglikelihood.null The log likelihood of the null model (i.e., the model where the parameters are
assumed to be 0).

loglikelihood.full The log likelihood of the estimated model.
chi.stat The chi-statistic of the likelihood ratio test.
loglikelihood.test The p-value of the likelihood ratio test.
df.null The degrees of freedom of the null model.

df.full The degrees of freedom of the full model.
parameters The MLE parameter estimates.

hessian The estimated hessian matrix.

gradient The estimated gradient vector.

se.parameter The standard errors of the MLE parameter estimates.
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covariance.mat The estimated variance-covariance matrix.

z.values The z-scores for the MLE parameter estimates.

p.values The p-values for the MLE parameter estimates.

AIC The AIC of the estimated REM.

BIC The BIC of the estimated REM.

n.events The number of observed events in the relational event sequence.
null.events The number of control events in the relational event sequence.
newton.iterations The number of Newton-Rhapson iterations.

search.algo A data.frame object that contains the Newton-Rhapson searching algorithm results.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu

References

Box-Steffensmeier, Janet and Bradford S. Jones. 2004. Event History Modeling: A Guide for Social
Scientists. Cambridge University Press.

Butts, Carter T. 2008. "A Relational Event Framework for Social Action." Sociological Methodol-
ogy 38(1): 155-200.

Duxbury, Scott. 2020. Longitudinal Network Models. Sage University Press. Quantitative Appli-
cations in the Social Sciences: 192.

Greene, William H. 2003. Econometric Analysis. Fifth Edition. Prentice Hall Press.

Examples

#Creating a psuedo one-mode relational event sequence with ordinal timing
relational.seq <- simulate_rem_seq(n_actors = 8,
n_events = 50,
inertia = TRUE,
inertia_p = 0.10,
sender_outdegree = TRUE,
sender_outdegree_p = 0.05)

#Creating a post-processing event sequence for the above relational sequence
post.processing <- create_riskset(type = "one-mode”,
time = relational.seq$eventID,
eventID = relational.seq$eventlID,
sender = as.character(relational.seqg$sender),
receiver = as.character(relational.seq$target),
n_controls = 5)

#Computing the sender-outdegree statistic for the above post-processing

#one-mode relational event sequence

post.processing$sender.outdegree <- remstats_degree(formation = "sender-outdegree”,
time = post.processing$time,
observed = post.processing$observed,
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sampled = post.processing$sampled,
sender = post.processing$sender,
receiver = post.processing$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,

exp_weight_form = FALSE)

#Computing the inertia/repetition statistic for the above post-processing

#one-mode relational event sequence

post.processing$inertia <- remstats_repetition(time = post.processing$time,
observed = post.processing$observed,
sampled = post.processing$sampled,
sender = post.processing$sender,
receiver = post.processing$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
exp_weight_form = FALSE)

#Fitting a (ordinal) relational event model to the above one-mode relational

#event sequence

rem <- estimate_rem_logit(observed~ sender.outdegree + inertia,
event.cluster = post.processing$time,
data=post.processing)

summary(rem) #summary of the relational event model

#Fitting a (ordinal) relational event model to the above one-mode relational

#event sequence via the optim function

reml <- estimate_rem_logit(observed~ sender.outdegree + inertia,
event.cluster = post.processing$time,
data=post.processing,
newton.rhapson=FALSE)

summary (rem1) #summary of the relational event model

netstats_om_constraint
Compute Burt’s (1992) Constraint for Ego Networks from a Socioma-
trix

Description

[Stable]

This function computes Burt’s (1992) one-mode ego constraint based upon a sociomatrix.

Usage

netstats_om_constraint(
net,
inParallel = FALSE,
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nCores = NULL,
isolates = NA,

pendants = 1
)
Arguments
net A one-mode sociomatrix with network ties.
inParallel TRUE/FALSE. TRUE indicates that parallel processing will be used to compute

the statistic with the foreach package. FALSE indicates that parallel processing
will not be used. Set to FALSE by default.

nCores If inParallel = TRUE, the number of computing cores for parallel processing. If
this value is not specified, then the function internally provides it by dividing the
number of available cores in half.

isolates What value should isolates be given? Set to NA by default.
pendants What value should be given to pendant vertices? Set to 1 by default. Pendant

vertices are those nodes who have one outgoing tie.
Details

The formula for Burt’s (1992) one-mode ego constraint is:

2
Cij = <pij +Zp¢qqu> saFiFE]

q
where:
* Diq is formulated as: p;q = ORI BN #J

Finally, the aggregate constraint of an ego i is:
Ci = Z Cij
J

While this function internally locates isolates (i.e., nodes who have no ties) and pendants (i.e., nodes
who only have one tie), the user should specify what values for constraint are returned for them via
the isolates and pendants options. In particular, pendant vertices are those nodes who have one
outgoing tie.

Lastly, this function allows users to compute the values in parallel via the foreach, doParallel, and
parallel R packages.

Value

The vector of ego network constraint values.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu
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References

Burt, Ronald. 1992. Structural Holes: The Social Structure of Competition. Harvard University
Press.

Examples

# For this example, we recreate the ego network provided in Burt (1992: 56):
BurtEgoNet <- matrix(c(

0,1,0,0,1,1,1,
,0,0,1,0,0,1,

’

70) ’

nrow = 7, ncol = 7)

colnames(BurtEgoNet) <- rownames(BurtEgoNet) <- c("A", "B", "C", "D", "E",
ER Mego™)

#the constraint value for the ego replicates that provided in Burt (1992: 56)

netstats_om_constraint (BurtEgoNet)

:
0,0,0,0,0,0,1
0,1,0,0,0,0,1,
1,0,0,0,0,0,1,
1,0,0,0,0,0,1
1,1,1,1,1,1

’

netstats_om_effective Compute Burt’s (1992) Effective Size for Ego Networks from a So-
ciomatrix

Description

[Stable]

This function computes Burt’s (1992) one-mode ego effective size based upon a sociomatrix (see
details).

Usage

netstats_om_effective(
net,
inParallel = FALSE,
nCores = NULL,
isolates = NA,
pendants = 1

Arguments

net The one-mode sociomatrix with network ties.
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inParallel TRUE/FALSE. TRUE indicates that parallel processing will be used to compute
the statistic with the foreach package. FALSE indicates that parallel processing
will not be used. Set to FALSE by default.

nCores If inParallel = TRUE, the number of computing cores for parallel processing. If
this value is not specified, then the function internally provides it by dividing the
number of available cores in half.

isolates The numerical value that represents what value will isolates be given. Set to NA
by default.
pendants The numerical value that represents what value will pendant vertices be given.

Set to 1 by default. Pendant vertices are those nodes who have one outgoing tie.

Details

The formula for Burt’s (1992; see also Borgatti 1997) one-mode ego effective size is:
E; :Zl_zpiqqu;q#i#j
J q
where I; is the ego effective size for an ego i. p;, is formulated as:

(zig + Zq1) oy
225 (zi5 + 25i)
and mjq is:
(2jq + 2¢5)

Mia = maz(zjk + 2k;)

While this function internally locates isolates (i.e., nodes who have no ties) and pendants (i.e., nodes
who only have one tie), the user should specify what values for constraint are returned for them via
the isolates and pendants options. In particular, pendant vertices are those nodes who have one
outgoing tie.

Value

The vector of ego network effective size values.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu

References

Burt, Ronald. 1992. Structural Holes: The Social Structure of Competition. Harvard University
Press.

Borgatti, Stephen. 1997. "Structural Holes: Unpacking Burt’s Redundancy Measures." Connections
20(1): 35-38.
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Examples

netstats_om_nwalks

# For this example, we recreate the ego network provided in Borgatti (1997):

BorgattiEgoNet <- matrix(
c(0,1,0,0,0,0,0,0,1,
1,0,0,0,0,0,0,0,1
0,0,0,1,0,0,0,0,1,
0,0,1,0,0,0,0,0,1,
0,0,0,0,0,1,0,0,1
0,0,0,0,1,0,0,0,1,
0,0,0,0,0,0,0,1,1,
0,0,0,0,0,0,1,0,1,
1,1,1,1,1,1,1,1,0),

’

» Yy

’

nrow = 9, ncol = 9, byrow = TRUE)

colnames(BorgattiEgoNet) <- rownames(BorgattiEgoNet) <- c("A", "B", "C",

”D", nEu7 “F”,
nGu "y uegon)
’ ’

#the effective size value for the ego replicates that provided in Borgatti (1997)

netstats_om_effective(BorgattiEgoNet)

# For this example, we recreate the ego network provided in Burt (1992: 56):

BurtEgoNet <- matrix(c(
0)1’0!0’111!1’
!0!071!0'071!

)

)

1
0,0,0,0,0,0,1
0,1,0,0,0,0,1,
1,0,0,0,0,0,1,
1,0,0,0,0,0,1
1,1,1,1,1,1,0),

nrow = 7, ncol = 7)

’

colnames(BurtEgoNet) <- rownames(BurtEgoNet) <- c("A", "B", "C", "D", "E",

#the effective size value for the ego replicates that provided in Burt (1992: 56)

netstats_om_effective(BurtEgoNet)

netstats_om_nwalks Compute the Number of Walks of Length K in a One-Mode Network

Description

[Stable]

This function calculates the number of walks of length k between any two vertices in an unweighted

one-mode network.

Usage

netstats_om_nwalks(net, k)
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Arguments

net An unweighted one-mode network adjacency matrix.

k A numerical value that corresponds to the length of the paths to be computed.
Details

A nice result from graph theory is that the number of walks of length k between vertices i and j can
be found by:
k
Al

This function assumes that there are no self-loops (i.e., the diagonal of the matrix is 0).

Value

An n x n matrix of counts of paths.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu

Examples

# For this example, we generate a random one-mode graph with the sna package.
#creating the random network with 10 actors
set.seed(9999)
rnet <- matrix(sample(c(@,1), 10*10, replace = TRUE, prob = c(0.8,0.2)),
nrow = 10, ncol = 10, byrow = TRUE)
diag(rnet) <- 0 #setting self ties to @
#counting the walks of length 2
netstats_om_nwalks(rnet, k = 2)
#counting the walks of length 5
netstats_om_nwalks(rnet, k = 5)

netstats_om_pib Compute Potential for Intercultural Brokerage (PIB) Based on Leal
(2025)
Description
[Stable]

Following Leal (2025), this function calculates node’s Potential for Intercultural Brokerage (PIB) in
a one-mode network, that is, brokerage based on nodes’ distinct group memberships. For example,
users can examine PIB based on actors’ gender. The option count determines what is returned by
the function. If count is TRUE, then the count of ‘culturally’ dissimilar pairs brokered by ego is
included (i.e., ego’s total count of brokered open triangles where the alters at the two endpoints of
said open triangles are ‘culturally’ dissimilar from one another). If count is FALSE, the proportion
of ego’s brokered open triangles where the endpoints are ‘culturally’ dissimilar out of all of ego’s
brokered open triangles (regardless of the cultural identity of the alters) is returned. The formula
for computing interpersonal brokerage is presented in the details section.
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Usage

netstats_om_pib(
net,
g.mem,
symmetric = TRUE,
triad.type = NULL,

count = TRUE,
isolate = NA
)
Arguments
net The one-mode adjacency matrix.
g.mem The vector of membership values that the brokerage scores will be based on.
symmetric TRUE/FALSE. TRUE indicates that network matrix will be treated as symmet-
ric. FALSE indicates that the network matrix will be treated as asymmetric. Set
to TRUE by default.
triad.type The string value (or vector) that indicates what specific triadic (star) structures
the potential for cultural brokerage will be computed for. Possible values are
"ANY", "OTS", "ITS", "MTS" (see the details section). The function defaults
to “ANY”.
count TRUE/FALSE. TRUE indicates that the number of culturally brokered open tri-

angles will be returned. FALSE indicates that the proportion of culturally bro-
kered open triangles to all open triangles will be returned (see the details sec-
tion). Set to TRUE by default.

isolate If count = FALSE, the numerical value that will be given to isolates. This value
is set to NA by default, as 0/0 is undefined. The user can specify this value!

Details

Following Leal (2025), the formula for interpersonal brokerage is:

PIB; = Z ??kmjky Sjik # 0and i # j # k

j<k DIk
where:
* Sjir, = 1 if there is an (un)directed two-path connecting actors j and k through actor i; 0
otherwise.
* mjj = 1if actors j and k are on different sides of a symbolic boundary; 0 otherwise.
¢ Following Gould (1989), S;;;; represents the total number of two-paths between actors j and

k.

If the network is non-symmetric (i.e., the user specified symmetric = FALSE), then the function
can compute the cultural brokerage scores for different star structures. The possible values are:
"ANY", which computes the scores for all structures, where a tie exists between i and j, j and k, and
one does not exist between i and k. "OTS" computes the values for outgoing two-stars (i<-j->k or
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the 021D triad according to the M.A.N. notation; see Wasserman and Faust 1994), where j is the
broker. "ITS" computes the values for incoming two-stars (i->j<-k or the 021U triad according to
the M.A.N. notation; see Wasserman and Faust 1994), where j is the broker. "MTS" computes PIB
for mixed triadic structures (i<-j<-k or i->j->k or the 021C triad according to the M.A.N. notation;
see Wasserman and Faust 1994). If not specified, the function defaults to the "ANY" category. This
function can also compute all of the formations at once.

Value

The vector of interpersonal cultural brokerage values for the one-mode network.

Author(s)

Kevin A. Carson kacarson @arizona.edu, Diego F. Leal dflc@arizona.edu

References

Gould, Roger. 1989. "Power and Social Structure in Community Elites." Social Forces 68(2):
531-552.

Leal, Diego F. 2025. "Locating Cultural Holes Brokers in Diffusion Dynamics Across Bright Sym-
bolic Boundaries." Sociological Methods & Research doi:10.1177/00491241251322517

Wasserman, Stanley and Katherine Faust. 1994. Social Network Analysis: Methods and Applica-
tions. Cambridge: Cambridge University Press.

Examples

# For this example, we recreate Figure 3 in Leal (2025)
LealNet <- matrix( c(

0,1,0,0,0,0,0,

1,0,1,1,0,0,0,

0,1,0,0,1,1,0,

0,1,0,0,1,0,0,

0,0,1,1,0,0,0,

0,0,1,0,0,0,1,

0,0,0,0,0,1,0),

nrow = 7, ncol = 7, byrow = TRUE)

colnames(LealNet) <- rownames(LealNet) <- c("A", "B", "C","D",

MEMOMEMO"GM)

categorical_variable <- ¢(0,0,1,0,0,0,0)
#These values are exactly the same as reported by Leal (2025)
netstats_om_pib(LealNet,

symmetric = TRUE,

g.mem = categorical_variable)
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netstats_tm_constraint
Compute Burchard and Cornwell’s (2018) Two-Mode Constraint

Description

[Stable]

This function calculates the values for two-mode network constraint for weighted and unweighted
two-mode networks based on Burchard and Cornwell (2018).

Usage

netstats_tm_constraint(
net,
isolates = NA,
returnCIJmat = FALSE,
weighted = FALSE

)

Arguments
net A two-mode adjacency matrix or affiliation matrix.
isolates What value should isolates be given? Preset to be NA.

returnCIJmat TRUE/FALSE. TRUE indicates that the full constraint matrix, that is, the net-
work constraint from an alter j on node i, will be returned to the user. FALSE
indicates that the total constraint will be returned. Set to FALSE by default.

weighted TRUE/FALSE. TRUE indicates the resulting statistic will be based on the weighted
formula (see the details section). FALSE indicates the statistic will be based on
the original non-weighted formula. Set to FALSE by default.

Details

Following Burchard and Cornwell (2018), the formula for two-mode constraint is:

: N
o (|c<3> mc@)
! |¢6)]
where:
* c;; is the constraint of ego i with respect to actor j.

* |¢(5) N ¢(4)| is the number of opposite-class contacts that i and j both share.

