
Package ‘glyrepr’
February 13, 2026

Title Representation for Glycan Compositions and Structures

Version 0.10.1

Description Computational representations of glycan compositions and structures,
including details such as linkages, anomers, and substituents. Supports varying
levels of monosaccharide specificity (e.g., ``Hex'' or ``Gal'') and ambiguous linkages.
Provides robust parsing and generation of IUPAC-condensed structure strings.
Optimized for vectorized operations on glycan structures, with efficient handling
of duplications. As the cornerstone of the glycoverse ecosystem, this package
delivers the foundational data structures that power glycomics and glycoproteomics
analysis workflows.

License MIT + file LICENSE

Suggests testthat (>= 3.0.0), patrick, tibble, knitr, rmarkdown,
tictoc, lobstr

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.3

URL https://glycoverse.github.io/glyrepr/,

https://github.com/glycoverse/glyrepr

Imports checkmate, cli, dplyr, furrr, future, glue, igraph, magrittr,
pillar, purrr, rlang, rstackdeque, stringr, vctrs (>= 0.6.5)

VignetteBuilder knitr

BugReports https://github.com/glycoverse/glyrepr/issues

NeedsCompilation no

Author Bin Fu [aut, cre, cph] (ORCID: <https://orcid.org/0000-0001-8567-2997>)

Maintainer Bin Fu <23110220018@m.fudan.edu.cn>

Repository CRAN

Date/Publication 2026-02-13 07:00:36 UTC

1

https://glycoverse.github.io/glyrepr/
https://github.com/glycoverse/glyrepr
https://github.com/glycoverse/glyrepr/issues
https://orcid.org/0000-0001-8567-2997

2 as_glycan_composition

Contents

as_glycan_composition . 2
as_glycan_structure . 3
available_monosaccharides . 4
available_substituents . 5
convert_to_generic . 5
count_mono . 7
get_anomer . 8
get_mono_type . 8
get_structure_graphs . 10
get_structure_level . 10
glycan_composition . 11
glycan_structure . 12
has_linkages . 15
is_known_monosaccharide . 16
n_glycan_core . 17
possible_linkages . 18
reduce_structure_level . 19
remove_linkages . 20
remove_substituents . 21
simap . 21
smap . 23
smap2 . 25
smap_predicates . 27
smap_unique . 28
spmap . 29
structure_to_iupac . 31
valid_linkages . 32

Index 34

as_glycan_composition Convert to Glycan Composition

Description

Converts an object to a glycan composition using vctrs casting framework. This function provides
a convenient way to convert various input types to glycan_composition().

Usage

as_glycan_composition(x)

as_glycan_structure 3

Arguments

x An object to convert to a glycan composition. Supported inputs include:

• Named integer vectors or lists of named integer vectors
• Character vectors with composition strings (e.g., "Hex(5)HexNAc(2)")
• glyrepr_structure objects (counts both monosaccharides and substituents)
• Existing glyrepr_composition objects (returned as-is)

Details

This function uses the vctrs casting framework for type conversion. When converting from glycan
structures, both monosaccharides and substituents are counted. Substituents are extracted from the
sub attribute of each vertex in the structure. For example, a vertex with sub = "3Me" contributes
one "Me" substituent to the composition.

Value

A glyrepr_composition object.

Examples

From a single named vector
as_glycan_composition(c(Hex = 5, HexNAc = 2))

From a list of named vectors
as_glycan_composition(list(c(Hex = 5, HexNAc = 2), c(Hex = 3, HexNAc = 1)))

From a character vector of Byonic composition strings
as_glycan_composition(c("Hex(5)HexNAc(2)", "Hex(3)HexNAc(1)"))

From a character vector of simple composition strings
as_glycan_composition(c("H5N2", "H5N4S1F1"))

From an existing composition (returns as-is)
comp <- glycan_composition(c(Hex = 5, HexNAc = 2))
as_glycan_composition(comp)

From a glycan structure vector
strucs <- c(n_glycan_core(), o_glycan_core_1())
as_glycan_composition(strucs)

as_glycan_structure Convert to Glycan Structure Vector

Description

Convert an object to a glycan structure vector.

4 available_monosaccharides

Usage

as_glycan_structure(x)

Arguments

x An object to convert to a glycan structure vector. Can be an igraph object, a list
of igraph objects, a character vector of IUPAC-condensed strings, or an existing
glyrepr_structure object.

Value

A glyrepr_structure object.

Examples

library(igraph)

Convert a single igraph
graph <- make_graph(~ 1-+2)
V(graph)$mono <- c("GlcNAc", "GlcNAc")
V(graph)$sub <- ""
E(graph)$linkage <- "b1-4"
graph$anomer <- "a1"
as_glycan_structure(graph)

Convert a list of igraphs
o_glycan_vec <- o_glycan_core_1()
o_glycan_graph <- get_structure_graphs(o_glycan_vec)
as_glycan_structure(list(graph, o_glycan_graph))

Convert a character vector of IUPAC-condensed strings
as_glycan_structure(c("GlcNAc(b1-4)GlcNAc(b1-", "Man(a1-2)GlcNAc(b1-"))

available_monosaccharides

Get Available Monosaacharides

Description

This function returns a character vector of monosaccharide names of the given type. See get_mono_type()
for monosaacharide types.

Usage

available_monosaccharides(mono_type = "all")

available_substituents 5

Arguments

mono_type A character string specifying the type of monosaccharides. Can be "all", "generic",
or "concrete". Default is "all".

Value

A character vector of monosaccharide names.

Examples

available_monosaccharides()

available_substituents

Available Substituents

Description

Get the available substituents for monosaccharides.

Usage

available_substituents()

Value

A character vector.

Examples

available_substituents()

convert_to_generic Convert Monosaccharides to Generic Type

Description

This function converts monosaccharide types of monosaccharide characters, glycan compositions,
or glycan structures from concrete to generic type. This is a simplified version that only supports
conversion from "concrete" to "generic" monosaccharides.

