Package ‘plumber2’

January 20, 2026
Title Easy and Powerful Web Servers
Version 0.2.0

Description Automatically create a web server from annotated 'R’ files or by
building it up programmatically. Provides automatic 'OpenAPI' documentation,
input handling, asynchronous evaluation, and plugin support.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.3
Depends R (>=4.2)

Imports base64enc, cli, fiery (>= 1.5.0), fireproof, firesafety,
firesale, firestorm, fs, jsonlite, promises, R6, ragg, rapidoc,
readr, reqres (>= 1.0.0), rlang (>= 1.1.0), routr (>= 2.0.0),
roxygen?2, stringi, svglite, utils, webutils, yaml

Suggests arrow, callr, geojsonsf, htmlwidgets, later, mirai,
nanoparquet, quarto, redoc, rmarkdown, shiny, storr, swagger,
testthat (>= 3.0.0), tomledit

VignetteBuilder quarto
URL https://plumber2.posit.co/, https://github.com/posit-dev/plumber?2

BugReports https://github.com/posit-dev/plumber2/issues
Config/testthat/edition 3
NeedsCompilation no

Author Thomas Lin Pedersen [aut, cre] (ORCID:
<https://orcid.org/0000-0002-5147-4711>),
Posit Software, PBC [cph, fnd] (ROR: <https://ror.org/03wc8by49>)

Maintainer Thomas Lin Pedersen <thomas.pedersen@posit.co>
Repository CRAN
Date/Publication 2026-01-20 10:20:08 UTC

https://plumber2.posit.co/
https://github.com/posit-dev/plumber2
https://github.com/posit-dev/plumber2/issues
https://orcid.org/0000-0002-5147-4711
https://ror.org/03wc8by49

2 add_plumber2_tag

Contents
add_plumber2_tag 2
APL . . e e e e e 4
api_add_route e e 6
API_ASSELS e e e e e e 7
api_auth L e e e 9
api_auth_guard 10
api_datastore L e e 11
api_doCso e 13
api_forward e 15
api_logger 16
API_MESSAZE « « o v v v e e e e e e e e e e e e e e 17
API_ON . . o o v e e e e e e 19
api_package L 21
api_redireCt e e 22
API_TEPOTL .« . v o o v e 23
api_request_handlers L 26
api_request_header_handlers oL oo 36
API_TUN . . o vttt e e e e e e e e e e e e e e e e e 40
API_SECUTILY_COTS . .« . v v v v v e i e e e e e e e e e e e e e 42
api_security_headers 44
api_security_resource_isolation L Lo 46
api_session_cookie e 47
api_shiny 49
async_evaluators e e e e e 50
create_server_yml L e 51
GELLOPLS . o o v e e e e e e e e 52
NeEXt . . o e e 53
OPENAPL + « v v v v v e e e e e e e e e e e e e e e e e 54
PATSEIS .« o v o v e e e e e e e e e e e e e e e e e 58
Plumber2 e e e 60
TEEISIET_ASYNC .« & v v v v v e 67
TEZISTEI_PALSET . . .« « o v o v v i e e e e e e e e e e e e e 68
register_serializero 69
serializers e e e e e e e e e 71

Index 74

add_plumber2_tag Add a tag extension to plumber2
Description

Package authors can extend plumber2 with their own functionalities. If they wish to add a new tag
to be used when writing annotated plumber2 routes they can use this function. If so, it should be
called when the package is loaded.

add_plumber2_tag 3

Usage

add_plumber2_tag(tag, handler = NULL)

Arguments

tag The name of the tag

handler A handler function for the tag. See Details
Details

The handler argument must be, if provided, a function with the arguments block, call, tags,
values, and env. block is a list with the currently parsed information from the block. You can
add or modify the values within to suit your need as well as subclass it. You should not remove any
values as others might need them. call is the parsed value of whatever expression was beneath the
plumber2 block. tags is a character vector of all the tags in the block, and values is a list of all
the values associated with the tags (that is, whatever comes after the tag in the block). The values
are unparsed. You should assume that all tags not relevant for your extension has already been
handled and incorporated into block. The env argument contains the environment the annotation
file is evaluated in. The function must return a modified version of block unless block is of the
class plumber2_empty_block in which case it is allowed to construct a new object from scratch.
If you add a subclass to block you should make sure that a method for apply_plumber2_block()
for the subclass exists.

If handler is NULL then the tag will be registered but no associated handler will be added. This can
make sense if you have a new block type that consists of multiple tags but only want a single handler
for it. In that case you register a handler for one of the required tags and register the remaining tags
without a handler.

Value

This function is called for its side effects

See Also

apply_plumber2_block()

Examples

Add a tag that says hello when used

add_plumber2_tag("hello”, function(block, call, tags, values, env) {
message("Hello")
class(block) <- c("hello_block"”, class(block))
block

»

4 api

api Create a new plumber API, optionally based on one or more plumber

files

Description

This is the main way to create a new Plumber2 object that encapsulates your full api. It is also
possible to add files to the API after creation using api_parse()

Usage
api(

host = get_opts("host”, "127.0.0.1"),

port = get_opts("port”, 8080),

doc_type = get_opts("docType”, "rapidoc”),

doc_path = get_opts("docPath”, "__docs__"),
reject_missing_methods = get_opts("rejectMissingMethods”, FALSE),
ignore_trailing_slash = get_opts("ignoreTrailingSlash”, TRUE),
max_request_size = get_opts("maxRequestSize"),

shared_secret = get_opts("sharedSecret"),

compression_limit = get_opts("compressionLimit”, 1000),
default_async = get_opts("async”, "mirai”),

env = caller_env()

)
is_plumber_api(x)

api_parse(api, ...)