* The denominator, |¢(**) |, represents the total number of opposite-class contacts of ego i ex-
cluding pendants. Pendants are level 2 groups that only have one member (i.e., incoming
tie).
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The total constraint for ego i is given by:

CZ‘Z Z Cij

Jj€a(i)

The function returns the aggregate constraint for each actor; however, the user can specify the
function to return the constraint matrix by setting returnCIlJmat to TRUE.

The function can also compute constraint for weighted two-mode networks by setting weighted to
TRUE. The formula for two-mode weighted constraint is:

s = <|c<y|'2(?*)<<i>|>2 ‘w,

where w; is the average of the tie weights that i and j send to their shared opposite-class contacts.

Value

The vector of two-mode constraint scores for level 1 actors in a two-mode network.

Author(s)

Kevin A. Carson kacarson @arizona.edu, Diego F. Leal dflc@arizona.edu

References

Burchard, Jake and Benjamin Cornwell. 2018. "Structural Holes and Bridging in Two-Mode Net-
works." Social Networks 55:11-20.

Examples

# For this example, we recreate Figure 2 in Burchard and Cornwell (2018: 13)
BCNet <- matrix(
c(1 !1 79’0!

nrow = 4, ncol = 4, byrow = TRUE)

colnames(BCNet) <- c("1", "2", "3", "4")

rownames (BCNet) <- c("i", "j", "k", "m")
#library(sna) #To plot the two mode network, we use the sna R package
#gplot (BCNet, usearrows = FALSE,
# gmode = "twomode”, displaylabels = TRUE)
netstats_tm_constraint (BCNet)

#For this example, we recreate Figure 9 in Burchard and Cornwell (2018:18) for
#weighted two mode networks.
BCweighted <- matrix(c(1,2,1, 1,0,0,
0,2,1,0,0,1),
nrow = 4, ncol = 3,
byrow = TRUE)
rownames (BCweighted) <- c("i”, "j", "k", "

1")
netstats_tm_constraint(BCweighted, weighted =

TRUE)
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netstats_tm_degreecent
Compute Degree Centrality Values for Two-Mode Networks

Description

[Stable]

This function computes the degree centrality values for two-mode networks following Knoke and
Yang (2020). The computed degree centrality is based on the specified level. That s, in an affiliation
matrix, the density can be computed on the symmetric g x g co-membership matrix of level 1 actors
(e.g., medical doctors) or on the symmetric & x h shared actors matrix for level 2 groups (e.g.,
hospitals) based on their shared members.

Usage

netstats_tm_degreecent(net, levell = TRUE)

Arguments
net A two-mode adjacency matrix
levell TRUE/FALSE. TRUE indicates that the degree centrality will be computed for
level 1 nodes. FALSE indicates that the degree centrality will be computed for
level 2 nodes. Set to TRUE by default.
Details

Following Knoke and Yang (2020), the computation of degree for two-mode affiliation networks is
level specific. A two-mode affiliation matrix X with dimensions g x &, where g is the number of
level 1 nodes (e.g., medical doctors) and / is the number of level 2 nodes (i.e., hospitals). If the
function is defined on the level 1 nodes, the degree centrality of an actor i is computed as:

X% =xxT
g
CHg:) =D a8 (i#7)
i=1
In contrast, if it is defined on the level 2 nodes, the degree centrality of an actor i is computed as:

X7 =XTx
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Value

The vector of two-mode level-specific degree centrality values.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dflc @arizona.edu

References

Knoke, David and Song Yang. 2020. Social Network Analysis. Sage: Quantitative Applications in
the Social Sciences (154)

Examples

#Replicating the biparitate graph presented in Knoke and Yang (2020: 109)
knoke_yang_PC <- matrix(c(1,1,0,0, 1,1,0,0,

1,1,1,0, 0,0,1,1,

0,0,1,1), byrow = TRUE,

nrow = 5, ncol = 4)
colnames(knoke_yang_PC) <- c("Rubio-R","McConnell-R", "Reid-D", "Sanders-D")
rownames (knoke_yang_PC) <- c("UPS", "MS", "HD", "SEU", "ANA")
netstats_tm_degreecent(knoke_yang_PC, levell = TRUE) #this value matches the book
netstats_tm_degreecent(knoke_yang_PC, levell = FALSE) #this value matches the book

netstats_tm_density Compute Level-Specific Graph Density for Two-Mode Networks

Description

[Stable]

This function computes the density of a two-mode network following Wasserman and Faust (1994)
and Knoke and Yang (2020). The density is computed based on the specified level. That is, in an
affiliation matrix, density can be computed on the symmetric g x g matrix of co-membership for the
level 1 actors or on the symmetric ~ x h matrix of shared actors for level 2 groups.

Usage
netstats_tm_density(net, binary = FALSE, levell = TRUE)

Arguments
net A two-mode adjacency matrix.
binary TRUE/FALSE. TRUE indicates that the transposed matrices will be binarized

(see Wasserman and Faust 1995: 316). FALSE indicates that the transposed
matrices will not be binarized. Set to FALSE by default.
levell TRUE/FALSE. TRUE indicates that the graph density will be computed for level

1 nodes. FALSE indicates that the graph density will be computed for level 2
nodes. Set to FALSE by default.
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Details

Following Wasserman and Faust (1994) and Knoke and Yang (2020), the computation of density for
two-mode networks is level specific. A two-mode matrix X with dimensions g x h, where g is the
number of level 1 nodes (e.g., medical doctors) and /4 is the number of level 2 nodes (i.e., hospitals).
If the function is defined on the level 1 nodes, the density is computed as:

X9=xxT

g g g
py — &=l G=1Tij

9(g—1)
In contrast, if it is defined on the level 2 nodes, the density is:

xh=xTx

h h
ph— Dz Zj:l ‘”Z

h(h —1)
Moreover, as discussed in Wasserman and Faust (1994: 316), the density can be based on the
dichotomous relations instead of the shared membership values. This can be specified by binary =
TRUE.

Value

The level-specific network density for the two-mode graph.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu

References

Wasserman, Stanley and Katherine Faust. 1994. Social Network Analysis: Methods and Applica-
tions. Cambridge University Press.

Knoke, David and Song Yang. 2020. Social Network Analysis. Sage: Quantitative Applications in
the Social Sciences (154).

Examples

#Replicating the biparitate graph presented in Knoke and Yang (2020: 109)
knoke_yang_PC <- matrix(c(1,1,0,0, 1,1,0,0,

1,1,1,0, 0,0,1,1,

0,0,1,1), byrow = TRUE,

nrow = 5, ncol = 4)
colnames(knoke_yang_PC) <- c("Rubio-R","McConnell-R", "Reid-D", "Sanders-D")
rownames (knoke_yang_PC) <- c("UPS", "MS", "HD", "SEU", "ANA")
#compute two-mode density for level 1
#note: this value does not match that of Knoke and Yang (which we believe
#is a typo in that book), but does match that of Wasserman and
#Faust (1995: 317) for the ceo dataset.
netstats_tm_density(knoke_yang_PC, levell = TRUE)
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#compute two-mode density for level 2.
#note: this value matches that of the book
netstats_tm_density(knoke_yang_PC, levell = FALSE)

netstats_tm_effective Compute Burchard and Cornwell’s (2018) Two-Mode Effective Size

Description

[Stable]

This function calculates the values for two-mode effective size for weighted and unweighted two-
mode networks based on Burchard and Cornwell (2018).

Usage

netstats_tm_effective(
net,
inParallel = FALSE,
nCores = NULL,
isolates = NA,
weighted = FALSE

)
Arguments
net A two-mode adjacency matrix or affiliation matrix
inParallel TRUE/FALSE. TRUE indicates that parallel processing will be used to compute

the statistic with the foreach package. FALSE indicates that parallel processing
will not be used. Set to FALSE by default.

nCores If inParallel = TRUE, the number of computing cores for parallel processing. If
this value is not specified, then the function internally provides it by dividing the
number of available cores in half.

isolates What value should isolates be given? Preset to be NA.
weighted TRUE/FALSE. TRUE indicates the resulting statistic will be based on the weighted
formula (see the details section). FALSE indicates the statistic will be based on
the original non-weighted formula. Set to FALSE by default.
Details

The formula for two-mode effective size is:

ESi = |O'(Z)| - Z Tij

J€a(i)

where:
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e ES; is the effective size of ego i.
* |o(7)] is the number of same-class contacts of ego i.

Y jeo(i) Tij 1s the summation of the redundancy for each alter j in the two-mode ego network
of i.

This function allows the user to compute the scores in parallel through the foreach and doParallel
R packages. If the matrix is weighted, the user should specify weighted = TRUE. If the matrix
is weighted, following Burchard and Cornwell (2018), the formula for two-mode weighted redun-
dancy is:

o _le(G)ne(@)

Y o (@)] x wy

where w; is the average of the tie weights that i and j send to their shared opposite class contacts.

Value

The vector of two-mode effective size values for level 1 actors in a two-mode network.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu

References

Burchard, Jake and Benjamin Cornwell. 2018. "Structural Holes and Bridging in Two-Mode Net-
works." Social Networks 55:11-20.

Examples

# For this example, we recreate Figure 2 in Burchard and Cornwell (2018: 13)
BCNet <- matrix(
C(1 ’1 70!0!

nrow = 4, ncol = 4, byrow = TRUE)

colnames(BCNet) <- c("1", "2", "3", "4")

rownames(BCNet) <- c("i"”, "j", "k", "m")
#library(sna) #To plot the two mode network, we use the sna R package
#gplot(BCNet, usearrows = FALSE,
# gmode = "twomode”, displaylabels = TRUE)
netstats_tm_effective(BCNet)

#In this example, we recreate Figure 9 in Burchard and Cornwell (2018:18)
#for weighted two mode networks.
BCweighted <- matrix(c(1,2,1, 1,0,0,

0,2,1,0,0,1),

nrow = 4, ncol = 3,

byrow = TRUE)
rownames (BCweighted) <- c("i", "j", "k", "1")
netstats_tm_effective(BCweighted, weighted = TRUE)
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netstats_tm_egodistance
Compute Fujimoto, Snijders, and Valente’s (2018) Ego Homophily
Distance for Two-Mode Networks

Description

[Stable]

This function computes the ego homophily distance in two-mode networks as proposed by Fuji-
moto, Snijders, and Valente (2018: 380). See Fujimoto, Snijders, and Valente (2018) for more
details about this measure.

Usage

netstats_tm_egodistance(net, mem, standardize = FALSE)

Arguments
net The two-mode adjacency matrix.
mem The vector of membership values that the homophilous four cycles will be based

on.

standardize TRUE/FALSE. TRUE indicates that the sores will be standardized by the num-
ber of level 2 nodes the level 1 node is connected to. FALSE indicates that the
scores will not be standardized. Set to FALSE by default.

Details

The formula for ego homophily distance in two-mode networks is:

Ego2Dist; = yial — |vi — pial
a

where:

* >, sums across all level 2 nodes in the network
* ;4 is the 1 if node i is tied to node a and O else.

* v; is the value of the respondent. Within the function this is predefined to be 1 if there are
multiple categories.

* p;a is the proportion of same-category actors that are tied to node a not including the ego
itself.

* |v; — p;al is equal to 1 if all the level 1 nodes that are tied to the level 2 node share the same
categorical membership and O if all level 1 nodes are a different category.

If the ego is a level 2 isolate or a level 2 pendant, that is, only one level 1 node (e.g., patient) is
connected to that specific level 2 node (e.g., medical doctor), then they are given a value of 0. In
particular, the contribution to the ego distance for a pendant is 0. The ego distance value can be
standardized by the number of groups which would provide the average ego distance as a proportion
between 0 and 1.
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Value

The vector of two-mode ego homophily distance.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu

References

Fujimoto, Kayo, Tom A.B. Snijders, and Thomas W. Valente. 2018. "Multivariate dynamics of
one-mode and two-mode networks: Explaining similarity in sports participation among friends."
Network Science 6(3): 370-395.

Examples

# For this example, we use the Davis Southern Women's Dataset.
data("southern.women")

#creating a random binary membership vector

set.seed(9999)

membership <- sample(@:1, nrow(southern.women), replace = TRUE)

#the ego 2 mode distance non-standardized
netstats_tm_egodistance(southern.women, mem = membership)

#the ego 2 mode distance standardized

netstats_tm_egodistance(southern.women, mem = membership, standardize = TRUE)

netstats_tm_homfourcycles
Compute Fujimoto, Snijders, and Valente’s (2018) Homophilous Four-
Cycles for Two-Mode Networks

Description

[Stable]

This function computes the number of homophilous four-cycles in a two-mode network as proposed
by Fujimoto, Snijders, and Valente (2018: 380). See Fujimoto, Snijders, and Valente (2018) for
more details about this measure.

Usage

netstats_tm_homfourcycles(net, mem)

Arguments
net The two-mode adjacency matrix.
mem The vector of membership values that the homophilous four-cycles will be based

on.
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Details

Following Fujimoto, Snijders, and Valente (2018: 380), the number of homophilous four-cycles for

actor i is:
Z Z YiaYib¥jaYjolvi = v;
Jj a#b

where y is the two-mode adjacency matrix, v is the vector of membership scores (e.g., sports/club
membership), a and b represent the level two groups, and Iv; = v; is the indicator function that is
1 if the values are the same and O if not.

Value

The vector of counts of homophilous four-cycles for the two-mode network.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu

References

Fujimoto, Kayo, Tom A.B. Snijders, and Thomas W. Valente. 2018. "Multivariate dynamics of
one-mode and two-mode networks: Explaining similarity in sports participation among friends."
Network Science 6(3): 370-395.

Examples

# For this example, we use the Davis Southern Women's Dataset.
data("southern.women™)

#creating a random binary membership vector

set.seed(9999)

membership <- sample(@:1, nrow(southern.women), replace = TRUE)
#the homophilous four-cycle values
netstats_tm_homfourcycles(southern.women, mem = membership)

netstats_tm_redundancy
Compute Burchard and Cornwell’s (2018) Two-Mode Redundancy

Description

[Stable]

This function calculates the values for two mode redundancy for weighted and unweighted two-
mode networks based on Burchard and Cornwell (2018).
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Usage

netstats_tm_redundancy(
net,
inParallel = FALSE,
nCores = NULL,
isolates = NA,
weighted = FALSE

)
Arguments
net A two-mode adjacency matrix or affiliation matrix.
inParallel TRUE/FALSE. TRUE indicates that parallel processing will be used to compute

the statistic with the foreach package. FALSE indicates that parallel processing
will not be used. Set to FALSE by default.

nCores If inParallel = TRUE, the number of computing cores for parallel processing. If
this value is not specified, then the function internally provides it by dividing the
number of available cores in half.

isolates What value should isolates be given? Preset to be NA.

weighted TRUE/FALSE. TRUE indicates the resulting statistic will be based on the weighted
formula (see the details section). FALSE indicates the statistic will be based on
the original non-weighted formula. Set to FALSE by default.

Details

The formula for two-mode redundancy is:

N | (4)]

where:

* ;4 is the redundancy of ego i with respect to actor j.

* |o(4) No(i)] is the number of same-class contacts (e.g., medical doctors in a hospital) that i
and j both share.

* |o(i)] is the number of same-class contacts of ego i.

The two-mode redundancy is ego-bound, that is, the redundancy is only based on the two-mode ego
network of i. Put differently, r;; only considers the perspective of the ego. This function allows the
user to compute the scores in parallel through the foreach and doParallel R packages. If the matrix
is weighted, the user should specify weighted = TRUE. Following Burchard and Cornwell (2018),
the formula for two-mode weighted redundancy is:

_let)na)
7 o] X w

where w; is the average of the tie weights that i and j send to their shared opposite class contacts.
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Value

An n x n matrix with level 1 redundancy scores for actors in a two-mode network.

Author(s)

Kevin A. Carson kacarson @arizona.edu, Diego F. Leal dflc@arizona.edu

References

Burchard, Jake and Benjamin Cornwell. 2018. "Structural Holes and bridging in two-mode net-
works." Social Networks 55:11-20.