6 convert_to_generic

Usage

convert_to_generic(x)

S3 method for class 'character'
convert_to_generic(x)

S3 method for class 'glyrepr_structure'
convert_to_generic(x)

S3 method for class 'glyrepr_composition'
convert_to_generic(x)

Arguments

x Either of these objects:

• A character of monosaccharide;
• A glycan composition vector ("glyrepr_composition" object);
• A glycan structure vector ("glyrepr_structure" object).

Value

A new object of the same class as x with monosaccharides converted to generic type.

Two types of monosaccharides

There are two types of monosaccharides:

• concrete: e.g. "Gal", "GlcNAc", "Glc", "Fuc", etc.

• generic: e.g. "Hex", "HexNAc", "HexA", "HexN", etc.

For the full list of monosaccharides, use available_monosaccharides().

Examples

Convert character vectors
convert_to_generic(c("Gal", "GlcNAc"))

Convert glycan compositions
comps <- glycan_composition(

c(Gal = 5, GlcNAc = 2),
c(Glc = 5, GalNAc = 4, Fuc = 1)

)
convert_to_generic(comps)

Convert glycan structures
strucs <- c(n_glycan_core(), o_glycan_core_1())
convert_to_generic(strucs)

count_mono 7

count_mono Get the Number of Monosaccharides

Description

When mono is:

• NULL (default), returns the total number of monosaccharides and substituents.

• A string, returns the number of the specified monosaccharide or substituent.

Usage

count_mono(x, mono = NULL, include_subs = FALSE)

S3 method for class 'glyrepr_composition'
count_mono(x, mono = NULL, include_subs = FALSE)

S3 method for class 'glyrepr_structure'
count_mono(x, mono = NULL, include_subs = FALSE)

Arguments

x A glycan composition (glyrepr_composition) or a glycan structure (glyrepr_structure)
vector.

mono The monosaccharide or substituent to count. A character scalar. If NULL (de-
fault), return the total number of monosaccharides.

include_subs Whether to include substituents when mono is NULL. Default is FALSE.

Details

When mono is "generic" (e.g. "Hex", "HexNAc"), it counts all "concrete" monosaccharides that
match. For example, "Hex" will count all Glc, Man, Gal, etc. When mono is "concrete" (e.g. "Gal",
"GalNAc"), NA is returned when the composition is "generic".

Value

A numeric vector of the same length as x.

Examples

comp <- glycan_composition(c(Gal = 1, Man = 1, GalNAc = 1))
count_mono(comp, "Hex")
count_mono(comp, "Gal")

struct <- as_glycan_structure("Gal(b1-3)GlcNAc(b1-4)Glc(a1-")
count_mono(struct, "Gal")

Total number of monosaccharides

8 get_mono_type

count_mono(comp)

get_anomer Get the Anomeric information

Description

Get the Anomeric information

Usage

get_anomer(x)

Arguments

x A glycan structure vector (glyrepr_structure).

Value

a character vector of the anomeric information.

Examples

x <- n_glycan_core()
get_anomer(x)

get_mono_type Get Monosaccharide Types

Description

This function determines the type of monosaccharides in character vectors, glycan compositions, or
glycan structures. Supported types: "concrete" and "generic" (see details below).

Usage

get_mono_type(x)

S3 method for class 'character'
get_mono_type(x)

S3 method for class 'glyrepr_structure'
get_mono_type(x)

S3 method for class 'glyrepr_composition'
get_mono_type(x)

get_mono_type 9

Arguments

x Either of these objects:

• A character vector of monosaccharide names;
• A glycan composition vector ("glyrepr_composition" object);
• A glycan structure vector ("glyrepr_structure" object).

Value

• For character input, returns a character vector of the same length as x.

• For glyrepr_structure and glyrepr_composition input, returns a character scalar.

Two types of monosaccharides

There are two types of monosaccharides:

• concrete: e.g. "Gal", "GlcNAc", "Glc", "Fuc", etc.

• generic: e.g. "Hex", "HexNAc", "HexA", "HexN", etc.

For the full list of monosaccharides, use available_monosaccharides().

Special monosaccharides

Some monosaccharides are special in that they have no generic names in database or literature. For
example, "Mur" is a rare monosaccharide that has no popular generic name. In glyrepr, we assign a
"g" prefix to these monosaccharides as their generic names. This includes "gNeu", "gKdn", "gPse",
"gLeg", "gAci", "g4eLeg", "gBac", "gKdo", "gMur". These names might only be meaningful inside
glycoverse. Take care when you export results from glycoverse functions to other analysis tools.

See Also

convert_to_generic()

Examples

Character vector
get_mono_type(c("Gal", "Hex"))

Glycan structures
get_mono_type(n_glycan_core(mono_type = "concrete"))
get_mono_type(n_glycan_core(mono_type = "generic"))

Glycan compositions
comp <- glycan_composition(c(Glc = 2, GalNAc = 1))
get_mono_type(comp)

10 get_structure_level

get_structure_graphs Access Individual Glycan Structures

Description

Extract individual glycan structure graphs from a glycan structure vector.

Usage

get_structure_graphs(x, return_list = NULL)

Arguments

x A glycan structure vector.

return_list If TRUE, always returns a list. If FALSE and x has a length of 1, return the igraph
object directly. If not provided (default), FALSE when x has a length of 1 and
TRUE otherwise.

Value

A list of igraph objects or an igraph object directly (see return_list parameter).

Examples

structures <- c(o_glycan_core_1(), n_glycan_core())
get_structure_graphs(structures)
get_structure_graphs(structures)

get_structure_level Get the Structure Resolution Levels

Description

Glycan structures can have four possible levels of resolution:

• "intact": All monosaccharides are concrete (e.g. "Man", "GlcNAc"), and all linkages are fully
determined (e.g. "a2-3", "b1-4").

