
Introduction to Hopfield Networks With the

Package ‘hann’

Emmanuel Paradis

January 26, 2026

Contents

1 Hopfield Networks 1

2 Data Coding 2

3 Building the Hopfield Network 3

4 Optimizing the Parameters 3

5 Classification and Error Rates 4

6 Perspectives 6

References 6

1 Hopfield Networks

The Hopfield network [3] is a type of neural network with N (input) neurons which are
either in state −1 or in state +1. These states are determined in order to minimize its
global energy level with respect to a list of K “patterns” each of length N .

In practice, the Hopfield network is coupled with other layers neurons which are them-
selves connected to C classification (or output) neurons whose signals identify the patterns.
The different layers are connected through matrices of weights. There are as many layers
than there are weight matrices.1

The K patterns are used to train the network, both to minimize the energy level of
the Hopfield network and to find the parameter values that minimize the loss function (the
discrepancy between the observed output signals and their expectations under the known
classes of the patterns).

Hopfield networks can “memorize” a large number of patterns. Giving N input neurons,
there are 2N possible patterns, for example for N = 30, 60, and 100:

> N <- c(30, 60, 100)

> 2^N

[1] 1.073742e+09 1.152922e+18 1.267651e+30

Several studies tried to find if a Hopfield network can memorize as many patterns as
these numbers, e.g., [1, 4]. Krotov and Hopfield [5] proposed the following formula for the
maximum number of these patterns (M):

1See https://www.cs.toronto.edu/~lczhang/360/lec/w02/terms.html for a very nice introduction to
artificial neural networks.

1

M =
1

2(2n− 3)!!
×

Nn−1

lnN
,

where n is a parameter of the energy function. For example for the same values of N above
and for n = 2, 10, 20, and 30:

> ## double factorial (n!!) that we want vectorized to use with

> ## outer() below

> dfact <- function(n) {

+ ## seq() is not vectorized on its 2nd arg.

+ x <- mapply(seq, from = 1, to = n, by = 2)

+ sapply(x, prod)

+ }

> ## eq. 6 in Krotov & Hopfield (2016)

> funM <- function(N, n)

+ N^(n - 1) / (2 * dfact(2 * n - 3) * log(N))

> n <- c(2, 10, 20, 30)

> o <- outer(N, n, funM)

> dimnames(o) <- list(paste("N =", N), paste("n =", n))

> o

n = 2 n = 10 n = 20 n = 30

N = 30 4.410212 8.396947e+04 2.083464e+05 2.037472e+03

N = 60 7.327180 3.571403e+07 9.074098e+10 9.086758e+11

N = 100 10.857362 3.150767e+09 1.323940e+15 2.192610e+18

2 Data Coding

The patterns must be arranged in a matrix where each row represents a single pattern (so
there are K rows). The number of columns of this matrix is the number of input neurons
(N).

> N <- 60L

> K <- 2000L

> xi <- matrix(1L, K, N)

> p <- 0.15 # not smaller than 0.15

> probs <- c(p, 1 - p)

> v <- c(-1L, 1L)

> set.seed(1)

> xi1 <- t(replicate(1000, sample(v, N, TRUE, probs)))

> xi2 <- t(replicate(1000, sample(v, N, TRUE, rev(probs))))

> xi <- rbind(xi1, xi2)

> stopifnot(nrow(unique(xi)) == K)

Before simulating the data, we called set.seed(1) to repeat consistently the results
each time the code of this vignette is executed. If the user wants to simulate other data,
just delete the line or give another value to set.seed(). If a small value is given to p, it
is more likely that the number of unique patterns is less than K. It is recommended to use
only unique patterns in the subsequent analyses.

2

3 Building the Hopfield Network

The function buildSigma() finds a network with the lowest energy level. The algorithm
starts from a random network; convergence to a low energy level depends on the initial state
of the network. Thus, the algorithm is repeated 100 times (by default). For this document,
we set the number of repetitions to 10 to avoid printing to many lines.2 We try the function
with two values of the energy parameter: n = 20 (this is the default) and n = 30.

> library(hann)

> sigma20 <- buildSigma(xi, nrep = 10)

1: Initial energy = -1.02e+25 Updated energy = -4.05e+29

2: Initial energy = -2.42e+26 Updated energy = 0

3: Initial energy = -2.00e+26 Updated energy = 0

4: Initial energy = -3.84e+29 Updated energy = 0

5: Initial energy = -4.87e+25 Updated energy = -3.87e+35

6: Initial energy = -2.55e+29 Updated energy = 0

7: Initial energy = -1.02e+28 Updated energy = 0

8: Initial energy = -4.68e+25 Updated energy = 0

9: Initial energy = -5.03e+26 Updated energy = 0

10: Initial energy = -3.60e+29 Updated energy = 0

Final energy = -3.871808e+35

> sigma30 <- buildSigma(xi, n = 30, nrep = 10)

1: Initial energy = -5.51e+37 Updated energy = -2.21e+53

2: Initial energy = -3.00e+42 Updated energy = 0

3: Initial energy = -2.56e+41 Updated energy = 0

4: Initial energy = -3.22e+42 Updated energy = -2.21e+53

5: Initial energy = -1.18e+39 Updated energy = -3.13e+44

6: Initial energy = -5.91e+42 Updated energy = 0

7: Initial energy = -2.78e+41 Updated energy = 0

8: Initial energy = -6.08e+40 Updated energy = 0

9: Initial energy = -8.17e+43 Updated energy = -2.21e+53

10: Initial energy = -1.18e+47 Updated energy = 0

Final energy = -2.214794e+53

Typically, around 20% of the repetitions convergence to the same (lowest) energy level.
It is recommended to leave the default nrep = 100.