Examples

# For this example, we recreate Figure 2 in Burchard and Cornwell (2018: 13)
BCNet <- matrix(
C(1 )1 70!0!

nrow = 4, ncol = 4, byrow = TRUE)

colnames(BCNet) <- c("1", "2", "3", "4")

rownames(BCNet) <- c("i"”, "j", "k", "m")

#this values replicate those reported by Burchard and Cornwell (2018: 14)
netstats_tm_redundancy(BCNet)

#For this example, we recreate Figure 9 in Burchard and Cornwell (2018:18)
#for weighted two mode networks.
BCweighted <- matrix(c(1,2,1, 1,0,0,
0,2,1,0,0,1),
nrow = 4, ncol = 3,
byrow = TRUE)
rownames (BCweighted) <- c("i", "j", "k", "

1")
netstats_tm_redundancy(BCweighted, weighted =

TRUE)

print.dream Print Method for Summary of dream Model

Description

Print Method for Summary of dream Model

Usage

## S3 method for class 'dream'
print(x, digits = 4, ...)
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Arguments

X An object of class "summary.dream".

digits The number of digits to print after the decimal point.

Additional arguments (currently unused).

Value

No return value. Prints out the main results of a ’dream’ object.

print.summary.dream Print Method for dream Model

Description

Print Method for dream Model
Usage

## S3 method for class 'summary.dream'

print(x, digits = 4, ...)
Arguments

X An object of class "dream".

digits The number of digits to print after the decimal point.

Additional arguments (currently unused).

Value

No return value. Prints out the main results of a dream’ summary object.

processOMEventSeq Process and Create Risk Sets for a One-Mode Relational Event Se-

quence
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Description

[Deprecated]

processOMEventSeq() has been deprecated starting on version 1.0.0 of the dream package. Please
use the create_riskset() function and see the NEWS.md file for more details.

This function creates a one-mode post-sampling eventset with options for case-control sampling
(Vu et al. 2015), sampling from the observed event sequence (Lerner and Lomi 2020), and time-
or event-dependent risk sets. Case-control sampling samples an arbitrary m number of controls
from the risk set for any event (Vu et al. 2015). Lerner and Lomi (2020) proposed sampling
from the observed event sequence where observed events are sampled with probability p. The
time- and event-dependent risk sets generate risk sets where the potential null events are based
upon a specified past relational time window, such as events that have occurred in the past year.
Importantly, this function creates risk sets based upon the assumption that only actors active in past
events are in relevant for the creation of the risk set. Users interested in generating risk sets that
assume all actors active at any time point within the event sequence are in the risk set at every time
point should consult the createRemDataset and remify functions. Future versions of this package
will incorporate this option into the function.

Usage

processOMEventSeq(
data,
time,
eventID,
sender,
receiver,
p_samplingobserved = 1,
n_controls,
time_dependent = FALSE,
timeDV = NULL,
timeDif = NULL,

seed = 9999
)
Arguments
data The full relational event sequence dataset.
time The vector of event time values from the observed event sequence.
eventID The vector of event IDs from the observed event sequence (typically a numerical
event sequence that goes from 1 to n).
sender The vector of event senders from the observed event sequence.
receiver The vector of event receivers from the observed event sequence.

p_samplingobserved
The numerical value for the probability of selection for sampling from the ob-
served event sequence. Set to 1 by default indicating that all observed events
from the event sequence will be included in the post-processing event sequence.
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n_controls

time_dependent

timeDV

timeDif

seed

Details

processOMEventSeq

The numerical value for the number of null event controls for each (sampled)
observed event.

TRUE/FALSE. TRUE indicates that a time- or event-dependent dynamic risk
set will be created in which only actors involved in a user-specified relationally
relevant (time or event) span (i.e., the ‘stretch’ of relational relevancy, such as
one month for a time-dependent risk set or 100 events for an event-dependent
risk set) are included in the potential risk set. FALSE indicates the complete set
of actors involved in past events will be included in the risk set (see the details
section). Set to FALSE by default.

If time_dependent = TRUE, the vector of event time values that corresponds to
the creation of the time- or event-dependent dynamic risk set (see the details
section). This may or may not be the same vector provided to the time argu-
ment. The timeDV vector can be the same vector provided to the time argument,
in which the relational time span will be based on the event timing within the
dataset. In contrast, the timeDV vector can also be the vector of numerical event
IDs which correspond to the number sequence of events. Moreover, the timeDV
can also be another measurement that is not the time argument or a numerical
event ID sequence, such as the number of days, months, years, etc. since the
first event.

If time_dependent = TRUE, the numerical value that represents the time or event
span for the creation of the risk set (see the details section). This argument must
be in the same measurement unit as the timeDV argument. For instance, in an
event-dependent dynamic risk set, if timeDV is the number of events since the
first event (i.e., a numerical event ID sequence) and only those actors involved
in the past, say, 100 events, are considered relationally relevant for the creation
of the null events for the current observed event, then timeDIF should be set to
100. In the time-dependent dynamic risk set case, let’s say that only those actors
involved in events that occurred in the past month are considered relationally
relevant for the risk set. Let’s also assume that the timeDV vector is measured
in the number of days since the first event. Then timeDif should be set to 30 in
this particular case.

The random number seed for user replication.

This function processes observed events from the set F, where each event e; is defined as:

where:

e; € E = (s;,14,t;,G[E;t])

e s, is the sender of the event.

e r; is the receiver of the event.

* t; represents the time of the event.

G[E;t] = {e1,ea,...,er | ' < t} is the network of past events, that is, all events that

occurred prior to the current event, e;.
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Following Butts (2008) and Butts and Marcum (2017), we define the risk (support) set of all possible
events at time ¢, Ay, as the full Cartesian product of prior senders and receivers in the set G[E; t]
that could have occurred at time ¢. Formally:

Ay ={(s,7) | s € GIE;t] Xr € G[E; t]}

where G[F; t] is the set of events up to time ¢.

Case-control sampling maintains the full set of observed events, that is, all events in E, and samples
an arbitrary number m of non-events from the support set A; (Vu et al. 2015; Lerner and Lomi
2020). This process generates a new support set, SA;, for any relational event e; contained in £
given a network of past events G[F; t]. S A; is formally defined as:

SA, CH{(s,7) | s € GIE;t] X r € G[E;t]}

and in the process of sampling from the observed events, n number of observed events are sampled
from the set £/ with known probability 0 < p < 1. More formally, sampling from the observed set
generates a new set SE C F.

A time or event-dependent dynamic risk set can be created where the set of potential events, that
is, all events in the risk set, At, is based only on the set of actors active in a specified event or time
span from the current event (e.g., such as within the past month or within the past 100 events). In
other words, the specified event or time span can be based on either: a) a specified time span based
upon the actual timing of the past events (e.g., years, months, days or even milliseconds as in the
case of Lerner and Lomi 2020), or b) a specified number of events based on the ordering of the past
events (e.g., such as all actors involved in the past 100 events). Thus, if time- or event-dependent
dynamic risk sets are desired, the user should set time_dependent to TRUE, and then specify the
accompanying time vector, timeDV, defined as the number of time units (e.g., days) or the number
of events since the first event. Moreover, the user should also specify the cutoff threshold with
the timeDif value that corresponds directly to the measurement unit of timeDV (e.g., days). For
example, let’s say you wanted to create a time-dependent dynamic risk set that only includes actors
active within the past month, then you should create a vector of values timeDV, which for each event
represents the number of days since the first event, and then specify timeDif to 30. Similarly, let’s
say you wanted to create an event-dependent dynamic risk set that only includes actors involved in
the past 100 events, then you should create a vector of values timeDV, that is, the counts of events
since the first event (e.g., 1:n), and then specify timeDif to 100.

Value

A post-processing data table with the following columns:

* sender - The event senders of the sampled and observed events.

* receiver - The event targets (receivers) of the sampled and observed events.

* time - The event time for the sampled and observed events.

* sequencelD - The numerical event sequence ID for the sampled and observed events.

* observed - Boolean indicating if the event is a sampled event or observed event. (1 = ob-
served; 0 = sampled)

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu
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Examples

# A random one-mode relational event sequence
set.seed(9999)
events <- data.frame(time = sort(rexp(1:18)),

eventID = 1:18,

sender = c("A", "B", "C",

nan npn ngn
A ’ D ’ E ’
”F”, ”B”, "A”,
npn npyn npn
F ’ D ’ B ’
"G ngn np
’ ’ ’
"y AN "D”)
’ ’ ’
target - C("B”, ”C", an’
ng" AN nEn
’ ’ ’
i AN nen
’ ’ ’
nGu ng ucn
’ ’ ’
"y nyn nAM
’ ’ ’

npn omen o wgny)

# Creating a one-mode relational risk set with p = 1.00 (all true events)
# and 5 controls
eventSet <- processOMEventSeq(data = events,

time = events$time,

eventID = events$eventlID,

sender = events$sender,

receiver = events$target,

p_samplingobserved = 1.00,

n_controls = 5,

seed = 9999)

# Creating a event-dependent one-mode relational risk set with p = 1.00 (all
# true events) and 3 controls based upon the past 5 events prior to the current event.
events$timeseq <- 1:nrow(events)
eventSetT <- processOMEventSeq(data = events,
time = events$time,
eventID = events$eventID,
sender = events$sender,
receiver = events$target,
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p_samplingobserved = 1.00,
time_dependent = TRUE,
timeDV = events$timeseq,
timeDif = 5,

n_controls = 3,

seed = 9999)

# Creating a time-dependent one-mode relational risk set with p = 1.00 (all
# true events) and 3 controls based upon the past 0.40 time units.
eventSetT <- processOMEventSeq(data = events,

time = events$time,

eventID = events$eventID,

sender = events$sender,

receiver = events$target,

p_samplingobserved = 1.00,

time_dependent = TRUE,

timeDV = events$time, #the original time variable

timeDif = 0.40, #time difference of 0.40 units

n_controls = 3,

seed = 9999)

processTMEventSeq Process and Create Risk Sets for a Two-Mode Relational Event Se-
quence

Description

[Deprecated]

processTMEventSeq() has been deprecated starting on version 1.0.0 of the dream package. Please
use the create_riskset() function and see the NEWS.md file for more details.

This function creates a two-mode post-sampling eventset with options for case-control sampling
(Vu et al. 2015), sampling from the observed event sequence (Lerner and Lomi 2020), and time-
or event-dependent risk sets. Case-control sampling samples an arbitrary m number of controls
from the risk set for any event (Vu et al. 2015). Lerner and Lomi (2020) proposed sampling from
the observed event sequence where observed events are sampled with probability p. The time-
and event-dependent risk sets generate risk sets where the potential null events are based upon a
specified past relational time window, such as events that have occurred in the past month. Users
interested in generating risk sets that assume all actors active at any time point within the event
sequence are in the risk set at every time point should consult the createRemDataset and remify
functions. Future versions of this package will incorporate this option into the function.

Usage

processTMEventSeq(
data,
time,
eventID,
sender,
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receiver,

processTMEventSeq

p_samplingobserved = 1,

n_controls,

time_dependent = FALSE,
timeDV = NULL,
timeDif = NULL,

seed = 9999

Arguments
data
time

eventID

sender

receiver

The full relational event sequence dataset.
The vector of event time values from the observed event sequence.

The vector of event IDs from the observed event sequence (typically a numerical
event sequence that goes from 1 to n).

The vector of event senders from the observed event sequence.

The vector of event receivers from the observed event sequence.

p_samplingobserved

n_controls

time_dependent

timeDV

timeDif

The numerical value for the probability of selection for sampling from the ob-
served event sequence. Set to 1 by default indicating that all observed events
from the event sequence will be included in the post-processing event sequence.

The numerical value for the number of null event controls for each (sampled)
observed event.

TRUE/FALSE. TRUE indicates that a time- or event-dependent dynamic risk
set will be created in which only actors involved in a user-specified relationally
relevant (time or event) span (i.e., the ‘stretch’ of relational relevancy, such as
one month for a time-dependent risk set or 100 events for an event-dependent
risk set) are included in the potential risk set. FALSE indicates the complete set
of actors involved in past events will be included in the risk set (see the details
section). Set to FALSE by default.

If time_dependent = TRUE, the vector of event time values that corresponds to
the creation of the time- or event-dependent dynamic risk set (see the details
section). This may or may not be the same vector provided to the time argu-
ment. The timeDV vector can be the same vector provided to the time argument,
in which the relational time span will be based on the event timing within the
dataset. In contrast, the timeDV vector can also be the vector of numerical event
IDs which correspond to the number sequence of events. Moreover, the timeDV
can also be another measurement that is not the time argument or a numerical
event ID sequence, such as the number of days, months, years, etc. since the
first event.

If time_dependent = TRUE, the numerical value that represents the time or event
span for the creation of the risk set (see the details section). This argument must
be in the same measurement unit as the timeDV argument. For instance, in an
event-dependent dynamic risk set, if timeDV is the number of events since the
first event (i.e., a numerical event ID sequence) and only those actors involved
in the past, say, 100 events, are considered relationally relevant for the creation
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of the null events for the current observed event, then timeDIF should be set to
100. In the time-dependent dynamic risk set case, let’s say that only those actors
involved in events that occurred in the past month are considered relationally
relevant for the risk set. Let’s also assume that the timeDV vector is measured
in the number of days since the first event. Then timeDif should be set to 30 in
this particular case.

seed The random number seed for user replication.

Details

This function processes observed events from the set £, where each event e; is defined as:
e; € B = (Si, T Lis G[E,t])
where:

* s, is the sender of the event.
 r; is the receiver of the event.
* t; represents the time of the event.

* G[E;t] = {e1,e2,...,ep | t' < t} is the network of past events, that is, all events that
occurred prior to the current event, e;.

Following Butts (2008) and Butts and Marcum (2017), we define the risk (support) set of all possible
events at time ¢, Ay, as the cross product of two disjoint sets, namely, prior senders and receivers,
in the set G[E; t] that could have occurred at time ¢. Formally:

Ay ={(s,7) | s € G|E;t] Xr € G[E;t]}

where G[E; t] is the set of events up to time ¢.

Case-control sampling maintains the full set of observed events, that is, all events in F, and samples
an arbitrary number m of non-events from the support set A; (Vu et al. 2015; Lerner and Lomi
2020). This process generates a new support set, S A;, for any relational event e; contained in F
given a network of past events G[F; t]. S A; is formally defined as:

SA; € {(s,r) | s € GIE: 1] X r € G[E; 1]}

and in the process of sampling from the observed events, n number of observed events are sampled
from the set £/ with known probability 0 < p < 1. More formally, sampling from the observed set
generates a new set SE C E.

A time or event-dependent dynamic risk set can be created where the set of potential events, that
is, all events in the risk set, At, is based only on the set of actors active in a specified event or time
span from the current event (e.g., such as within the past month or within the past 100 events). In
other words, the specified event or time span can be based on either: a) a specified time span based
upon the actual timing of the past events (e.g., years, months, days or even milliseconds as in the
case of Lerner and Lomi 2020), or b) a specified number of events based on the ordering of the past
events (e.g., such as all actors involved in the past 100 events). Thus, if time- or event-dependent
dynamic risk sets are desired, the user should set time_dependent to TRUE, and then specify the
accompanying time vector, timeDV, defined as the number of time units (e.g., days) or the number
of events since the first event. Moreover, the user should also specify the cutoff threshold with
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the timeDif value that corresponds directly to the measurement unit of timeDV (e.g., days). For
example, let’s say you wanted to create a time-dependent dynamic risk set that only includes actors
active within the past month, then you should create a vector of values timeDV, which for each event
represents the number of days since the first event, and then specify timeDif to 30. Similarly, let’s
say you wanted to create an event-dependent dynamic risk set that only includes actors involved in
the past 100 events, then you should create a vector of values timeDV, that is, the counts of events
since the first event (e.g., 1:n), and then specify timeDif to 100.

Value

A post-processing data table with the following columns:

* sender - The event senders of the sampled and observed events.

* receiver - The event targets (receivers) of the sampled and observed events.

e time - The event time for the sampled and observed events.