• "partial": All monosaccharides are concrete (e.g. "Man", "GlcNAc"), but some linkage infor-
mation is missing (e.g. "a2-?").

• "topological": All monosaccharides are concrete (e.g. "Man", "GlcNAc"), but the linkage
information is completely unknown ("??-?").

• "basic": All monosaccharides are generic (e.g. "Hex", "HexNAc"), and the linkage informa-
tion is completely unknown ("??-?").

glycan_composition 11

Note that in theory you can have a glycan with generic monosaccharides with all linkages deter-
mined. For example, "Hex(b1-3)HexNAc(a1-" is a valid glycan structure. But in reality, this is
almost impossible, because linkage information is far more difficult to acquire than monosaccha-
ride information. This kind of glycan structure is also assigned to "basic" level.

Usage

get_structure_level(x)

Arguments

x A glycan_structure() vector.

Value

A character vector of the same length as x, containing the structure level for each element.

See Also

has_linkages(), get_mono_type()

Examples

glycan <- as_glycan_structure("Gal(b1-3)GalNAc(a1-")
get_structure_level(glycan)

glycan_composition Create a Glycan Composition

Description

Create a glycan composition from a list of named integer vectors. Compositions can contain both
monosaccharides and substituents.

Usage

glycan_composition(...)

is_glycan_composition(x)

Arguments

... Named integer vectors. Names are monosaccharides or substituents, values are
numbers of residues. Monosaccharides and substituents can be mixed in the
same composition.

x A list of named integer vectors.

12 glycan_structure

Details

Compositions can contain:

• Monosaccharides: either generic (e.g., "Hex", "HexNAc") or concrete (e.g., "Glc", "Gal"). All
monosaccharides in a composition vector must be of the same type.

• Substituents: e.g., "Me", "Ac", "S". These can be mixed with either generic or concrete
monosaccharides.

Components are automatically sorted with monosaccharides first (according to their order in the
monosaccharides table), followed by substituents (according to their order in available_substituents()).

Value

A glyrepr_composition object.

See Also

available_monosaccharides(), available_substituents()

Examples

A vector with one composition (generic monosaccharides)
glycan_composition(c(Hex = 5, HexNAc = 2))
A vector with multiple compositions
glycan_composition(c(Hex = 5, HexNAc = 2), c(Hex = 5, HexNAc = 4, dHex = 2))
Residues are reordered automatically
glycan_composition(c(HexNAc = 1, Hex = 2))
An example for generic monosaccharides
glycan_composition(c(Hex = 2, HexNAc = 1))
An example for concrete monosaccharides
glycan_composition(c(Glc = 2, Gal = 1))
Compositions with substituents
glycan_composition(c(Glc = 1, S = 1))
glycan_composition(c(Hex = 3, HexNAc = 2, Me = 1, Ac = 1))
Substituents are sorted after monosaccharides
glycan_composition(c(S = 1, Gal = 1, Ac = 1, Glc = 1))

glycan_structure Create a Glycan Structure Vector

Description

glycan_structure() creates an efficient glycan structure vector for storing and processing gly-
can molecular structures. The function employs hash-based deduplication mechanisms, making it
suitable for glycoproteomics, glycomics analysis, and glycan structure comparison studies.

glycan_structure 13

Usage

glycan_structure(...)

is_glycan_structure(x)

Arguments

... igraph graph objects to be converted to glycan structures, or existing glycan
structure vectors. Supports mixed input of multiple objects.

x An object to check or convert.

Value

A glyrepr_structure class glycan structure vector object.

Core Features

• Efficient Storage: Uses hash values of IUPAC codes for deduplication, avoiding redundant
storage of identical glycan structures

• Graph Model Representation: Each glycan structure is represented as a directed graph
where nodes are monosaccharides and edges are glycosidic linkages

• Vectorized Operations: Supports R’s vectorized operations for batch processing of glycan
data

• Type Safety: Built on the vctrs package, providing type-safe operations

Data Structure Overview

A glycan structure vector is a vctrs record with an additional S3 class glyrepr_structure. There-
fore, sloop::s3_class() returns the class hierarchy c("glyrepr_structure", "vctrs_rcrd").

Each glycan structure must satisfy the following constraints:

Graph Structure Requirements:
• Must be a directed graph with an outward tree structure (reducing end as root)
• Must have a graph attribute anomer in the format "a1" or "b1"

– Unknown parts can be represented with "?", e.g., "?1", "a?", "??"

Node Attributes:
• mono: Monosaccharide names, must be known monosaccharide types

– Generic names: Hex, HexNAc, dHex, NeuAc, etc.
– Concrete names: Glc, Gal, Man, GlcNAc, etc.
– Cannot mix generic and concrete names
– NA values are not allowed

• sub: Substituent information
– Single substituent format: "xY" (x = position, Y = substituent name), e.g., "2Ac", "3S"
– Multiple substituents separated by commas and ordered by position, e.g., "3Me,4Ac",

"2S,6P"

14 glycan_structure

– No substituents represented by empty string ""

Edge Attributes:
• linkage: Glycosidic linkage information in format "a/bX-Y"

– Standard format: e.g., "b1-4", "a2-3"
– Unknown positions allowed: "a1-?", "b?-3", "??-?"
– Partially unknown positions: "a1-3/6", "a1-3/6/9"
– NA values are not allowed

Node and Edge Order

The indices of vertices and linkages in a glycan correspond directly to their order in the IUPAC-
condensed string, which is printed when you print a glycan_structure(). For example, for
the glycan Man(a1-3)[Man(a1-6)]Man(b1-4)GlcNAc(b1-4)GlcNAc(b1-, the vertices are "Man",
"Man", "Man", "GlcNAc", "GlcNAc", and the linkages are "a1-3", "a1-6", "b1-4", "b1-4".