4 Optimizing the Parameters

The package hann has two functions to build neural networks: hann1 and hann3. See their
respective help pages where they are described.

We now optimize both types of networks with the data simulated above. We first create
a membership variable indicating that the first 1000 patterns belong to the same class, and
the last 1000 ones to another class:

> cl <- rep(1:2, each = 1000)

2This function has the quiet (FALSE by default) to only return the network with the lowest energy level.

3

Considering that each pattern in the first class has, on average, 15% of −1, while each
pattern in the second class has, on average, 15% of +1, these patterns are expected to be
very similar within a class but very dissimilar between both classes.

We can now optimize the neural nets asking to print the error rate at each iteration:

> ctr <- control.hann()

> ctr$trace.error <- TRUE

> nt1 <- hann1(xi, sigma20, cl, control = ctr)

iteration 0 Error rate = 1927 / 2000 obj_fun = 9499.376

iteration 1 obj_fun = 9499.376132

iteration 1 Error rate = 0 / 2000 obj_fun = 0.000

For the more complicated 3-layer network, we set a milder target for the convergence of
the loss function:

> ctr$target <- 0.1

> nt3 <- hann3(xi, sigma20, cl, control = ctr)

iteration 0 Error rate = 1354 / 2000 obj_fun = 4633.223

iteration 1 Error rate = 989 / 2000 obj_fun = 4154.603

iteration 2 Error rate = 0 / 2000 obj_fun = 4.802

iteration 3 Error rate = 0 / 2000 obj_fun = 4.333

iteration 4 Error rate = 0 / 2000 obj_fun = 2.623

iteration 5 Error rate = 0 / 2000 obj_fun = 2.157

iteration 6 Error rate = 0 / 2000 obj_fun = 0.056

Both networks perform well and the optimization converged quickly.

5 Classification and Error Rates

The performance of the classification of a network is assessed with the (generic) function
predict; thus, the help page is accessed with ?predict.hann1 (or ?predict.hann3). We
first assess the error rates with the training data:

> table(predict(nt1, xi, rawsignal = FALSE), cl)

cl

1 2

1 1000 0

2 0 1000

> table(predict(nt3, xi, rawsignal = FALSE), cl)

cl

1 2

1 1000 0

2 0 1000

4

A trivial test is to assess whether similar classifications could be achieved with random
parameters (i.e., unoptimized networks). This can be done by repeating the above analyses
after setting the number of iterations to zero:3

> ctr$iterlim <- 0

> nt0 <- hann1(xi, sigma20, cl, control = ctr)

iteration 0 Error rate = 1924 / 2000 obj_fun = 8929.936

> table(predict(nt0, xi, rawsignal = FALSE), cl)

cl

1 2

1 43 967

2 957 33

> nt0b <- hann3(xi, sigma20, cl, control = ctr)

iteration 0 Error rate = 1845 / 2000 obj_fun = 5202.224

> table(predict(nt0b, xi, rawsignal = FALSE), cl)

cl

1 2

1 101 898

2 899 102

Clearly, random networks cannot identify our patterns.
We remember that both classes of patterns are fairly homogeneous but different each

others. What if these patterns are totally random while still in two different classes? We
try to assess this question by setting a small network with N = 30 and K = 200 patterns.

> N <- 30

> K <- 200

> xi <- matrix(sample(v, K * N, TRUE), K, N)

The rest of the analyses is very similar to the above ones:

> sigma <- buildSigma(xi, quiet = TRUE)

> cl <- rep(1:2, each = 100)

> ctr <- control.hann(iterlim = 1000, quiet = TRUE)

> net1 <- hann1(xi, sigma, cl, control = ctr)

> net3 <- hann3(xi, sigma, cl, control = ctr)

We used a larger number of iterations to make sure that the optimizations reached (if
possible) a small value of the loss function. We can now assess the (final) error rates:

> table(predict(net1, xi, rawsignal = FALSE), cl)

cl

1 2

1 77 34

2 23 66

3By default, hann1() and hann3() initialize the network parameters with random values.

5

> table(predict(net3, xi, rawsignal = FALSE), cl)

cl

1 2

1 100 0

2 0 100

The 3-layer net performed much better than the 1-layer one. Setting iterlim to a larger
value can make the 3-layer network reach 0% error. The literature on neural networks states
that networks with no hidden layer fail to solve some problems even with very small data
sets [2, 5].

6 Perspectives

The present document aims to give a quick overview of the possibilities of hann. The package
is in its development stage; the current and (possible) future lines of development are:

• Parallelization: there is an early attempt to use multicore based on OMP in hann1().
Therefore, this cannot be used together with functions from the package parallel. On
the other hand, it is possible to run several optimizations in parallel, for instance with
parallel::mclapply() if the OMP-based parallelization is off.

• Preparing databases for training: some works have been started on DNA.

References

[1] M. Demircigil, J. Heusel, M. Löwe, S. Upgang, and F. Vermet. On a model of associative
memory with huge storage capacity. Journal of Statistical Physics, 168:288–299, 2017.

[2] J. L. Elman. Finding structure in time. Cognitive Science, 14:179–211, 1990.

[3] J. J. Hopfield. Neural networks and physical systems with emergent collective compu-
tational abilities. Proceedings of the National Academy of Sciences, USA, 79:2554–2558,
1982.

[4] I. Kanter and H. Sompolinsky. Associative recall of memory without errors. Physical

Review A, 35:380–392, 1987.

[5] D. Krotov and J. J. Hopfield. Dense associative memory for pattern recognition.
arXiv.1606.01164, 2016.

6