* sequencelD - The numerical event sequence ID for the sampled and observed events.

* observed - Boolean indicating if the event is a sampled event or observed event. (1 = ob-
served; 0 = sampled)

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu

References

Butts, Carter T. 2008. "A Relational Event Framework for Social Action." Sociological Methodol-
ogy 38(1): 155-200.

Butts, Carter T. and Christopher Steven Marcum. 2017. "A Relational Event Approach to Modeling
Behavioral Dynamics." In A. Pilny & M. S. Poole (Eds.), Group processes: Data-driven computa-
tional approaches. Springer International Publishing.

Lerner, Jiirgen and Alessandro Lomi. 2020. "Reliability of relational event model estimates under
sampling: How to fit a relational event model to 360 million dyadic events." Network Science 8(1):
97-135.

Vu, Duy, Philippa Pattison, and Garry Robins. 2015. "Relational event models for social learning
in MOOQOCs." Social Networks 43: 121-135.

Examples

data("WikiEvent2018.first100k")
WikiEvent2018.first100k$time <- as.numeric(WikiEvent2018.first100k$time)
### Creating the EventSet By Employing Case-Control Sampling With M = 10 and
### Sampling from the Observed Event Sequence with P = 9.01
EventSet <- processTMEventSeq(
data = WikiEvent2018.first100k, # The Event Dataset
time = WikiEvent2018.first100k$time, # The Time Variable
eventID = WikiEvent2018.first100k$eventID, # The Event Sequence Variable
sender = WikiEvent2018.first100k$user, # The Sender Variable
receiver = WikiEvent2018.first100k$article, # The Receiver Variable
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processTMEventSeq

p_samplingobserved = ©.01, # The Probability of Selection
n_controls = 10, # The Number of Controls to Sample from the Full Risk Set
seed = 9999) # The Seed for Replication

### Creating A New EventSet with more observed events and less control events
### Sampling from the Observed Event Sequence with P = 0.02
### Employing Case-Control Sampling With M = 2
EventSet1 <- processTMEventSeq(
data = WikiEvent2018.first100k, # The Event Dataset
time = WikiEvent2018.first100k$time, # The Time Variable
eventID = WikiEvent2018.first100k$eventID, # The Event Sequence Variable
sender = WikiEvent2018.first100k$user, # The Sender Variable
receiver = WikiEvent2018.first100k$article, # The Receiver Variable
p_samplingobserved = 0.02, # The Probability of Selection
n_controls = 2, # The Number of Controls to Sample from the Full Risk Set
seed = 9999) # The Seed for Replication

### Creating An Event-Dependent EventSet with P = 0.001 and m = 5 with
### where only actors involved in the past 20 events are involved in the
#i## creation of the risk set.

event_dependent <- processTMEventSeq(

data = WikiEvent2018.first100k,

time = WikiEvent2018.first100k$time,

sender = WikiEvent2018.first100k$user,

receiver = WikiEvent2018.first100k$article,

eventID = WikiEvent2018.first100k$eventlID,

p_samplingobserved = 0.001,

n_controls = 5,

time_dependent = TRUE,

timeDV = 1:nrow(WikiEvent2018.first100k),

timeDif = 20, #20 past events

seed = 9999)
### Creating An Time-Dependent EventSet with P = ©.001 and m = 5 with
### where only actors involved in the past 30 days are involved in the
#i## creation of the risk set.

timeSinceStart <- WikiEvent2018.first100k$time-WikiEvent2018.first100k$time[1]
timeDifMonth <- 30%24x60%60%1000

timedependent <- processTMEventSeq(

data = WikiEvent2018.first100k,

time = WikiEvent2018.first100k$time,

sender = WikiEvent2018.first100k$user,

receiver = WikiEvent2018.firstl100ks$article,

eventID = WikiEvent2018.first100k$eventlID,

p_samplingobserved = 0.001,

n_controls = 5,

time_dependent = TRUE,

timeDV = timeSinceStart,

timeDif = timeDifMonth,

seed = 9999)
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remExpWeights

remExpWeights Helper Function to Compute Minimum Effective Time and Exponential
Weights for REM Statistics
Description
[Deprecated]

remExpWeights() has been deprecated starting on version 1.0.0 of the dream package. Please see
the NEWS . md file for more details.

A helper function for computing exponential decay weights and the corresponding minimum effec-
tive time used to calculate network statistics in relational event models within the dream package.
This implementation follows the formulations of Lerner et al. (2013) and Lerner & Lomi (2020).
Although primarily designed for internal use (e.g., within computeReciprocity), it may also be of
interest to users working directly with REM statistics (e.g., creating new statistics).

Usage

remExpWeights(

current,

past = NULL,

halflife,

dyadic_weight,
Lerneretal_2013 = FALSE,
exp.weights = TRUE

Arguments

current

past

halflife
dyadic_weight

Lerneretal_2013

exp.weights

Details

The current relational event time.
The numeric vector of past event times (for exponential weighting only).
The halflife parameter for exponential weighting.

The dyadic (event) weight cutoff for relational relevancy.

TRUE/FALSE. If TRUE, the function uses the Lerner et al. (2013) exponential
weighting function. If FALSE, the function uses the Lerner and Lomi (2020)
exponential weighting function.

TRUE/FALSE. If TRUE, the function computes the exponential weights for past
relational events. If FALSE, the function computes the minimum effective time
for a relational event (that is, the minimum past time that would result in a 0
value for an exponential weight).

» Exponential Weighting Function:
— Lerner & Lomi (2020): w(u,a,t) = > exp(—(t —t) * (log(2) /T4 /2))
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— Lerner et al. (2013): w(u,a,t) = > exp(—(t —t') * (log(2)/T} /2)) * (log(2)/T /2)
¢ Minimum Effective Time (MEF):

- Lerner & Lomi (2020): M EF = t + log(w)/(log(2)/T1/2)

— Lerneretal. (2013): MEF =t + [Ty 5 * log((w * T} /2)/ log(2))]/ log(2)

Value

When exp.weights = TRUE, the numeric vector of exponential decay weights. When exp.weights
= FALSE, the scalar for the minimum event cut-off time.

Author(s)

Kevin A. Carson kacarson @arizona.edu, Diego F. Leal dflc@arizona.edu

References

Lerner, Jiirgen and Alessandro Lomi. 2020. “Reliability of relational event model estimates under
sampling: How to fit a relational event model to 360 million dyadic events.” Network Science 8(1):
97-135.

Lerner, Jirgen, Margit Bussman, Tom A.B. Snijders, and Ulrik Brandes. 2013. " Modeling Fre-
quency and Type of Interaction in Event Networks." The Corvinus Journal of Sociology and Social
Policy 4(1): 3-32.

remstats_degree Compute Degree Network Statistics for Event Senders and Receivers
in a Relational Event Sequence

Description

[Stable]

The function computes the indegree network sufficient statistic for event senders in a relational
event sequence (see Lerner and Lomi 2020; Butts 2008). This measure allows for indegree scores
to be only computed for the sampled events, while creating the weights based on the full event
sequence (see Lerner and Lomi 2020; Vu et al. 2015). The function also allows users to use two
different weighting functions, return the counts of past events, reduce computational runtime, and
specify a dyadic cutoff for relational relevancy.

Usage
remstats_degree(
formation = c("sender-indegree”, "receiver-indegree"”, "sender-outdegree”,
"receiver-outdegree”),
time,
sender,
receiver,

observed,
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sampled,
halflife =

2,

remstats_degree

counts = FALSE,

dyadic_weight = 0,
exp_weight_form =

Arguments

formation

time
sender
receiver

observed
sampled

halflife

counts

dyadic_weight

exp_weight_form

Details

FALSE

The degree statistic to be computed. "sender-indegree" computes the indegree
statistic for the event senders. "receiver-indegree" computes the indegree statis-
tic for the event receivers. "sender-outdegree" computes the outdegree statistic
for the event senders. "receiver-outdegree" computes the outdegree statistic for
the event receivers.

The vector of event times from the post-processing event sequence.
The vector of event senders from the post-processing event sequence.
The vector of event receivers from the post-processing event sequence

A vector for the post-processing event sequence where i is equal to 1 if the
dyadic event is observed and 0 if not.

A vector for the post-processing event sequence where i is equal to 1 if the
observed dyadic event is sampled and O if not.

A numerical value that is the halflife value to be used in the exponential weight-
ing function (see details section). Preset to 2 (should be updated by the user
based on substantive context).

TRUE/FALSE. TRUE indicates that the counts of past events should be com-
puted (see the details section). FALSE indicates that the temporal exponential
weighting function should be used to downweigh past events (see the details
section). Set to FALSE by default.

A numerical value for the dyadic cutoff weight that represents the numerical
cutoff value for temporal relevancy based on the exponential weighting function.
For example, a numerical value of 0.01, indicates that an exponential weight less
than 0.01 will become 0 and that events with such value (or smaller values) will
not be included in the sum of the past event weights (see the details section). Set
to 0 by default.

TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default

The function calculates sender indegree scores for relational event sequences based on the expo-
nential weighting function used in either Lerner and Lomi (2020) or Lerner et al. (2013).

Following Lerner and Lomi (2020), the exponential weighting function in relational event models

is:

7(t7tl)_ in(2)

w(s,rt)=e B
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Following Lerner et al. (2013), the exponential weighting function in relational event models is:
_(t—t’).% In(2)

w(s,r,t) =e€
(s,7,1) Ti/s

In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, ¢’ is the past event times that meet the weight subset, and 77 /5 is the
halflife parameter.

Sender-Indegree Statistic:

The formula for sender indegree for event e; is:

senderindegree., = w(s', s,t)

That is, all past events in which the event receiver is the current sender. Following Butts (2008), if
the counts of the past events are requested, the formula for sender indegree for event e; is:

senderindegree., = d(r’ = s,t")

Where, d() is the number of past events where the event receiver, 7’, is the current event sender s .
Sender-Outdegree Statistic:

The formula for sender outdegree for event e; is:

senderoutdegree., = w(s,r’,t)

That is, all past events in which the past sender is the current sender and the event target can be any
past user. Following Butts (2008), if the counts of the past events are requested, the formula for
sender outdegree for event e; is:

senderoutdegree., = d(s = s',t')

Where, d() is the number of past events where the sender s’ is the current event sender, s
Receiver-Outdegree Statistic:

The formula for receiver outdegree for event e; is:

receiveroutdegree., = w(r’,r,t)

Following Butts (2008), if the counts of the past events are requested, the formula for receiver
outdegree for event e; is:
receiveroutdegreee; = d(s' = r,t')

Where, d() is the number of past events where the event sender, s’, is the current event receiver, r’.
Receiver-Indegree Statistic:

The formula for receiver indegree for event e; is:

recieverindegree., = w(s’, rt)

That is, all past events in which the event receiver is the current receiver. Following Butts (2008), if
the counts of the past events are requested, the formula for receiver indegree for event e; is:

recieverindegree., = d(r/ =7, t/)
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where, d() is the number of past events where the past event receiver, r’, is the current event receiver
(target).

Lastly, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022; Lerner and Lomi 2020) can specify the dyadic weight cutoff, that is, the minimum
value for which the weight is considered relationally relevant. Users who do not know the specific
dyadic cutoff value to use, can use the remstats_dyadcut function.

Value

The vector of degree statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu

References

Butts, Carter T. 2008. "A Relational Event Framework for Social Action." Sociological Methodol-
ogy 38(1): 155-200.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Lerner, Jiirgen and Alessandro Lomi. 2020. “Reliability of relational event model estimates under
sampling: How to fit a relational event model to 360 million dyadic events.” Network Science 8(1):
97-135.

Lerner, Jiirgen, Margit Bussman, Tom A.B. Snijders, and Ulrik Brandes. 2013. " Modeling Fre-
quency and Type of Interaction in Event Networks." The Corvinus Journal of Sociology and Social
Policy 4(1): 3-32.

Vu, Duy, Philippa Pattison, and Garry Robins. 2015. "Relational event models for social learning
in MOOCs." Social Networks 43: 121-135.

Examples

events <- data.frame(time = 1:18, eventID = 1:18,
sender = c("A”, "B", "C",

"A", "D", "E",
YIFII’ IVBII, IIA"y
”F”7 ”D”’ “B"Y
"G", "B", "D",
IIHII’ IIAII’ "D”)y
target = c("B", "C", "D",
IIEH’ ”A”, IIFH’
IIDII’ IIAII’ "CIY’
“G”’ ”B"? ”C”7
”HII’ HJ’”, IIAH’

ngw omgm mgnyYy

eventSet <- create_riskset(type = "one-mode”,
time = events$time,
eventID = events$eventID,
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sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 1,

seed = 9999)

#Computing the sender indegree statistic for the relational event sequence
eventSet$senderind <- remstats_degree(
formation = "sender-indegree”,
time = as.numeric(eventSet$time),
observed = eventSet$observed,
sampled = rep(1,nrow(eventSet)),
sender = eventSet$sender,
receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
exp_weight_form = FALSE)

#Computing the sender outdegree statistic for the relational event sequence
eventSet$senderout <- remstats_degree(
formation = "sender-outdegree”,
time = as.numeric(eventSet$time),

observed = eventSet$observed,
sampled = rep(1,nrow(eventSet)),
sender = eventSet$sender,
receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
exp_weight_form = FALSE)

#Computing the receiver outdegree statistic for the relational event sequence
eventSet$recieverout <- remstats_degree(
formation = "receiver-outdegree”,
time = as.numeric(eventSet$time),

observed = eventSet$observed,
sampled = rep(1,nrow(eventSet)),
sender = eventSet$sender,
receiver = eventSet$receiver,
halflife = 2, #halflife parameter
dyadic_weight = 0,
exp_weight_form = FALSE)

#Computing the receiver indegree statistic for the relational event sequence
eventSet$recieverind <- remstats_degree(

formation = "receiver-indegree”,

time = as.numeric(eventSet$time),

observed = eventSet$observed,

sampled = rep(1,nrow(eventSet)),

sender = eventSet$sender,

receiver = eventSet$receiver,

halflife = 2, #halflife parameter
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dyadic_weight = 0,
exp_weight_form = FALSE)

remstats_dyadcut A Helper Function to Assist Researchers in Finding Dyadic Weight
Cutoff Values
Description
[Stable]

A user-helper function to assist researchers in finding the dyadic cutoff value to compute sufficient
statistics for relational event models based upon temporal dependency.

Usage

remstats_dyadcut (halflife = 2, relationalWidth, exp_weight_form = FALSE)

Arguments
halflife A numerical value that is the halflife value to be used in the exponential weight-
ing function (see details section). Preset to 2 (should be updated by the user
based on substantive context).
relationalWidth

The numerical value that corresponds to the time range for which the user spec-
ifies for temporal relevancy.

exp_weight_form
TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default

Details

This function is specifically designed as a user-helper function to assist researchers in finding the
dyadic cutoff value for creating sufficient statistics based upon temporal dependency. In other
words, this function estimates a dyadic cutoff value for relational relevance, that is, the minimum
dyadic weight for past events to be potentially relevant (i.e., to possibly have an impact) on the
current event. All non-relevant events (i.e., events too distant in the past from the current event to
be considered relevant, that is, those below the cutoff value) will have a weight of 0. This cutoff
value is based upon two user-specified values: the events’ halflife (i..e, halflife) and the relation-
ally relevant event or time span (i.e., relationalWidth). Ideally, both the values for halflife
and relationalWidth would be based on the researcher’s command of the relevant substantive
literature. Importantly, halflife and relationalWidth must be in the same units of measurement
(e.g., days). If not, the function will not return the correct answer.

For example, let’s say that the user defines the halflife to be 15 days (i.e., two weeks) and the
relationally relevant event or time span (i.e., relationalWidth) to be 30 days (i.e., events that
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occurred more than 1 month in the past are not considered relationally relevant for the current
event). The user would then specify halflife = 15 and relationalWidth = 30.