Use Cases

• Glycoproteomics Analysis: Processing glycan structure information from mass spectrometry
data

• Glycomics Research: Comparing glycan expression profiles across different samples or con-
ditions

• Structure-Function Analysis: Studying relationships between glycan structures and biolog-
ical functions

• Database Queries: Performing structure matching and searches in glycan databases

NA Support

Glycan structure vectors support NA values for representing missing or unknown structures:

• Create with glycan_structure(NA) or glycan_structure(NULL)

• Combine with valid structures: c(struct1, NA, struct2)

• Convert from character: as_glycan_structure(c("Glc(a1-", NA))

• smap functions skip NA elements gracefully

• is.na() returns TRUE for NA elements

Examples

library(igraph)

Example 1: Create a simple glycan structure GlcNAc(b1-4)GlcNAc
graph <- make_graph(~ 1-+2) # Create graph with two monosaccharides
V(graph)$mono <- c("GlcNAc", "GlcNAc") # Set monosaccharide types
V(graph)$sub <- "" # No substituents
E(graph)$linkage <- "b1-4" # b1-4 glycosidic linkage
graph$anomer <- "a1" # a anomeric carbon

Create glycan structure vector

has_linkages 15

simple_struct <- glycan_structure(graph)
print(simple_struct)

Example 2: Use predefined glycan core structures
n_core <- n_glycan_core() # N-glycan core structure
o_core1 <- o_glycan_core_1() # O-glycan Core 1 structure

Example 3: Create complex structure with substituents
complex_graph <- make_graph(~ 1-+2-+3)
V(complex_graph)$mono <- c("GlcNAc", "Gal", "Neu5Ac")
V(complex_graph)$sub <- c("", "", "") # Add substituents as needed
E(complex_graph)$linkage <- c("b1-4", "a2-3")
complex_graph$anomer <- "b1"

complex_struct <- glycan_structure(complex_graph)
print(complex_struct)

Example 4: Check if object is a glycan structure
is_glycan_structure(simple_struct) # TRUE
is_glycan_structure(graph) # FALSE

has_linkages Determine if a Glycan Structure has Linkages

Description

Unknown linkages in a glycan structure are represented by "??-?". Also, a linkage can be partially
known (e.g. "a?-?"). This function checks if a glycan structure has linkages, in a strict or lenient
way.

Usage

has_linkages(glycan, strict = FALSE)

Arguments

glycan A glycan_structure() vector.

strict A logical value.

• If FALSE (default), a glycan is considered to have linkages if any linkage is
partially known (not "??-?").

• If TRUE, a glycan is considered to have linkages only if all linkages are fully
determined (no "?" in the linkage).

Value

A logical vector indicating if each glycan structure has linkages.

16 is_known_monosaccharide

See Also

remove_linkages(), possible_linkages()

Examples

glycan <- o_glycan_core_1(linkage = TRUE)
has_linkages(glycan)
print(glycan)

glycan <- remove_linkages(glycan)
has_linkages(glycan)
print(glycan)

glycan <- as_glycan_structure("Gal(b1-?)GalNAc(a1-")
has_linkages(glycan)
has_linkages(glycan, strict = TRUE)

is_known_monosaccharide

Check if a Monosaccharide is Known

Description

This function checks if a vector of monosaccharide names are known.

Usage

is_known_monosaccharide(mono)

Arguments

mono A character vector of monosaccharide names.

Value

A logical vector.

Examples

is_known_monosaccharide(c("Gal", "Hex"))
is_known_monosaccharide(c("X", "Hx", "Nac"))

n_glycan_core 17

n_glycan_core Example Glycan Structures

Description

Create example glycan structures for testing and demonstration. Includes N-glycan core and O-
glycan core 1 and core 2.

Usage

n_glycan_core(linkage = TRUE, mono_type = "concrete")

o_glycan_core_1(linkage = TRUE, mono_type = "concrete")

o_glycan_core_2(linkage = TRUE, mono_type = "concrete")

Arguments

linkage A logical indicating whether to include linkages (e.g. "b1-4"). Default is TRUE.

mono_type A character string specifying the type of monosaccharides. Can be "generic"
(Hex, HexNAc, dHex, NeuAc, etc.) or "concrete" (Man, Gal, HexNAc, Fuc,
etc.). Default is "concrete".

Value

A glycan structure (igraph) object.

N-Glycan Core

N-Glycans are branched oligosaccharides that are bound, most commonly, via GlcNAc to an Asn
residue of the protein backbone. A common motif of all N-glycans is the chitobiose core, composed
of three mannose and two GlcNAc moieties, which is commonly attached to the protein backbone
via GlcNAc. The mannose residue is branched and connected via a1,3- and a1,6-glycosidic linkages
to the two other mannose building blocks.

Man
a1-6 \ b1-4 b1-4 b1-

Man -- GlcNAc -- GlcNAc -
a1-3 /
Man

O-Glycan Core

O-Glycans are highly abundant in extracellular proteins. Generally, O-glycans are extended fol-
lowing four major core structures: core 1, core 2, core 3, and core 4. The first two are by far the
most common core structures in O-glycosylation and are found throughout the body.

core 1:

18 possible_linkages

a1-
GalNAc -

/ b1-3
Gal

core 2:

GlcNAc
\ b1-6 a1-
GalNAc -

/ b1-3
Gal

Examples

print(n_glycan_core(), verbose = TRUE)
print(o_glycan_core_1(), verbose = TRUE)

possible_linkages Generate Possible Linkages

Description

Given an obscure linkage format (having "?", e.g. "a2-?"), this function generates all possible
linkages based on the format. See valid_linkages() for details.

The ranges of possible anomers, first positions, and second positions can be specified using anomer_range,
pos1_range, and pos2_range.