Following Lerner and Lomi (2020), the exponential weighting function in relational event models
is: iyt

w(s,rt)=e Ti/2

Following Lerner et al. (2013), the exponential weighting function in relational event models is:

—(t—¢"). In(2)
w(s,rt) =e =T, In(2)

T2

In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, ¢’ is the past event times that meet the weight subset, and 77 /5 is the
halflife parameter. The task of this function is to find the weight, w(s, r, t), that corresponds to the
time difference provided by the user.

Value

The dyadic weight cutoff based on user specified values.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu

References

Lerner, Jiirgen and Alessandro Lomi. 2020. “Reliability of relational event model estimates under
sampling: How to fit a relational event model to 360 million dyadic events.” Network Science 8(1):
97-135.

Lerner, Jirgen, Margit Bussman, Tom A.B. Snijders, and Ulrik Brandes. 2013. " Modeling Fre-
quency and Type of Interaction in Event Networks." The Corvinus Journal of Sociology and Social
Policy 4(1): 3-32.

Examples

#To replicate the example in the details section:
# with the Lerner et al. 2013 weighting function
remstats_dyadcut(halflife = 15,
relationalWidth = 30,
exp_weight_form = TRUE)

# without the Lerner et al. 2013 weighting function
remstats_dyadcut(halflife = 15,
relationalWidth = 30,
exp_weight_form = FALSE)

# A result to test the function (should come out to 0.50)
remstats_dyadcut(halflife = 30,

relationalWidth = 30,

exp_weight_form = FALSE)
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# Replicating Lerner and Lomi (2020):

#"We set T1/2 to 30 days so that an event counts as (close to) one in the very next instant of time,
#it counts as 1/2 one month later, it counts as 1/4 two months after the event, and so on. To reduce
#the memory consumption needed to store the network of past events, we set a dyadic weight to

#zero if its value drops below 0.01. If a single event occurred in some dyad this would happen after
#6.64xT1/2, that is after more than half a year.” (Lerner and Lomi 2020: 104).

# Based upon Lerner and Lomi (2020: 104), the result should be around 0.01. Since the

# time values in Lerner and Lomi (2020) are in milliseconds, we have to change

# all measurements into milliseconds

remstats_dyadcut(halflife = (30%24%x60x60*x1000), #30 days in milliseconds
relationalWidth = (6.64x30%24%60*x60%x1000), #Based upon the paper
#using the Lerner and Lomi (2020) weighting function
exp_weight_form = FALSE)

remstats_fourcycles Compute the Four-Cycles Network Statistic for Event Dyads in a Re-
lational Event Sequence

Description

[Stable]

The function computes the four-cycles network sufficient statistic for a two-mode relational se-
quence with the exponential weighting function (Lerner and Lomi 2020). In essence, the four-
cycles measure captures the tendency for clustering to occur in the network of past events, whereby
an event is more likely to occur between a sender node a and receiver node b given that a has inter-
acted with other receivers in past events who have received events from other senders that interacted
with b (e.g., Duxbury and Haynie 2021, Lerner and Lomi 2020). The function also allows users
to use two different weighting functions, return the counts of past events, reduce computational
runtime, and specify a dyadic cutoff for relational relevancy.

Usage

remstats_fourcycles(
time,
sender,
receiver,
observed,
sampled,
halflife = 2,
counts = FALSE,
dyadic_weight = 0,
exp_weight_form = FALSE
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Arguments

time
sender
receiver

observed
sampled

halflife

counts

dyadic_weight

exp_weight_form

Details

149

The vector of event times from the post-processing event sequence.
The vector of event senders from the post-processing event sequence.
The vector of event receivers from the post-processing event sequence

A vector for the post-processing event sequence where i is equal to 1 if the
dyadic event is observed and 0 if not.

A vector for the post-processing event sequence where i is equal to 1 if the
observed dyadic event is sampled and O if not.

A numerical value that is the halflife value to be used in the exponential weight-
ing function (see details section). Preset to 2 (should be updated by the user
based on substantive context).

TRUE/FALSE. TRUE indicates that the counts of past events should be com-
puted (see the details section). FALSE indicates that the temporal exponential
weighting function should be used to downweigh past events (see the details
section). Set to FALSE by default.

A numerical value for the dyadic cutoff weight that represents the numerical
cutoff value for temporal relevancy based on the exponential weighting function.
For example, a numerical value of 0.01, indicates that an exponential weight less
than 0.01 will become 0 and that events with such value (or smaller values) will
not be included in the sum of the past event weights (see the details section). Set
to 0 by default.

TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default

The function calculates the four-cycles network statistic for two-mode relational event models based
on the exponential weighting function used in either Lerner and Lomi (2020) or Lerner et al. (2013).

Following Lerner and Lomi (2020), the exponential weighting function in relational event models

18:

—(t—t/)- In(2)
w(s,r,t)=c¢€ T1/2

Following Lerner et al. (2013), the exponential weighting function in relational event models is:

4:&4’)% In(2)
T2

w(s,r,t) =e

In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, ¢’ is the past event times that meet the weight subset (in this case, all
events that have the same sender and receiver), and 7T} /, is the halflife parameter.

The formula for four-cycles for event e; is:

fourcycles., = 3 Z w(s',rt) - w(s,r’ t) - w(s',rt)

s’andr’
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That is, the four-cycle measure captures all the past event structures in which the current event pair,
sender s and target r close a four-cycle. In particular, it finds all events in which: a past sender s’
had a relational event with target r, a past target r” had a relational event with current sender s, and
finally, a relational event occurred between sender s’ and target r’.

Four-cycles are computationally expensive, especially for large relational event sequences (see
Lerner and Lomi 2020 for a discussion on this), therefore this function allows the user to input
previously computed target indegree and sender outdegree scores to reduce the runtime. Relational
events where either the event target or event sender were not involved in any prior relational events
(i.e., a target indegree or sender outdegree score of 0) will close no-four cycles. This function
exploits this feature.

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022; Lerner and Lomi 2020) can specify the dyadic weight cutoff, that is, the minimum
value for which the weight is considered relationally relevant. Users who do not know the specific
dyadic cutoff value to use, can use the remstats_dyadcut function.

Following Lerner and Lomi (2020), if the counts of the past events are requested, the formula for
four-cycles formation for event e; is:

|S"] |R'|
fourcycles., = ZZmin [d(s;,r,t), d(s, 75, t), d(s;,75,1)]

i=1 j=1

where, d() is the number of past events that meet the specific set operations, d(s;, r,t) is the num-
ber of past events where the current event receiver received a tie from another sender s, d(s, 7"3-, t)
is the number of past events where the current event sender sent a tie to another receiver r}, and
d(s;, 7%, t) is the number of past events where the sender s sent a tie to the receiver ;. Moreover,
the counting equation can leverage relational relevancy, by specifying the halflife parameter, expo-
nential weighting function, and the dyadic cut off weight values (see the above sections for help
with this). If the user is not interested in modeling relational relevancy, then those value should be

left at their default values.

Value

The vector of four-cycle statistics for the two-mode relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu

References

Duxbury, Scott and Dana Haynie. 2021. "Shining a Light on the Shadows: Endogenous Trade
Structure and the Growth of an Online Illegal Market." American Journal of Sociology 127(3):
787-827.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Lerner, Jiirgen and Alessandro Lomi. 2020. “Reliability of relational event model estimates under
sampling: How to fit a relational event model to 360 million dyadic events.” Network Science 8(1):
97-135.
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Lerner, Jiirgen, Margit Bussman, Tom A.B. Snijders, and Ulrik Brandes. 2013. "Modeling Fre-
quency and Type of Interaction in Event Networks." The Corvinus Journal of Sociology and Social
Policy 4(1): 3-32.

Examples

data("WikiEvent2018.first100k")
WikiEvent2018 <- WikiEvent2018.first100k[1:1000,] #the first one thousand events
WikiEvent2018%time <- as.numeric(WikiEvent2018%time) #making the variable numeric
### Creating the EventSet By Employing Case-Control Sampling With M = 5 and
### Sampling from the Observed Event Sequence with P = 0.01
EventSet <-create_riskset(type = "two-mode”,
time = WikiEvent2018%$time, # The Time Variable
eventID = WikiEvent2018%$eventID, # The Event Sequence Variable
sender = WikiEvent2018$user, # The Sender Variable
receiver = WikiEvent2018$article, # The Receiver Variable
p_samplingobserved = 0.01, # The Probability of Selection
n_controls = 8, # The Number of Controls to Sample from the Full Risk Set
combine = TRUE,
seed = 9999) # The Seed for Replication

#Computing the four-cycles statistics for the relational event sequence with
#the exponential weights of past events returned
cycle4_weights <- remstats_fourcycles(

time = EventSet$time,

sender = EventSet$sender,

receiver = EventSet$receiver,

sampled = EventSet$sampled,

observed = EventSet$observed,

halflife = 2.592e+09, #halflife parameter

dyadic_weight = 0,

exp_weight_form = FALSE)

#Computing the four-cycles statistics for the relational event sequence with
#the counts of past events returned
cycle4_counts <- remstats_fourcycles(

time = EventSet$time,

sender = EventSet$sender,

receiver = EventSet$receiver,

sampled = EventSet$sampled,

observed = EventSet$observed,

halflife = 2.592e+09, #halflife parameter

dyadic_weight = 0,

counts = TRUE)

cbind(cycle4_weights, cycle4_counts)
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remstats_persistence  Compute Butts’ (2008) Persistence Network Statistic for Event Dyads
in a Relational Event Sequence

Description

[Stable]

This function computes the persistence network sufficient statistic for a relational event sequence
(see Butts 2008). Persistence measures the proportion of past ties sent from the event sender that
went to the current event receiver. Furthermore, this measure allows for persistence scores to be
only computed for the sampled events, while creating the weights based on the full event sequence.
Moreover, the function allows users to specify relational relevancy for the resulting statistic.

Usage

remstats_persistence(
time,
sender,
target,
sampled,
observed,
ref_sender = TRUE,
nopastEvents = NA,
dependency = FALSE,
relationalTimeSpan = @

)
Arguments

time The vector of event times from the post-processing event sequence.

sender The vector of event senders from the post-processing event sequence.

target The vector of event targets from the post-processing event sequence

sampled A vector for the post-processing event sequence where i is equal to 1 if the
observed dyadic event is sampled and O if not.

observed A vector for the post-processing event sequence where i is equal to 1 if the
dyadic event is observed and 0 if not.

ref_sender TRUE/FALSE. TRUE indicates that the persistence statistic will be computed in

reference to the sender’s past relational history (see details section). FALSE in-
dicates that the persistence statistic will be computed in reference to the target’s
past relational history (see details section). Set to TRUE by default.

nopastEvents The numerical value that specifies what value should be given to events in which
the sender has sent not past ties (i’s neighborhood when sender = TRUE) or has
not received any past ties (j’s neighborhood when sender = FALSE). Set to NA
by default.
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TRUE/FALSE. TRUE indicates that temporal relevancy will be modeled (see the
details section). FALSE indicates that temporal relevancy will not be modeled,
that is, all past events are relevant (see the details section). Set to FALSE by
default.

relationalTimeSpan

Details

If dependency = TRUE, a numerical value that corresponds to the temporal span
for relational relevancy, which must be the same measurement unit as the ob-
served_time and processed_time objects. When dependency = TRUE, the rel-
evant events are events that have occurred between current event time, #, and
t-relationalTimeSpan. For example, if the time measurement is the number of
days since the first event and the value for relationalTimeSpan is set to 10, then
only those events which occurred in the past 10 days are included in the compu-
tation of the statistic.

The function calculates the persistence network sufficient statistic for a relational event sequence
based on Butts (2008).

The formula for persistence for event e; with reference to the sender’s past relational history is:

d(s(ei)v T(ei)7 At)
d(s(eq), Ar)

Persistence., =

where d(s(e;),r(e;), A¢) is the number of past events where the current event sender sent a tie to
the current event receiver, and d(s(e;), A¢) is the number of past events where the current sender

sent a tie.

The formula for persistence for event e; with reference to the target’s past relational history is:

d(s(ei),r(ei), Ar)
d(r(ei), Ar)

Persistence., =

where d(s(e;),r(e;), Az) is the number of past events where the current event sender sent a tie to
the current event receiver, and d(r(e;), A¢) is the number of past events where the current receiver

recieved a tie.

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022) can specify the relational time span, that is, length of time for which events are
considered relationally relevant. This should be specified via the option relationalTimeSpan with
dependency set to TRUE.

Value

The vector of persistence network statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu
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References

Butts, Carter T. 2008. "A relational event framework for social action." Sociological Methodology
38(1): 155-200.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Examples

# A Dummy One-Mode Event Dataset
events <- data.frame(time = 1:18,
eventID = 1:18,
sender = c("A", "B", "C",

YIA“’ I'DII, "E"y
”F”7 ”B”’ ”A’,Y
IIFII’ IIDII, IIBH’
YIG“’ I'B", "D"y
”H”7 ”A”’ ”D")’
target = c("B", "C", "D",
YIE“’ "A", "F"y
”D”7 ”A”’ ”C"?
IIGII’ IIBII’ IICII’
YIH“’ IIJ'", "AHy

ngw mgw wBmY)Y

# Creating the Post-Processing Event Dataset with Null Events
eventSet <- create_riskset(type = "one-mode”,
time = events$time,
eventID = events$eventID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 6,
seed = 9999)

#Computing the persistence statistic for the relational event sequence
eventSet$remstats_persistence <- remstats_persistence(

time = as.numeric(eventSet$time),

observed = eventSet$observed,

sampled = rep(1,nrow(eventSet)),

sender = eventSet$sender,

target = eventSet$receiver,

ref_sender = TRUE)

remstats_prefattachment
Compute Butts’ (2008) Preferential Attachment Network Statistic for
Event Dyads in a Relational Event Sequence




remstats_prefattachment 155

Description

[Stable]

The function computes the preferential attachment network sufficient statistic for a relational event
sequence (see Butts 2008). Preferential attachment measures the tendency towards a positive feed-
back loop in which actors involved in more past events are more likely to be involved in future
events (see Butts 2008 for an empirical example and discussion).This measure allows for prefer-
ential attachment scores to be only computed for the sampled events, while creating the statistics
based on the full event sequence. Moreover, the function allows users to specify relational relevancy
for the resulting statistics.

Usage

remstats_prefattachment(

time,
sampled,
observed,
sender,
receiver,

dependency = FALSE,
relationalTimeSpan = @

)
Arguments

time The vector of event times from the post-processing event sequence.

sampled A vector for the post-processing event sequence where i is equal to 1 if the
observed dyadic event is sampled and O if not.

observed A vector for the post-processing event sequence where i is equal to 1 if the
dyadic event is observed and 0 if not.

sender The vector of event senders from the post-processing event sequence.

receiver The vector of event receivers from the post-processing event sequence

dependency TRUE/FALSE. TRUE indicates that temporal relevancy will be modeled (see the
details section). FALSE indicates that temporal relevancy will not be modeled,
that is, all past events are relevant (see the details section). Set to FALSE by
default.

relationalTimeSpan

If dependency = TRUE, a numerical value that corresponds to the temporal span
for relational relevancy, which must be the same measurement unit as the ob-
served_time and processed_time objects. When dependency = TRUE, the rel-
evant events are events that have occurred between current event time, ¢, and
t - relationalTimeSpan. For example, if the time measurement is the number
of days since the first event and the value for relationalTimeSpan is set to 10,
then only those events which occurred in the past 10 days are included in the
computation of the statistic.
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Details

The function calculates preferential attachment for a relational event sequence based on Butts
(2008).

Following Butts (2008), the formula for preferential attachment for event e; is:
_dT(r(eq), A+ d(r(e;), Ar)
S (At G, Ag) + d- (i, A)

€4

where d ¥ (r(e;), As) is the past outdegree of the receiver for e;, d~(r(e;), Az) is the past indegree

of the receiver for e;, Zgl (d* (i, Ay) + d~ (i, Ay)) is the sum of the past outdegree and indegree
for all past event senders in the relational history.

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022) can specify the relational time span, that is, length of time for which events are
considered relationally relevant. This should be specified via the option relationalTimeSpan with
dependency set to TRUE.

Value

The vector of event preferential attachment statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson @arizona.edu, Diego F. Leal dflc@arizona.edu

References

Butts, Carter T. 2008. "A relational event framework for social action." Sociological Methodology
38(1): 155-200.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Examples

# A Dummy One-Mode Event Dataset
events <- data.frame(time = 1:18,
eventID = 1:18,
sender = c("A", "B", "C",

YIAII’ IVDII, IIEIIy
”F”7 ”B"’ ”A’,Y
IIFII’ IID”, IIBH’
YIG“’ I'B"’ "D"y
”H”7 ”A"’ ”D")’
target = c("B", "C", "D",
YIE“’ I'A", "F"y
”D”7 ”A”’ ”C’,Y
IIGII’ IIBII’ IICH’
YIH“’ I'J'", "A"y

ngw mgn wBmY)Y
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# Creating the Post-Processing Event Dataset with Null Events
eventSet <- create_riskset( type = "one-mode",
time = events$time,
eventID = events$eventID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 6,
seed = 9999)

#Computing the preferential attachment statistic for the relational event sequence

eventSet$pref <- remstats_prefattachment(
time = as.numeric(eventSet$time),
observed = eventSet$observed,
sampled = rep(1,nrow(eventSet)),
sender = eventSet$sender,
receiver = eventSet$receiver)
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remstats_recency Compute Butts’ (2008) Recency Network Statistic for Event Dyads in

a Relational Event Sequence

Description

[Stable]

This function computes the recency network sufficient statistic for a relational event sequence (see
Butts 2008; Vu et al. 2015; Meijerink-Bosman et al. 2022). The recency statistic captures the
tendency for more recent events (i.e., an exchange between two medical doctors) are more likely
to re-occur in comparison to events that happened in the more distant past (see Butts 2008 for a
discussion). This measure allows for recency scores to be only computed for the sampled events,

while computing the statistics based on the full event sequence.

Usage

remstats_recency(
time,
sender,
receiver,
sampled,
observed,
type = c("raw.diff"”, "inv.diff.plus1”, "rank.ordered.count"),
i_neighborhood = TRUE,
dependency = FALSE,
relationalTimeSpan = NULL,
nopastEvents = NA
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Arguments
time
sender
receiver

sampled

observed

type

i_neighborhood

dependency

remstats_recency

The vector of event times from the post-processing event sequence.
The vector of event senders from the post-processing event sequence.
The vector of event receivers from the post-processing event sequence

A vector for the post-processing event sequence where i is equal to 1 if the
observed dyadic event is sampled and O if not.

A vector for the post-processing event sequence where i is equal to 1 if the
dyadic event is observed and 0 if not.
A string value that specifies which recency formula will be used to compute the

statistics. The options are "raw.diff", "inv.diff.plus1", "rank.ordered.count” (see
details section).

TRUE/FALSE. TRUE indicates that the recency statistic will be computed in
reference to the sender’s past relational history (see details section). FALSE
indicates that the recency statistic will be computed in reference to the target’s
past relational history (see details section). Set to TRUE by default.

TRUE/FALSE. TRUE indicates that temporal relevancy will be modeled (see
details section). FALSE indicates that temporal relevancy will not be modeled,
that is, all past events are relevant (see details section). Set to FALSE by default.

relationalTimeSpan

nopastEvents

Details

If dependency = TRUE, a numerical value that corresponds to the temporal span
for relational relevancy, which must be the same measurement unit as the ob-
served_time and processed_time objects. When dependency = TRUE, the rel-
evant events are events that have occurred between current event time, ¢, and
t - relationalTimeSpan. For example, if the time measurement is the number
of days since the first event and the value for relationalTimeSpan is set to 10,
then only those events which occurred in the past 10 days are included in the
computation of the statistic.

The numerical value that specifies what value should be given to events in
which the sender was not active as a sender in the past (i’s neighborhood when
i_neighborhood = TRUE) or was not the recipient of a past event (j’s neighbor-
hood when i_neighborhood = FALSE). Set to NA by default.

This function calculates the recency network sufficient statistic for a relational event based on Butts
(2008), Vu et al. (2015), or Meijerink-Bosman et al. (2022). Depending on the type and neighbor-
hood requested, different formulas will be used.

In the below equations, when i_neighborhood is TRUE:

t* =max(t € {(s,r',t')e E:s =snr' =rAt <t})

When i_neighborhood is FALSE, the following formula is used:

t*=maz(t e {(s',r, t')eE:s =rAnr=sAt <t})
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The formula for recency for event e; with type set to "raw.diff" and i_neighborhood is TRUE (Vu
et al. 2015):
recencye, = te, — t*

where t*, is the most recent time in which the past event has the same receiver and sender as the
current event. If there are no past events within the current dyad, then the value defaults to the
nopastEvents argument.

The formula for recency for event e; with type set to "raw.diff" and i_neighborhood is FALSE (Vu
et al. 2015):
recencye, = te, — t*

where t*, is the most recent time in which the past event’s sender is the current event receiver and
the past event receiver is the current event sender. If there are no past events within the current dyad,
then the value defaults to the nopastEvents argument.

The formula for recency for event e; with type set to "inv.diff.plus1" and i_neighborhood is TRUE
(Meijerink-Bosman et al. 2022):

1

recenclye, — —————
Ye; te, — 1" +1

where t*, is the most recent time in which the past event has the same receiver and sender as the
current event. If there are no past events within the current dyad, then the value defaults to the
nopastEvents argument.

The formula for recency for event e; with type set to "inv.diff.plus1" and i_neighborhood is FALSE
(Meijerink-Bosman et al. 2022):

1

recencly, — ————
Ye,; te, —t* + 1

where t*, is the most recent time in which the past event’s sender is the current event receiver and
the past event receiver is the current event sender. If there are no past events within the current dyad,
then the value defaults to the nopastEvents argument.

The formula for recency for event e; with type set to "rank.ordered.count" and i_neighborhood is
TRUE (Butts 2008):

recency., = p(s(e;),r(e;), At)_l

where p(s(e;),r(e;), A¢), is the current event receiver’s rank amongst the current sender’s recent
relational events. That is, as Butts (2008: 174) argues, "p(s(e;),7(e;), A¢) is j’s recency rank among
i’s in-neighborhood. Thus, if j is the last person to have called i, then p(s(e;),7(e;), A;) ™1 = 1. This
falls to 1/2 if j is the second most recent person to call i, 1/3 if j is the third most recent person, etc."
Moreover, if j is not in i’s neighborhood, the value defaults to infinity. If there are no past events
with the current sender, then the value defaults to the nopastEvents argument.

The formula for recency for event e; with type set to "rank.ordered.count” and i_neighborhood is
FALSE (Butts 2008):
recencye, = p(r(e;), s(e;), Ay) ™"

where p(r(e;), s(e;), A¢), is the current event sender’s rank amongst the current receiver’s recent
relational events. That is, this measure is the same as above where the dyadic pair is flipped for the
past relational events. Moreover, if j is not in i’s neighborhood, the value defaults to infinity. If there
are no past events with the current sender, then the value defaults to the nopastEvents argument.
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Finally, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022) can specify the relational time span, that is, length of time for which events are
considered relationally relevant. This should be specified via the option relationalTimeSpan with
dependency set to TRUE.

Value

The vector of recency network statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu

References

Butts, Carter T. 2008. "A relational event framework for social action." Sociological Methodology
38(1): 155-200.

Meijerink-Bosman, Marlyne, Roger Leenders, and Joris Mulder. 2022. "Dynamic relational event
modeling: Testing, exploring, and applying." PLOS One 17(8): €0272309.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Vu, Duy, Philippa Pattison, and Garry Robbins. 2015. "Relational event models for social learning
in MOOCs." Social Networks 43: 121-135.

Examples

# A Dummy One-Mode Event Dataset
events <- data.frame(time = 1:18,
eventID = 1:18,
sender = c("A", "B", "C",

”A“7 ”D“’ “E"Y
"F", "B", "A",
YIFII’ IVDII, IIB"y
”G“7 ”B“’ “D"Y
"H", "A", "D"),
target = C("B"’ IVCII, IID"y
”E”7 ”A”’ “F"Y
"D", "A", "C",
YIGII’ IVBII, "C"y
”H”7 ”J”’ ”A"Y

= , nCn , an))

# Creating the Post-Processing Event Dataset with Null Events
eventSet <- create_riskset(type = "one-mode”,
time = events$time,
eventID = events$eventID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
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n_controls = 6,
seed = 9999)

#Computing the recency statistics (with raw time difference) for the relational event sequence
eventSet$recency_rawdiff <- remstats_recency(

time = as.numeric(eventSet$time),

observed = eventSet$observed,

sampled = rep(1,nrow(eventSet)),

sender = eventSet$sender,

receiver = eventSet$receiver,

type = "raw.diff")

#Computing the recency statistics (with inverse of time difference) for the
#relational event sequence
eventSet$recency_rawdiff <- remstats_recency(

time = as.numeric(eventSet$time),

observed = eventSet$observed,

sampled = rep(1,nrow(eventSet)),

sender = eventSet$sender,

receiver = eventSet$receiver,

type = "inv.diff.plus1”)

#Computing the rank-based recency statistics for the relational event sequence
eventSet$recency_rawdiff <- remstats_recency(

time = as.numeric(eventSet$time),

observed = eventSet$observed,

sampled = rep(1,nrow(eventSet)),

sender = eventSet$sender,

receiver = eventSet$receiver,

type = "rank.ordered.count")

remstats_reciprocity  Compute the Reciprocity Network Statistic for Event Dyads in a Rela-
tional Event Sequence

Description

[Stable]

This function calculates the reciprocity network sufficient statistic for a relational event sequence
(see Lerner and Lomi 2020; Butts 2008). The reciprocity statistic captures the tendency for a sender
a to ‘send a tie’ to (e.g., initiate a communication event with) receiver b given that b sent a tie to
a in the past (i.e., an exchange between two medical doctors). This function allows for reciprocity
scores to be only computed for the sampled events, while creating the weights based on the full
event sequence (see Lerner and Lomi 2020; Vu et al. 2015). The function also allows users to use
two different weighting functions, return the counts of past events, reduce computational runtime,
and specify a dyadic cutoff for relational relevancy.
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Usage

remstats_reciprocity

remstats_reciprocity(

time,

sender,
receiver,
observed,
sampled,
halflife = 2,

counts = FALSE,

dyadic_weight

exp_weight_form

Arguments
time
sender
receiver

observed

sampled

halflife

counts

dyadic_weight

exp_weight_form

Details

:@,
= FALSE

The vector of event times from the post-processing event sequence.
The vector of event senders from the post-processing event sequence.
The vector of event receivers from the post-processing event sequence

A vector for the post-processing event sequence where i is equal to 1 if the
dyadic event is observed and 0 if not.

A vector for the post-processing event sequence where i is equal to 1 if the
observed dyadic event is sampled and O if not.

A numerical value that is the halflife value to be used in the exponential weight-
ing function (see details section). Preset to 2 (should be updated by the user
based on substantive context).

TRUE/FALSE. TRUE indicates that the counts of past events should be com-
puted (see the details section). FALSE indicates that the temporal exponential
weighting function should be used to downweigh past events (see the details
section). Set to FALSE by default.

A numerical value for the dyadic cutoff weight that represents the numerical
cutoff value for temporal relevancy based on the exponential weighting function.
For example, a numerical value of 0.01, indicates that an exponential weight less
than 0.01 will become 0 and that events with such value (or smaller values) will
not be included in the sum of the past event weights (see the details section). Set
to 0 by default.

TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default

This function calculates reciprocity scores for relational event models based on the exponential
weighting function used in either Lerner and Lomi (2020) or Lerner et al. (2013).
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Following Lerner and Lomi (2020), the exponential weighting function in relational event models
is: ey

w(s,rt)=¢e 172

Following Lerner et al. (2013), the exponential weighting function in relational event models is:

gy @)
w(s,r,t) =e SR v @)

Ty /2

In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, ¢’ is the past event times that meet the weight subset, and 77 /2 is the
halflife parameter.

The formula for reciprocity for event e; is:

reciprocity., = w(r, s,t)

That is, all past events in which the past sender is the current receiver and the past receiver is the
current sender.

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022; Lerner and Lomi 2020) can specify the dyadic weight cutoff, that is, the minimum
value for which the weight is considered relationally relevant. Users who do not know the specific
dyadic cutoff value to use, can use the remstats_dyadcut function.

Following Butts (2008), if the counts of the past events are requested, the formula for reciprocity
for event e; is:
reciprocity., = d(r = s',s =1',t')

Where, d() is the number of past events where the event sender, s’, is the current event receiver, r,
and the event receiver (target), »’, is the current event sender, s. Moreover, the counting equation
can be used in tandem with relational relevancy, by specifying the halflife parameter, exponential
weighting function, and the dyadic cut off weight values. If the user is not interested in modeling
relational relevancy, then those value should be left at their baseline values.

Value

The vector of reciprocity statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu

References

Butts, Carter T. 2008. "A Relational Event Framework for Social Action." Sociological Methodol-
ogy 38(1): 155-200.

Quintane, Eric, Martin Wood, John Dunn, and Lucia Falzon. 2022. “Temporal Brokering: A
Measure of Brokerage as a Behavioral Process.” Organizational Research Methods 25(3): 459-489.

Lerner, Jiirgen and Alessandro Lomi. 2020. “Reliability of relational event model estimates under
sampling: How to fit a relational event model to 360 million dyadic events.” Network Science 8(1):
97-135.
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Lerner, Jiirgen, Margit Bussman, Tom A.B. Snijders, and Ulrik Brandes. 2013. " Modeling Fre-
quency and Type of Interaction in Event Networks." The Corvinus Journal of Sociology and Social
Policy 4(1): 3-32.

Vu, Duy, Philippa Pattison, and Garry Robins. 2015. "Relational event models for social learning
in MOOCs." Social Networks 43: 121-135.

Examples

events <- data.frame(time = 1:18, eventID = 1:18,
sender = c("A", "B", "C",

AN npn npgn
A", "D", "E",
= ng A
’ ’ ’
ngn " g
’ ’ ’
”G", an, ”D“,
“H”, HAII’ an)y
tar‘get - C(“B”, ”C”, "D”,
= A =
’ ’ ’
" A nen
’ ’ ’
“G”, an’ "C”,
"y IIJ'II nAN
’ ’ ’

ngn omgn o wgny)

eventSet <-create_riskset(type = "one-mode",
time = events$time,
eventID = events$eventID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 1,
seed = 9999)

#Computing the reciprocity statistics for the relational event sequence
eventSet$recip <- remstats_reciprocity(

time = as.numeric(eventSet$time),

observed = eventSet$observed,

sampled = rep(1,nrow(eventSet)),

sender = eventSet$sender,

receiver = eventSet$receiver,

halflife = 2, #halflife parameter

dyadic_weight = 0,

exp_weight_form = FALSE)

remstats_repetition Compute Butts’ (2008) Repetition Network Statistic for Event Dyads
in a Relational Event Sequence
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Description

[Stable]

165

This function computes the repetition network sufficient statistic for a relational event sequence (see
Lerner and Lomi 2020; Butts 2008). Repetition measures the increased tendency for events between
S and R to occur given that S and R have interacted in the past. Furthermore, this function allows for
repetition scores to be only computed for the sampled events, while creating the weights based on
the full event sequence (see Lerner and Lomi 2020; Vu et al. 2015). The function also allows users
to use two different weighting functions, return the counts of past events, reduce computational
runtime, and specify a dyadic cutoff for relational relevancy.

Usage

remstats_repetition(

time,
sender,
receiver,
observed,
sampled,
halflife =

2,

counts = FALSE,
dyadic_weight = 0,
exp_weight_form = FALSE

Arguments
time
sender
receiver

observed

sampled

halflife

counts

dyadic_weight

The vector of event times from the post-processing event sequence.
The vector of event senders from the post-processing event sequence.
The vector of event receivers from the post-processing event sequence

A vector for the post-processing event sequence where i is equal to 1 if the
dyadic event is observed and 0 if not.