Usage

possible_linkages(
linkage,
anomer_range = c("a", "b"),
pos1_range = 1:2,
pos2_range = 1:9,
include_unknown = FALSE

)

Arguments

linkage A linkage string.

anomer_range A character vector of possible anomers. Default is c("a", "b").

pos1_range A numeric vector of possible first positions. Default is 1:2.

pos2_range A numeric vector of possible second positions. Default is 1:9.
include_unknown

A logical value. If TRUE, "?" will be included. Default is FALSE.

reduce_structure_level 19

Value

A character vector of possible linkages.

See Also

has_linkages(), remove_linkages(), valid_linkages()

Examples

possible_linkages("a2-?")
possible_linkages("??-2")
possible_linkages("a1-3")
possible_linkages("a?-?", pos1_range = 2, pos2_range = c(2, 3))
possible_linkages("?1-6", include_unknown = TRUE)

reduce_structure_level

Reduce a Glycan Structure to a Lower Resolution Level

Description

This function reduces a glycan structure from a higher resolution level to a lower resolution level
(see get_structure_level() for four possible levels of resolution). For example, it can reduce
an "intact" structure to a "topological" structure, or a "partial" structure to a "basic" structure. One
exception is that you can never reduce an "intact" structure to "partial" level, because the "partial"
level is not deterministic.

Usage

reduce_structure_level(x, to_level)

Arguments

x A glycan_structure() vector.

to_level The resolution level to reduce to. Can be "basic" or "topological". Must be a
lower resolution level than any structure in x ("intact" > "partial" > "topological"
> "basic"). If to_level is the same as some structure in x, the result will be the
same as the input. You can use get_structure_level() to check the structure
levels of x.

Details

The logic is as follows:

• If to_level is "topological", this function calls remove_linkages() to remove all linkages.

• If to_level is "basic", this function calls remove_linkages() to remove all linkages, and
convert_to_generic() to convert all monosaccharides to generic.

20 remove_linkages

Value

A glycan_structure() vector reduced to the given resolution level.

See Also

get_structure_level()

Examples

glycan <- as_glycan_structure("Gal(b1-3)GalNAc(a1-")
reduce_structure_level(glycan, to_level = "topological")

remove_linkages Remove All Linkages from a Glycan

Description

This function replaces all linkages in a glycan structure with "??-?", as well as the reducing end
anomer with "??-".

Usage

remove_linkages(glycan)

Arguments

glycan A glyrepr_structure vector.

Value

A glyrepr_structure vector with all linkages removed.

Examples

glycan <- o_glycan_core_1(linkage = TRUE)
glycan
remove_linkages(glycan)

remove_substituents 21

remove_substituents Remove All Substituents from a Glycan

Description

This function replaces all substituents in a glycan structure with empty strings.

Usage

remove_substituents(glycan)

Arguments

glycan A glyrepr_structure vector.

Value

A glyrepr_structure vector with all substituents removed.

Examples

(glycan <- o_glycan_core_1())
remove_substituents(glycan)

simap Map Functions Over Glycan Structure Vectors with Indices

Description

These functions apply a function to each unique structure in a glycan structure vector along with
their corresponding indices, taking advantage of hash-based deduplication to avoid redundant com-
putation. Similar to purrr imap functions, but optimized for glycan structure vectors.

Usage

simap(.x, .f, ...)

simap_vec(.x, .f, ..., .ptype = NULL)

simap_lgl(.x, .f, ...)

simap_int(.x, .f, ...)

simap_dbl(.x, .f, ...)

22 simap

simap_chr(.x, .f, ...)

simap_structure(.x, .f, ...)

Arguments

.x A glycan structure vector (glyrepr_structure).

.f A function that takes an igraph object (from .x) and an index/name, returning a
result. Can be a function, purrr-style lambda (~ paste(.x, .y)), or a character
string naming a function.

... Additional arguments passed to .f.

.ptype A prototype for the return type (for simap_vec).

Details

These functions only compute .f once for each unique combination of structure and corresponding
index/name, then map the results back to the original vector positions. This is much more efficient
than applying .f to each element individually when there are duplicate structures.

IMPORTANT PERFORMANCE NOTE: Due to the inclusion of position indices, simap func-
tions have O(total_structures) time complexity because each position creates a unique combina-
tion, even with identical structures.

Alternative: Consider smap() functions if position information is not required.

The index passed to .f is the position in the original vector (1-based). If the vector has names, the
names are passed instead of indices.

Return Types:

• simap(): Returns a list with the same length as .x

• simap_vec(): Returns an atomic vector with the same length as .x

• simap_lgl(): Returns a logical vector

• simap_int(): Returns an integer vector

• simap_dbl(): Returns a double vector

• simap_chr(): Returns a character vector

• simap_structure(): Returns a new glycan structure vector (.f must return igraph objects)

Value

• simap(): A list

• simap_vec(): An atomic vector of type specified by .ptype

• simap_lgl(): Returns a logical vector

• simap_int(): Returns an integer vector

• simap_dbl(): Returns a double vector

• simap_chr(): Returns a character vector

• simap_structure(): A new glyrepr_structure object

smap 23

Examples

Create structure vectors with duplicates
core1 <- o_glycan_core_1()
core2 <- n_glycan_core()
structures <- c(core1, core2, core1) # core1 appears twice

Map a function that uses both structure and index
simap_chr(structures, function(g, i) paste0("Structure_", i, "_vcount_", igraph::vcount(g)))

Use purrr-style lambda functions
simap_chr(structures, ~ paste0("Pos", .y, "_vertices", igraph::vcount(.x)))

smap Map Functions Over Glycan Structure Vectors

Description

These functions apply a function to each unique structure in a glycan structure vector, taking ad-
vantage of hash-based deduplication to avoid redundant computation. Similar to purrr mapping
functions, but optimized for glycan structure vectors.