A vector for the post-processing event sequence where i is equal to 1 if the
observed dyadic event is sampled and O if not.

A numerical value that is the halflife value to be used in the exponential weight-
ing function (see details section). Preset to 2 (should be updated by the user
based on substantive context).

TRUE/FALSE. TRUE indicates that the counts of past events should be com-
puted (see the details section). FALSE indicates that the temporal exponential
weighting function should be used to downweigh past events (see the details
section). Set to FALSE by default.

A numerical value for the dyadic cutoff weight that represents the numerical
cutoff value for temporal relevancy based on the exponential weighting function.
For example, a numerical value of 0.01, indicates that an exponential weight less
than 0.01 will become 0 and that events with such value (or smaller values) will
not be included in the sum of the past event weights (see the details section). Set
to 0 by default.



166 remstats_repetition

exp_weight_form
TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default

Details

This function calculates the repetition scores for relational event models based on the exponential
weighting function used in either Lerner and Lomi (2020) or Lerner et al. (2013).

Following Lerner and Lomi (2020), the exponential weighting function in relational event models
is:

—(t—t"). In2)

w(s,rt)=¢€ T1/2

Following Lerner et al. (2013), the exponential weighting function in relational event models is:

—(t—¢'). n(2)
w(s,r,t) =e R )

Tz

In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, ¢’ is the past event times that meet the weight subset (in this case, all
events that have the same sender and receiver), and 7T} /» is the halflife parameter.

The formula for repetition for event e; is:

repetition., = w(s,r,t)

Moreover, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022; Lerner and Lomi 2020) can specify the dyadic weight cutoff, that is, the minimum
value for which the weight is considered relationally relevant. Users who do not know the specific
dyadic cutoff value to use, can use the remstats_dyadcut function.

Following Butts (2008), if the counts of the past events are requested, the formula for repetition for
event e; is:
repetitione, = d(s = s',r =1' 1)

Where, d() is the number of past events where the event sender, s’, is the current event sender,
s, the event receiver (target), r’, is the current event receiver, r. Moreover, the counting equation
can be used in tandem with relational relevancy, by specifying the halflife parameter, exponential
weighting function, and the dyadic cut off weight values. If the user is not interested in modeling
relational relevancy, then those value should be left at their baseline values.

Value

The vector of repetition statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu
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Examples

data("WikiEvent2018.first100k")
WikiEvent2018 <- WikiEvent2018.first100k[1:10000,] #the first ten thousand events
WikiEvent2018$time <- as.numeric(WikiEvent2018%$time) #making the variable numeric
### Creating the EventSet By Employing Case-Control Sampling With M = 5 and
### Sampling from the Observed Event Sequence with P = 0.01
EventSet <- create_riskset(type = "two-mode”,
time = WikiEvent2018%$time, # The Time Variable
eventID = WikiEvent2018%$eventID, # The Event Sequence Variable
sender = WikiEvent2018$user, # The Sender Variable
receiver = WikiEvent2018$article, # The Receiver Variable
p_samplingobserved = 0.01, # The Probability of Selection
n_controls = 8, # The Number of Controls to Sample from the Full Risk Set
combine = TRUE,
seed = 9999) # The Seed for Replication

#Computing the repetition statistics for the relational event sequence with the
#weights of past events returned
rep_weights <- remstats_repetition(
time = EventSet$time,
sender = EventSet$sender,
receiver = EventSet$receiver,
sampled = EventSet$sampled,
observed = EventSet$observed,
halflife = 2.592e+09, #halflife parameter
dyadic_weight = 0,
exp_weight_form = FALSE)

#Computing the repetition statistics for the relational event sequence with the
#counts of events returned
rep_counts <- remstats_repetition(

time = EventSet$time,

sender = EventSet$sender,

receiver = EventSet$receiver,
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sampled = EventSet$sampled,

observed = EventSet$observed,

halflife = 2.592e+09, #halflife parameter
dyadic_weight = 0,

exp_weight_form = FALSE)

cbind(rep_weights, rep_counts)

remstats_triads Compute Butts’ (2008) Triadic Formation Statistics for Relational
Event Sequences

Description

[Stable]

The function computes the set of one-mode triadic formation statistics discussed in Butts (2008) for
a one-mode relational event sequence (see also Lerner and Lomi 2020). The function can compute
the following triadic formations: 1) incoming shared partners (ISP), 2) outgoing shared partners
(OSP), 3) incoming two-paths (ITP), and 4) outgoing two-paths (OTP). Importantly, this function
allows for the triadic formation statistics to be computed only for the sampled events, while creating
the weights based on the full event sequence (see Lerner and Lomi 2020; Vu et al. 2015). The
function also allows users to use two different weighting functions, return the counts of past events,
reduce computational runtime, and specify a dyadic cutoff for relational relevancy.

Usage

remstats_triads(
formation = c("ISP", "OSP", "ITP", "OTP"),
time,
sender,
receiver,
observed,
sampled,
halflife = 2,
counts = FALSE,
dyadic_weight = 0,

exp_weight_form = FALSE
)
Arguments
formation The specific triadic formation the statistic will be based on (see details section).

"ISP" = incoming shared partners. "OSP" = outgoing shared partners. "OTP" =
outgoing two-paths. "ITP" = incoming two-paths.

time The vector of event times from the post-processing event sequence.
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sender
receiver

observed

sampled

halflife

counts

dyadic_weight

exp_weight_form

Details
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The vector of event senders from the post-processing event sequence.
The vector of event receivers from the post-processing event sequence

A vector for the post-processing event sequence where i is equal to 1 if the
dyadic event is observed and 0 if not.

A vector for the post-processing event sequence where i is equal to 1 if the
observed dyadic event is sampled and O if not.

A numerical value that is the halflife value to be used in the exponential weight-
ing function (see details section). Preset to 2 (should be updated by the user
based on substantive context).

TRUE/FALSE. TRUE indicates that the counts of past events should be com-
puted (see the details section). FALSE indicates that the temporal exponential
weighting function should be used to downweigh past events (see the details
section). Set to FALSE by default.

A numerical value for the dyadic cutoff weight that represents the numerical
cutoff value for temporal relevancy based on the exponential weighting function.
For example, a numerical value of 0.01, indicates that an exponential weight less
than 0.01 will become 0 and that events with such value (or smaller values) will
not be included in the sum of the past event weights (see the details section). Set
to 0 by default.

TRUE/FALSE. TRUE indicates that the Lerner et al. (2013) exponential weight-
ing function will be used (see the details section). FALSE indicates that the
Lerner and Lomi (2020) exponential weighting function will be used (see the
details section). Set to FALSE by default

The function calculates the triadic formation statistics discussed in Butts (2008) for relational event
sequences based on the exponential weighting function used in either Lerner and Lomi (2020) or
Lerner et al. (2013).

Following Lerner and Lomi (2020), the exponential weighting function in relational event models
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—(t—t/)-M

w(s,rt)=e Ti/2

Following Lerner et al. (2013), the exponential weighting function in relational event models is:

(). In@)
w(s,r,t) =e =0T, @)
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In both of the above equations, s is the current event sender, r is the current event receiver (target),
t is the current event time, ¢’ is the past event times that meet the weight subset, and 77/, is the

halflife parameter.

Outgoing Shared Partners:

The general formula for outgoing shared partners for event e; is:

OSP,, = \/Zw(s,h,t) -w(r,h,t)
h
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That is, as discussed in Butts (2008), outgoing shared partners finds all past events where the current
sender and target sent a relational tie (i.e., were a sender in a relational event) to the same % node.

Following Butts (2008), if the counts of the past events are requested, the formula for outgoing
shared partners for event e; is:

||
OSPe; =Y " minld(s, h,t),d(s, h,1)]
1=1

Where, d() is the number of past events that meet the specific set operations. d(s,h,t) is the
number of past events where the current event sender sent a tie to a third actor, &, and d(r, h, t) is
the number of past events where the current event receiver sent a tie to a third actor, 4. The sum
loops through all unique actors that have formed past outgoing shared partners structures with the
current event sender and receiver. Moreover, the counting equation can be used in tandem with
relational relevancy, by specifying the halflife parameter, exponential weighting function, and the
dyadic cut off weight values. If the user is not interested in modeling relational relevancy, then
those value should be left at their defaults.

Outgoing Two-Paths:

The general formula for outgoing two-paths for event e; is:

OTP,, = \/Z w(s, h,t) - w(h,rt)
h

That is, as discussed in Butts (2008), outgoing two-paths finds all past events where the current
sender sends a relational tie to node / and the current target receives a relational tie from the same
h node.

Following Butts (2008), if the counts of the past events are requested, the formula for outgoing two
paths for event e; is:

|H|

OTP,, =Y minld(s, h,t),d(h,71)]

i=1
Where, d() is the number of past events that meet the specific set operations. d(s, h, t) is the number
of past events where the current event sender sent a tie to a third actor, &, and d(h, r, t) is the number
of past events where the third actor & sent a tie to the current event receiver. The sum loops through
all unique actors that have formed past outgoing two-path structures with the current event sender
and receiver.

Incoming Two-Paths:

The general formula for incoming two-paths for event e; is:

ITP, = \/Zw(r, h,t) - w(h,s,t)
h

That is, as discussed in Butts (2008), incoming two-paths finds all past events where the current
sender was the receiver in a relational event where the sender was a node h and the current target
was the sender in a past relational event where the target was the same node h.
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Following Butts (2008), if the counts of the past events are requested, the formula for incoming two
paths for event e; is:
|H|
ITP, = minld(r, h,t),d(h,s,1]
i=1

Where, d() is the number of past events that meet the specific set operations. d(r, h, t) is the number
of past events where the current event receiver sent a tie to a third actor, &, and d(h, s, t is the number
of past events where the third actor / sent a tie to the current event sender. The sum loops through
all unique actors that have formed past incoming two-path structures with the current event sender
and receiver.

Incoming Shared Partners:

The general formula for incoming shared partners for event e; is:

ISP, = \/z w(h, s, t) - w(h,rt)
h

That is, as discussed in Butts (2008), incoming shared partners finds all past events where the current
sender and target were themselves the target in a relational event from the same £ node.

Following Butts (2008), if the counts of the past events are requested, the formula for incoming
shared partners for event e; is:

|H|
ISP, =Y min[d(h,s,t),d(h,r,t)]
i=1

Where, d() is the number of past events that meet the specific set operations, d(h, s, t) is the number
of past events where the current event sender received a tie from a third actor, &, and d(h, r, t) is the
number of past events where the current event receiver received a tie from a third actor, 4. The sum
loops through all unique actors that have formed past incoming shared partners structures with the
current event sender and receiver.

Lastly, researchers interested in modeling temporal relevancy (see Quintane, Mood, Dunn, and
Falzone 2022; Lerner and Lomi 2020) can specify the dyadic weight cutoff, that is, the minimum
value for which the weight is considered relationally relevant. Users who do not know the specific
dyadic cutoff value to use, can use the remstats_dyadcut function.

Value

The vector of triadic formation statistics for the relational event sequence.

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu

References

Butts, Carter T. 2008. "A Relational Event Framework for Social Action." Sociological Methodol-
ogy 38(1): 155-200.
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Lerner, Jiirgen and Alessandro Lomi. 2020. “Reliability of relational event model estimates under
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Lerner, Jirgen, Margit Bussman, Tom A.B. Snijders, and Ulrik Brandes. 2013. " Modeling Fre-
quency and Type of Interaction in Event Networks." The Corvinus Journal of Sociology and Social
Policy 4(1): 3-32.

Vu, Duy, Philippa Pattison, and Garry Robins. 2015. "Relational event models for social learning
in MOOCs." Social Networks 43: 121-135.

Examples

events <- data.frame(time = 1:18,
eventID = 1:18,
sender = c("A", "B", "C",

"A", "D", "E",
"F", "B", "A",
"F", "D", "B",
"G", "B", "D",
"H", "A", "D"),
target = c("B", "C", "D",
"E", "A", "F",
"D", "A", "C",
"G", "B", "C",
"H", 3", "A",

gm mcw o wpmYY

eventSet <-create_riskset(type = "one-mode",
time = events$time,
eventID = events$eventlID,
sender = events$sender,
receiver = events$target,
p_samplingobserved = 1.00,
n_controls = 1,
seed = 9999)

#compute the triadic statistic for the outgoing shared partners formation
eventSet$0SP <- remstats_triads(

formation = "OSP", #outgoing shared partners argument

time = as.numeric(eventSet$time),

observed = eventSet$observed,

sampled = rep(1,nrow(eventSet)),

sender = eventSet$sender,

receiver = eventSet$receiver,

halflife = 2, #halflife parameter

dyadic_weight = 0,

exp_weight_form = FALSE)

#tcompute the triadic statistic for the incoming shared partners formation
eventSet$ISP <- remstats_triads(
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formation = "ISP", #incoming shared partners argument
time = as.numeric(eventSet$time),

observed = eventSet$observed,

sampled = rep(1,nrow(eventSet)),

sender = eventSet$sender,

receiver = eventSet$receiver,

halflife = 2, #halflife parameter

dyadic_weight = 0,

exp_weight_form = FALSE)

#compute the triadic statistic for the outgoing two-paths formation
eventSet$0TP <- remstats_triads(

formation = "OTP", #outgoing two-paths argument

time = as.numeric(eventSet$time),

observed = eventSet$observed,

sampled = rep(1,nrow(eventSet)),

sender = eventSet$sender,

receiver = eventSet$receiver,

halflife = 2, #halflife parameter

dyadic_weight = 0,

exp_weight_form = FALSE)

#compute the triadic statistic for the incoming two-paths formation
eventSet$ITP <- remstats_triads(

formation = "ITP", #incoming two-paths argument

time = as.numeric(eventSet$time),

observed = eventSet$observed,

sampled = rep(1,nrow(eventSet)),

sender = eventSet$sender,

receiver = eventSet$receiver,

halflife = 2, #halflife parameter

dyadic_weight = 0,

exp_weight_form = FALSE)

simulateRESeq Simulate a Random One-Mode Relational Event Sequence

Description

[Deprecated]

simulateRESeq() has been deprecated starting on version 1.0.0 of the dream package. Instead,
please use the simulate_rem_seq() function and see the NEWS.md file for more details.

The function allows users to simulate a random one-mode relational event sequence between n
actors for k events. Importantly, this function follows the methods discussed in Butts (2008), Amati,
Lomi, and Snijders (2024), and Scheter and Quintane (2021). See the details for more information
on this algorithm. Critically, this function can be used to simulate a random event sequence, to
assess the goodness of fit for ordinal timing relational event models (see Amati, Lomi, and Snijders
2024), and simulate random outcomes for relational outcome models.
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Usage

simulateRESeq(
n_actors,
n_events,
inertia = FALSE,
inertia_p = 0,
recip = FALSE,
recip_p = 0,
sender_outdegree = FALSE,
sender_outdegree_p = 0,
sender_indegree = FALSE,
sender_indegree_p = 0,
target_outdegree = FALSE,
target_outdegree_p = 0,
target_indegree = FALSE,
target_indegree_p = 0,
assort = FALSE,
assort_p = 0,
trans_trips = FALSE,
trans_trips_p = 0,
three_cycles = FALSE,
three_cycles_p = 0,
starting_events = NULL,
returnStats = FALSE

)
Arguments

n_actors The number of potential actors in the event sequence.

n_events The number of simulated events for the relational event sequence.

inertia TRUE/FALSE. True indicates the effect will be included (see the details sec-
tion). FALSE indicates the effect will not be included.

inertia_p If inertia = TRUE, the numerical value that corresponds to the parameter weight
for the inertia statistic.

recip TRUE/FALSE. True indicates the effect will be included (see the details sec-
tion). FALSE indicates the effect will not be included.

recip_p If recip = TRUE, the numerical value that corresponds to the parameter weight

for the reciprocity statistic.

sender_outdegree
TRUE/FALSE. True indicates the effect will be included (see the details sec-
tion). FALSE indicates the effect will not be included.

sender_outdegree_p
If sender_outdegree = TRUE, the numerical value that corresponds to the pa-
rameter weight for the outdegree statistic.

sender_indegree
TRUE/FALSE. True indicates the effect will be included (see the details sec-
tion). FALSE indicates the effect will not be included.
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sender_indegree_p
If sender_indegree = TRUE, the numerical value that corresponds to the param-
eter weight for the indegree statistic.

target_outdegree
TRUE/FALSE. True indicates the effect will be included (see the details sec-
tion). FALSE indicates the effect will not be included.

target_outdegree_p
If target_outdegree = TRUE, the numerical value that corresponds to the param-
eter weight for the outdegree statistic.

target_indegree
TRUE/FALSE. True indicates the effect will be included (see the details sec-
tion). FALSE indicates the effect will not be included.

target_indegree_p
If target_indegree = TRUE, the numerical value that corresponds to the param-
eter weight for the indegree statistic.

assort Boolean. TRUE/FALSE. True indicates the effect will be included (see the de-
tails section). FALSE indicates the effect will not be included.

assort_p If assort = TRUE, the numerical value that corresponds to the parameter weight
for the assortativity statistic.

trans_trips TRUE/FALSE. True indicates the effect will be included (see the details sec-
tion). FALSE indicates the effect will not be included.

trans_trips_p If trans_trips = TRUE, the numerical value that corresponds to the parameter
weight for the transitive triplets statistic.

three_cycles TRUE/FALSE. True indicates the effect will be included (see the details sec-
tion). FALSE indicates the effect will not be included.

three_cycles_p If three_cycles = TRUE, the numerical value that corresponds to the parameter
weight for the three cycles statistic.

starting_events
A n x 2 dataframe with n starting events and 2 columns. The first column should
be the sender and the second should be the target.

returnStats TRUE/FALSE. TRUE indicates that the requested network statistics will be re-
turned alongside the simulated relational event sequence. FALSE indicates that
only the simulated relational event sequence will be returned. Set to FALSE by
default.

Details
Following the authors listed in the descriptions section, the probability of selecting a new event for

t+1 based on the past relational history, Hy, from 0 < ¢ < ¢ + 1 is given by:

B Xij(t;0)
p(et) B Z(u,v)GRt )\uv(t§ 9)

where (i,j,¢) is the triplet that corresponds to the dyadic pair with sender i and target j at time ¢
contained in the full risk set, R;, based on the past relational history. A;; (t; 0) is formulated as:
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Aij (t; 9) = ezp 0pXijp(Ht)

where 0, corresponds to the specific parameter weight given by the user, and X, represents the
value of the specific statistic based on the current past relational history H;.

Following Scheter and Quintane (2021) and Amati, Lomi, and Snijders (2024), the algorithm for
simulating the random relational sequence for k events is:

* 1. Initialize the full risk set, R;, which is the full Cartesian plot of actors.

* 2. Randomly sample the first event e; and add that event into the relational history, H;.

* 3. Until i = k, compute the sufficient statistics for each event in the risk set, sample a new event
e; based on the probability function specified above, and add that element into the relational
history.

* 4. End when i > k.
Currently, the function supports 6 statistics for one-mode networks. These are:

* Inertia: n;;;

* Reciprocity: n;;;

* Target Indegree:  , ny;q

* Target Outdegree: Y, 1kt

* Sender Outdegree: ), ikt

* Sender Indegree: >, ny;t

o Assortativity: Y, npit - D Nkt

* Transitive Triplets: Y, 1kt - st

e Three Cycles: >, njkt - Nkit
Where n represents the counts of past events, i is the event sender, and j is the event target. See
Scheter and Quintane (2021) and Butts (2008) for a further discussion of these statistics.

Users are allowed to insert a starting event sequence to base the simulation on. A few things are
worth nothing. The starting event sequence should be a matrix with n rows indicating the number of
starting events and 2 columns, with the first representing the event senders and the second column
representing the event targets. Internally, the number of actors is ignored, as the number of possible
actors in the risk set is based only on the actors present in the starting event sequence. Finally, the
sender and target actor IDs should be numerical values.

Value
A data frame that contains the simulated relational event sequence with the sufficient statistics (if
requested).

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu
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Examples

#Creating a random relational sequence with 5 actors and 25 events

remi<- simulateRESeq(n_actors = 25,
n_events = 1000,
inertia = TRUE,
inertia_p = 0.12,
recip = TRUE,
recip_p = 0.08,
sender_outdegree = TRUE,
sender_outdegree_p = 0.09,
target_indegree = TRUE,
target_indegree_p = 0.05,
assort = TRUE,
assort_p = -0.01,
trans_trips = TRUE,
trans_trips_p = 0.09,
three_cycles = TRUE,
three_cycles_p = 0.04,
starting_events = NULL,
returnStats = TRUE)

reml

#Creating a random relational sequence with 100 actors and 1000 events with
#only inertia and reciprocity
rem2 <- simulateRESeq(n_actors = 100,
n_events = 1000,
inertia = TRUE,
inertia_p = 0.12,
recip = TRUE,
recip_p = 0.08,
returnStats = TRUE)
remz2

#Creating a random relational sequence based on the starting sequence with
#only inertia and reciprocity
rem3 <- simulateRESeq(n_actors = 100, #does not matter can be any value, this is
#overridden by the starting event sequence
n_events = 100,
inertia = TRUE,
inertia_p = 0.12,
recip = TRUE,
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recip_p = 0.08,
#a random starting event sequence
starting_events = matrix(c(1:10, 10:1),
nrow = 10, ncol = 2, byrow = FALSE),
returnStats = TRUE)

rem3

simulate_rem_seq Simulate a Random One-Mode Relational Event Sequence

Description

[Stable]

The function allows users to simulate a random one-mode relational event sequence between n
actors for k events. This function follows the methods discussed in Butts (2008), Amati, Lomi, and
Snijders (2024), and Scheter and Quintane (2021). See the details section for more information on
this algorithm. Importanty, this function can be used to simulate a random event sequence to assess
the goodness of fit for ordinal timing relational event models (see Amati, Lomi, and Snijders 2024),
and simulate random outcomes for relational outcome models.

Usage

simulate_rem_seq(
n_actors,
n_events,
inertia = FALSE,
inertia_p = 0,
recip = FALSE,
recip_p = 0,
sender_outdegree = FALSE,
sender_outdegree_p = 0,
sender_indegree = FALSE,
sender_indegree_p = 0,
target_outdegree = FALSE,
target_outdegree_p = 0,
target_indegree = FALSE,
target_indegree_p = 0,
assort = FALSE,
assort_p = 0,
trans_trips = FALSE,
trans_trips_p = 0,
three_cycles = FALSE,
three_cycles_p = 0,
starting_events = NULL,
returnStats = FALSE,
rseed = 9999
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Arguments

n_actors The number of potential actors in the event sequence.

n_events The number of simulated events for the relational event sequence.

inertia TRUE/FALSE. True indicates the effect will be included (see the details sec-
tion). FALSE indicates the effect will not be included.

inertia_p If inertia = TRUE, the numerical value that corresponds to the parameter weight
for the inertia statistic.

recip TRUE/FALSE. True indicates the effect will be included (see the details sec-
tion). FALSE indicates the effect will not be included.

recip_p If recip = TRUE, the numerical value that corresponds to the parameter weight
for the reciprocity statistic.

sender_outdegree
TRUE/FALSE. True indicates the effect will be included (see the details sec-
tion). FALSE indicates the effect will not be included.

sender_outdegree_p

sender_

sender_

target_

target_

target_

target_

assort

assort_

If sender_outdegree = TRUE, the numerical value that corresponds to the pa-
rameter weight for the outdegree statistic.

indegree
TRUE/FALSE. True indicates the effect will be included (see the details sec-
tion). FALSE indicates the effect will not be included.

indegree_p
If sender_indegree = TRUE, the numerical value that corresponds to the param-
eter weight for the indegree statistic.

outdegree
TRUE/FALSE. True indicates the effect will be included (see the details sec-
tion). FALSE indicates the effect will not be included.

outdegree_p
If target_outdegree = TRUE, the numerical value that corresponds to the param-
eter weight for the outdegree statistic.

indegree
TRUE/FALSE. True indicates the effect will be included (see the details sec-
tion). FALSE indicates the effect will not be included.

indegree_p
If target_indegree = TRUE, the numerical value that corresponds to the param-
eter weight for the indegree statistic.

Boolean. TRUE/FALSE. True indicates the effect will be included (see the de-
tails section). FALSE indicates the effect will not be included.

p If assort = TRUE, the numerical value that corresponds to the parameter weight
for the assortativity statistic.

trans_trips TRUE/FALSE. True indicates the effect will be included (see the details sec-

tion). FALSE indicates the effect will not be included.

trans_trips_p If trans_trips = TRUE, the numerical value that corresponds to the parameter

weight for the transitive triplets statistic.
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three_cycles TRUE/FALSE. True indicates the effect will be included (see the details sec-
tion). FALSE indicates the effect will not be included.

three_cycles_p If three_cycles = TRUE, the numerical value that corresponds to the parameter
weight for the three cycles statistic.

starting_events
A n x 2 dataframe with n starting events and 2 columns. The first column should
be the sender and the second should be the target.

returnStats TRUE/FALSE. TRUE indicates that the requested network statistics will be re-
turned alongside the simulated relational event sequence. FALSE indicates that
only the simulated relational event sequence will be returned. Set to FALSE by
default.

rseed A value for the starting seed for the random number generator. Set to 9999 by
default.
Details

Following the authors listed in the descriptions section, the probability of selecting a new event for
t+1 based on the past relational history, Hy, from 0 < ¢ < ¢t + 1 is given by:

B Xij(t; 6)
p(et) B 2:(11,71))61’«2t )\u'u(t; 0)

where (i,j,¢) is the triplet that corresponds to the dyadic pair with sender i and target j at time ¢
contained in the full risk set, R;, based on the past relational history. A;; (t; 6) is formulated as:

)\ij (t; 9) — eZP O0p Xijp(Hz)
where 0, corresponds to the specific parameter weight given by the user, and X, represents the
value of the specific statistic based on the current past relational history H;.
Following Scheter and Quintane (2021) and Amati, Lomi, and Snijders (2024), the algorithm for
simulating the random relational sequence for k events is:
¢ 1. Initialize the full risk set, R;, which is the full Cartesian plot of actors.

* 2. Randomly sample the first event e; and add that event into the relational history, H;.

3. Until i = k, compute the sufficient statistics for each event in the risk set, sample a new event
e; based on the probability function specified above, and add that element into the relational
history.

* 4. End when i > k.
Currently, the function supports 6 statistics for one-mode networks. These are:
* Inertia: n;;¢
* Reciprocity: n;
* Target Indegree: ), nyjq
* Target Outdegree: >, 1t
* Sender Outdegree:  , Nkt
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Sender Indegree: ), n;t
o Assortativity: >, Mgt © 5 Nikt
* Transitive Triplets: Y, Mkt - N

Three Cycles: Y, 1jkt - it

Where n represents the counts of past events, i is the event sender, and j is the event target. See
Scheter and Quintane (2021) and Butts (2008) for a further discussion of these statistics.

Users are allowed to insert a starting event sequence to base the simulation on. A few things are
worth nothing. The starting event sequence should be a matrix with n rows indicating the number of
starting events and 2 columns, with the first representing the event senders and the second column
representing the event receivers. Internally, the number of actors is ignored, as the number of
possible actors in the risk set is based only on the actors present in the starting event sequence.
Finally, the sender and receiver actor IDs should be numerical values.

Value

A data frame that contains the simulated relational event sequence with the sufficient statistics (if
requested).

Author(s)

Kevin A. Carson kacarson@arizona.edu, Diego F. Leal dfic @arizona.edu

References

Amati, Viviana, Alessandro Lomi, and Tom A.B. Snijders. 2024. "A goodness of fit framework
for relational event models." Journal of the Royal Statistical Society Series A: Statistics in Society
187(4): 967-988.

Butts, Carter T. "A Relational Framework for Social Action." Sociological Methodology 38: 155-
200.

Schecter, Aaron and Eric Quintane. 2021 "The Power, Accuracy, and Precision of the Relational
Event Model." Organizational Research Methods 24(4): 802-829.

Examples

#Creating a random relational sequence with 5 actors and 25 events
remi<- simulate_rem_seq(n_actors = 25,
n_events = 1000,
inertia = TRUE,
inertia_p = 0.12,
recip = TRUE,
recip_p = 0.08,
sender_outdegree = TRUE,
sender_outdegree_p = 0.09,
target_indegree = TRUE,
target_indegree_p = 0.05,
assort = TRUE,
assort_p = -0.01,
trans_trips = TRUE,
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trans_trips_p = 0.09,

three_cycles = TRUE,

three_cycles_p = 0.04,

starting_events = NULL,

returnStats = TRUE)
remil

southern.women

#Creating a random relational sequence with 100 actors and 1000 events with

#only inertia and reciprocity

rem2 <- simulate_rem_seq(n_actors = 100,
n_events = 1000,
inertia = TRUE,
inertia_p = 0.12,
recip = TRUE,
recip_p = 0.08,
returnStats = TRUE)

rem2

#Creating a random relational sequence based on the starting sequence with

#only inertia and reciprocity

rem3 <- simulate_rem_seq(n_actors = 100, #does not matter can be any value, this is
#overridden by the starting event sequence

n_events = 100,
inertia = TRUE,
inertia_p = 0.12,
recip = TRUE,
recip_p = 0.08,
#a random starting event sequence
starting_events = matrix(c(1:10, 10:1),
nrow = 10, ncol = 2, byrow = FALSE),
returnStats = TRUE)

rem3

southern.women Davis Southern Women’s Dataset

Description

Davis Southern Women’s Dataset

Usage

data(southern.women)

Format

southern.women:

Two-Mode affliation matrix from Davis et al.(1941) Southern Women study.

events. Dataset is taken from the networkdata R package (Almquist 2014)

18 women x 14
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Source
Almquist, Zach. 2014. networkdata: Lin Freeman’s Network Data Collection. R package version
0.01, https://github.com/Z-co/networkdata.
Brieger, Ronald. 1974. "Duality of Persons and Groups." Social Forces 53(2): 181-190.

Davis, Allison, Burleigh B. Gardner, and Mary R. Gardner. 1941. Deep South: A Social Anthropo-
logical Study of Caste and Class. University of Chicago Press.

summary .dream Summary Method for dream Objects

Description

Summarizes the results of an ordinal timing relational event model.

Usage
## S3 method for class 'dream'
summary(object, digits =4, ...)
Arguments
object An object of class "dream".
digits The number of digits to print after the decimal point.

Additional arguments (currently unused).

Value

A list of summary statistics for the relational event model including parameter estimates, (null)
likelihoods, and tests of significance for likelihood ratios and estimated parameters.

WikiEvent2018.first100k
Wikipedia Edit Event Sequence 2018

Description

The first 100,000 events of the (two-mode) Wikipedia edit event sequence, where an event is de-
scribed as a Wikipedia user editing a Wikipedia article. The user column represents the unique event
senders, the article column represents the unique event receivers (targets), and the time variable is
in milliseconds.

Usage

data(WikiEvent2018.first100k)


https://github.com/Z-co/networkdata

184 WikiEvent2018.first100k

Format

WikiEvent2018.first100k:

The first 100,000 events of the Wikipedia edit event sequence, where an event is described as a
Wikipedia user editing a Wikipedia article. The user column represents the unique event senders,
the article column represents the unique event receivers (targets), and the time variable is in mil-
liseconds.

user the column that represents the unique event senders.

article the article column represents the unique event receivers.

time the event time variable in milliseconds.

eventID the numerical id for each event in the event sequence

Source

https://zenodo.org/records/1626323

Lerner, Jurgen and Alessandro Lomi. 2020. "Reliability of relational event model estimates un-
der sampling: how to fit a relational event model to 360 million dyadic events." Network Science
8(1):97-135. (DOI: https://doi.org/10.1017/nws.2019.57)
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