Usage

smap(.x, .f, ..., .parallel = FALSE)

smap_vec(.x, .f, ..., .ptype = NULL, .parallel = FALSE)

smap_lgl(.x, .f, ..., .parallel = FALSE)

smap_int(.x, .f, ..., .parallel = FALSE)

smap_dbl(.x, .f, ..., .parallel = FALSE)

smap_chr(.x, .f, ..., .parallel = FALSE)

smap_structure(.x, .f, ..., .parallel = FALSE)

Arguments

.x A glycan structure vector (glyrepr_structure).

.f A function that takes an igraph object and returns a result. Can be a function,
purrr-style lambda (~ .x$attr), or a character string naming a function.

... Additional arguments passed to .f.

.parallel Logical; whether to use parallel processing. If FALSE (default), parallel process-
ing is disabled. Set to TRUE to enable parallel processing.

.ptype A prototype for the return type (for smap_vec).

24 smap

Details

These functions only compute .f once for each unique structure, then map the results back to the
original vector positions. This is much more efficient than applying .f to each element individually
when there are duplicate structures.

Return Types:

• smap(): Returns a list with the same length as .x

• smap_vec(): Returns an atomic vector with the same length as .x

• smap_lgl(): Returns a logical vector

• smap_int(): Returns an integer vector

• smap_dbl(): Returns a double vector

• smap_chr(): Returns a character vector

• smap_structure(): Returns a new glycan structure vector (.f must return igraph objects)

Value

• smap(): A list

• smap_vec(): An atomic vector of type specified by .ptype

• smap_lgl/int/dbl/chr(): Atomic vectors of the corresponding type

• smap_structure(): A new glyrepr_structure object

Examples

Create a structure vector with duplicates
core1 <- o_glycan_core_1()
core2 <- n_glycan_core()
structures <- c(core1, core2, core1) # core1 appears twice

Map a function that counts vertices - only computed twice, not three times
smap_int(structures, igraph::vcount)

Map a function that returns logical
smap_lgl(structures, function(g) igraph::vcount(g) > 5)

Use purrr-style lambda functions
smap_int(structures, ~ igraph::vcount(.x))
smap_lgl(structures, ~ igraph::vcount(.x) > 5)

Map a function that modifies structure (must return igraph)
add_vertex_names <- function(g) {

if (!("name" %in% igraph::vertex_attr_names(g))) {
igraph::set_vertex_attr(g, "name", value = paste0("v", seq_len(igraph::vcount(g))))

} else {
g

}
}
smap_structure(structures, add_vertex_names)

smap2 25

smap2 Map Functions Over Two Glycan Structure Vectors

Description

These functions apply a function to each unique structure combination in two glycan structure
vectors, taking advantage of hash-based deduplication to avoid redundant computation. Similar to
purrr map2 functions, but optimized for glycan structure vectors.

Usage

smap2(.x, .y, .f, ..., .parallel = FALSE)

smap2_vec(.x, .y, .f, ..., .ptype = NULL, .parallel = FALSE)

smap2_lgl(.x, .y, .f, ..., .parallel = FALSE)

smap2_int(.x, .y, .f, ..., .parallel = FALSE)

smap2_dbl(.x, .y, .f, ..., .parallel = FALSE)

smap2_chr(.x, .y, .f, ..., .parallel = FALSE)

smap2_structure(.x, .y, .f, ..., .parallel = FALSE)

Arguments

.x A glycan structure vector (glyrepr_structure).

.y A vector of the same length as .x, or length 1 (will be recycled).

.f A function that takes an igraph object (from .x) and a value (from .y) and
returns a result. Can be a function, purrr-style lambda (~ .x + .y), or a character
string naming a function.

... Additional arguments passed to .f.

.parallel Logical; whether to use parallel processing. If FALSE (default), parallel process-
ing is disabled. Set to TRUE to enable parallel processing. See examples in smap
for how to set up and use parallel processing.

.ptype A prototype for the return type (for smap2_vec).

Details

These functions only compute .f once for each unique combination of structure and corresponding
.y value, then map the results back to the original vector positions. This is much more efficient
than applying .f to each element pair individually when there are duplicate structure-value combi-
nations.

NA Handling: NA elements in .x are preserved in the output - the function is not applied to NA
positions, and the corresponding results are set to NA.

26 smap2

Return Types:

• smap2(): Returns a list with the same length as .x

• smap2_vec(): Returns an atomic vector with the same length as .x

• smap2_lgl(): Returns a logical vector

• smap2_int(): Returns an integer vector

• smap2_dbl(): Returns a double vector

• smap2_chr(): Returns a character vector

• smap2_structure(): Returns a new glycan structure vector (.f must return igraph objects)

Value

• smap2(): A list

• smap2_vec(): An atomic vector of type specified by .ptype

• smap2_lgl/int/dbl/chr(): Atomic vectors of the corresponding type

• smap2_structure(): A new glyrepr_structure object

Examples

Create structure vectors with duplicates
core1 <- o_glycan_core_1()
core2 <- n_glycan_core()
structures <- c(core1, core2, core1) # core1 appears twice
weights <- c(1.0, 2.0, 1.0) # corresponding weights

Map a function that uses both structure and weight
smap2_dbl(structures, weights, function(g, w) igraph::vcount(g) * w)

Use purrr-style lambda functions
smap2_dbl(structures, weights, ~ igraph::vcount(.x) * .y)

Test with recycling (single weight for all structures)
smap2_dbl(structures, 2.5, ~ igraph::vcount(.x) * .y)

Map a function that modifies structure based on second argument
This example adds a graph attribute instead of modifying topology
add_weight_attr <- function(g, weight) {

igraph::set_graph_attr(g, "weight", weight)
}
weights_to_add <- c(1.5, 2.5, 1.5)
smap2_structure(structures, weights_to_add, add_weight_attr)

smap_predicates 27

smap_predicates Test Predicates on Glycan Structure Vectors

Description

These functions test predicates on unique structures in a glycan structure vector, taking advantage
of hash-based deduplication to avoid redundant computation. Similar to purrr predicate functions,
but optimized for glycan structure vectors.

Usage

ssome(.x, .p, ...)

severy(.x, .p, ...)

snone(.x, .p, ...)

Arguments

.x A glycan structure vector (glyrepr_structure).

.p A predicate function that takes an igraph object and returns a logical value. Can
be a function, purrr-style lambda (~ .x$attr), or a character string naming a
function.

... Additional arguments passed to .p.

Details

These functions only evaluate .p once for each unique structure, making them much more efficient
than applying .p to each element individually when there are duplicate structures.

Return Values:

• ssome(): Returns TRUE if at least one unique structure satisfies the predicate

• severy(): Returns TRUE if all unique structures satisfy the predicate

• snone(): Returns TRUE if no unique structures satisfy the predicate

Value

A single logical value.

Examples

Create a structure vector with duplicates
core1 <- o_glycan_core_1()
core2 <- n_glycan_core()
structures <- c(core1, core2, core1) # core1 appears twice

Test if some structures have more than 5 vertices

28 smap_unique

ssome(structures, function(g) igraph::vcount(g) > 5)

Test if all structures have at least 3 vertices
severy(structures, function(g) igraph::vcount(g) >= 3)

Test if no structures have more than 20 vertices
snone(structures, function(g) igraph::vcount(g) > 20)

Use purrr-style lambda functions
ssome(structures, ~ igraph::vcount(.x) > 5)
severy(structures, ~ igraph::vcount(.x) >= 3)
snone(structures, ~ igraph::vcount(.x) > 20)

smap_unique Apply Function to Unique Structures Only

Description

Apply a function only to the unique structures in a glycan structure vector, returning results in the
same order as the unique structures appear. This is useful when you need to perform expensive
computations but only care about unique results.

Usage

smap_unique(.x, .f, ..., .parallel = FALSE)

Arguments

.x A glycan structure vector (glyrepr_structure).

.f A function that takes an igraph object and returns a result. Can be a function,
purrr-style lambda (~ .x$attr), or a character string naming a function.

... Additional arguments passed to .f.

.parallel Logical; whether to use parallel processing. If FALSE (default), parallel process-
ing is disabled. Set to TRUE to enable parallel processing. See examples in smap
for how to set up and use parallel processing.

Value

A list with results for each unique structure, named by their hash codes.

Examples

Create a structure vector with duplicates
core1 <- o_glycan_core_1()
structures <- c(core1, core1, core1) # same structure 3 times

Only compute once for the unique structure

spmap 29

unique_results <- smap_unique(structures, igraph::vcount)
length(unique_results) # 1, not 3

Use purrr-style lambda
unique_results2 <- smap_unique(structures, ~ igraph::vcount(.x))
length(unique_results2) # 1, not 3

spmap Map Functions Over Glycan Structure Vectors and Multiple Argu-
ments

Description

These functions apply a function to each unique structure in a glycan structure vector along with
corresponding elements from multiple other vectors, taking advantage of hash-based deduplication
to avoid redundant computation. Similar to purrr pmap functions, but optimized for glycan structure
vectors.

Usage

spmap(.l, .f, ..., .parallel = FALSE)

spmap_vec(.l, .f, ..., .ptype = NULL, .parallel = FALSE)

spmap_lgl(.l, .f, ..., .parallel = FALSE)

spmap_int(.l, .f, ..., .parallel = FALSE)

spmap_dbl(.l, .f, ..., .parallel = FALSE)

spmap_chr(.l, .f, ..., .parallel = FALSE)

spmap_structure(.l, .f, ..., .parallel = FALSE)

Arguments

.l A list where the first element is a glycan structure vector (glyrepr_structure)
and the remaining elements are vectors of the same length or length 1 (will be
recycled).

.f A function that takes an igraph object (from first element of .l) and values from
other elements, returning a result. Can be a function, purrr-style lambda (~ .x +
.y + .z), or a character string naming a function.

... Additional arguments passed to .f.

.parallel Logical; whether to use parallel processing. If FALSE (default), parallel process-
ing is disabled. Set to TRUE to enable parallel processing. See examples in smap
for how to set up and use parallel processing.

.ptype A prototype for the return type (for spmap_vec).

30 spmap

Details

These functions only compute .f once for each unique combination of structure and corresponding
values from other vectors, then map the results back to the original vector positions.

NA Handling: NA elements in the first argument (glycan structure vector) are preserved in the
output.

Time Complexity Performance:
Performance scales with unique combinations of all arguments rather than total vector length. When
argument vectors are highly redundant, performance approaches O(unique_structures). Scaling
factor shows time increase when vector size increases 20x.

Return Types:

• spmap(): Returns a list with the same length as the input vectors

• spmap_vec(): Returns an atomic vector with the same length as the input vectors

• spmap_lgl(): Returns a logical vector

• spmap_int(): Returns an integer vector

• spmap_dbl(): Returns a double vector

• spmap_chr(): Returns a character vector

• spmap_structure(): Returns a new glycan structure vector (.f must return igraph objects)

Value

• spmap(): A list

• spmap_vec(): An atomic vector of type specified by .ptype

• spmap_lgl/int/dbl/chr(): Atomic vectors of the corresponding type

• spmap_structure(): A new glyrepr_structure object

Examples

Create structure vectors with duplicates
core1 <- o_glycan_core_1()
core2 <- n_glycan_core()
structures <- c(core1, core2, core1) # core1 appears twice
weights <- c(1.0, 2.0, 1.0) # corresponding weights
factors <- c(2, 3, 2) # corresponding factors

Map a function that uses structure, weight, and factor
spmap_dbl(list(structures, weights, factors),

function(g, w, f) igraph::vcount(g) * w * f)

Use purrr-style lambda functions
spmap_dbl(list(structures, weights, factors), ~ igraph::vcount(..1) * ..2 * ..3)

Test with recycling
spmap_dbl(list(structures, 2.0, 3), ~ igraph::vcount(..1) * ..2 * ..3)

structure_to_iupac 31

structure_to_iupac Convert Glycan Structure to IUPAC-like Sequence

Description

Convert a glycan structure to a sequence representation in the form of mono(linkage)mono, with
branches represented by square brackets []. The backbone is chosen as the longest path, and for
branches, linkages are ordered lexicographically with smaller linkages on the backbone.

Usage

structure_to_iupac(glycan)

Arguments

glycan A glyrepr_structure vector.

Value

A character vector representing the IUPAC sequences.

Sequence Format

The sequence follows the format mono(linkage)mono, where:

• mono: monosaccharide name with optional substituents (e.g., Glc, GlcNAc, Glc3Me)

• linkage: glycosidic linkage (e.g., b1-4, a1-3)

• Branches are enclosed in square brackets []

• Substituents are appended directly to monosaccharide names (e.g., Glc3Me for Glc with 3Me
substituent)

Backbone Selection

The backbone is selected as the longest path in the tree. For branches, the same rule applies recur-
sively.

Linkage Comparison

Linkages are compared lexicographically:

1. First by anomeric configuration: ? > b > a

2. Then by first position: ? > numbers (numerically)

3. Finally by second position: ? > numbers (numerically)

Smaller linkages are placed on the backbone, larger ones in branches.

32 valid_linkages

Examples

Simple linear structure
structure_to_iupac(o_glycan_core_1())

Branched structure
structure_to_iupac(n_glycan_core())

Structure with substituents
graph <- igraph::make_graph(~ 1-+2)
igraph::V(graph)$mono <- c("Glc", "GlcNAc")
igraph::V(graph)$sub <- c("3Me", "6Ac")
igraph::E(graph)$linkage <- "b1-4"
graph$anomer <- "a1"
glycan <- glycan_structure(graph)
structure_to_iupac(glycan) # Returns "GlcNAc6Ac(b1-4)Glc3Me(a1-"

Vectorized structures
structs <- c(o_glycan_core_1(), n_glycan_core())
structure_to_iupac(structs)

valid_linkages Check if Linkages are Valid

Description

Valid linkages are in the form of "a1-2", "b1-4", "a?-1", etc. Specifically, the pattern is xy-z:

• x: the anomer, either "a", "b", or "?".

• y: the first position, either "1", "2" or "?".

• z: the second position, either a 1-9 digit or "?". Can also be multiple positions separated by
"/", e.g. "1/2/3". "?" could not be used with "/".

Usage

valid_linkages(linkages)

Arguments

linkages A character vector of linkages.

Value

A logical vector.

valid_linkages 33

Examples

Valid linkages
valid_linkages(c("a1-2", "?1-4", "a?-1", "b?-?", "??-?", "a1/2-3"))

Invalid linkages
valid_linkages(c("a1-2/?", "1-4", "a/b1-2", "c1-2", "a9-1"))

Index

as_glycan_composition, 2
as_glycan_structure, 3
available_monosaccharides, 4
available_monosaccharides(), 6, 9
available_substituents, 5

convert_to_generic, 5
convert_to_generic(), 9, 19
count_mono, 7

get_anomer, 8
get_mono_type, 8
get_mono_type(), 4, 11
get_structure_graphs, 10
get_structure_level, 10
get_structure_level(), 19, 20
glycan_composition, 11
glycan_composition(), 2
glycan_structure, 12
glycan_structure(), 11, 14, 15, 19, 20

has_linkages, 15
has_linkages(), 11, 19

is_glycan_composition
(glycan_composition), 11

is_glycan_structure (glycan_structure),
12

is_known_monosaccharide, 16

n_glycan_core, 17

o_glycan_core_1 (n_glycan_core), 17
o_glycan_core_2 (n_glycan_core), 17

possible_linkages, 18
possible_linkages(), 16

reduce_structure_level, 19
remove_linkages, 20
remove_linkages(), 16, 19

remove_substituents, 21

severy (smap_predicates), 27
simap, 21
simap_chr (simap), 21
simap_dbl (simap), 21
simap_int (simap), 21
simap_lgl (simap), 21
simap_structure (simap), 21
simap_vec (simap), 21
smap, 23, 25, 28, 29
smap2, 25
smap2_chr (smap2), 25
smap2_dbl (smap2), 25
smap2_int (smap2), 25
smap2_lgl (smap2), 25
smap2_structure (smap2), 25
smap2_vec (smap2), 25
smap_chr (smap), 23
smap_dbl (smap), 23
smap_int (smap), 23
smap_lgl (smap), 23
smap_predicates, 27
smap_structure (smap), 23
smap_unique, 28
smap_vec (smap), 23
snone (smap_predicates), 27
spmap, 29
spmap_chr (spmap), 29
spmap_dbl (spmap), 29
spmap_int (spmap), 29
spmap_lgl (spmap), 29
spmap_structure (spmap), 29
spmap_vec (spmap), 29
ssome (smap_predicates), 27
structure_to_iupac, 31

valid_linkages, 32
valid_linkages(), 18, 19

34

	as_glycan_composition
	as_glycan_structure
	available_monosaccharides
	available_substituents
	convert_to_generic
	count_mono
	get_anomer
	get_mono_type
	get_structure_graphs
	get_structure_level
	glycan_composition
	glycan_structure
	has_linkages
	is_known_monosaccharide
	n_glycan_core
	possible_linkages
	reduce_structure_level
	remove_linkages
	remove_substituents
	simap
	smap
	smap2
	smap_predicates
	smap_unique
	spmap
	structure_to_iupac
	valid_linkages
	Index