Arguments

plumber files or directories containing plumber files to be parsed in the given
order. The order of parsing determines the final order of the routes in the stack.
If ... contains a _server.yml file then all other files in . . . will be ignored and
the _server.yml file will be used as the basis for the API

host A string that is a valid IPv4 address that is owned by this server

port A number or integer that indicates the server port that should be listened on.
Note that on most Unix-like systems including Linux and macOS, port numbers
smaller than 1024 require root privileges.

doc_type The type of API documentation to generate. Can be either "rapidoc” (the de-

non

fault), "redoc”, "swagger", or NULL (equating to not generating API docs)

doc_path The URL path to serve the api documentation from

reject_missing_methods
Should requests to paths that doesn’t have a handler for the specific method
automatically be rejected with a 405 Method Not Allowed response with the

api 5

correct Allow header informing the client of the implemented methods. As-
signing a handler to "any" for the same path at a later point will overwrite this
functionality. Be aware that setting this to TRUE will prevent the request from
falling through to other routes that might have a matching method and path. This
setting anly affects handlers on the request router.

ignore_trailing_slash
Logical. Should the trailing slash of a path be ignored when adding handlers
and handling requests. Setting this will not change the request or the path associ-
ated with but just ensure that both path/to/resource and path/to/resource/
ends up in the same handler.

max_request_size
Sets a maximum size of request bodies. Setting this will add a handler to the
header router that automatically rejects requests based on their Content-Length
header

shared_secret Assigns a shared secret to the api. Setting this will add a handler to the header
router that automatically rejects requests if their Plumber-Shared-Secret header
doesn’t contain the same value. Be aware that this type of authentication is very
weak. Never put the shared secret in plain text but rely on e.g. the keyring
package for storage. Even so, if requests are send over HTTP (not HTTPS) then
anyone can read the secret and use it

compression_limit
The size threshold in bytes for trying to compress the response body (it is still
dependant on content negotiation)

default_async The default evaluator to use for async request handling

env The parent environment to the environment the files should be evaluated in. Each
file will be evaluated in it’s own environment so they don’t interfere with each
other
X An object to test for whether it is a plumber api
api A plumber2 api object to parse files into
Value
A Plumber?2 object
See Also

api_package() for creating an api based on files distributed with a package

get_opts() for how to set default options

Examples

When creating an API programmatically you'll usually initialise the object
without pointing to any route files or a _server.yml file
pa <- api()

You can pass it a directory and it will load up all recognised files it
contains

6 api_add_route

example_dir <- system.file("plumber2"”, "quickstart”, package = "plumber2")
pa <- api(example_dir)

Or you can pass files directly
pa <- api(list.files(example_dir, full.names = TRUE)[1])

api_add_route Add a new route to either the request or header router

Description

This function allows explicit creation of routes or addition/merging of a predefined routr::Route
into the router of the api. A new route can also be created with the route argument when adding
a handler. However, that way will always add new routes to the end of the stack, whereas using
api_add_route() allows you full control of the placement.

Usage
api_add_route(api, name, route = NULL, header = FALSE, after = NULL, root = "")
Arguments
api A plumber?2 api object to add the route to
name The name of the route to add. If a route is already present with this name then
the provided route (if any) is merged into it
route The route to add. If NULL a new empty route will be created
header Logical. Should the route be added to the header router?
after The location to place the new route on the stack. NULL will place it at the end.
Will not have an effect if a route with the given name already exists.
root The root path to serve this route from.
Value

This functions return the api object allowing for easy chaining with the pipe

Using annotation
There is no direct equivalent to this when using annotated route files. However you can name your

route in a file by adding @routeName <name> to the first block of the file like so.

#* @routeName my_route
NULL

All relevant blocks in the file will then be added to this route, even if the route already exist. In that
way you can split the definition of a single route out among multiple files if needed.

api_assets 7

Examples

Add a new route and use it for a handler
api() |>
api_add_route("logger_route”) |>
api_any(
e
function() {
cat("I just handled a request!")

} ’
route = "logger_route”
)
api_assets Serve resources from your file system
Description

plumber2 provides two ways to serve files from your server. One (api_assets) goes through R
and gives you all the power you expect to further modify and work with the response. The other
(api_statics) never hits the R process and as a result is blazing fast. However this comes with the
price of very limited freedom to modify the response or even do basic authentication. Each has their
place.

Usage

api_assets(
api,
at,
path,
default_file = "index.html",
default_ext = "html”,
finalize = NULL,
continue = FALSE,
auth_flow = NULL,
auth_scope = NULL,

route = NULL
)
api_statics(
api,
at,
path,

use_index = TRUE,
fallthrough = FALSE,
html_charset = "utf-8",

8 api_assets

headers = 1list(),
validation = NULL,
except = NULL

)
Arguments
api A plumber?2 api object to add the rossource serving to
at The path to serve the resources from
path The location on the file system to map at to

default_file The default file to look for if the path does not map to a file directly (see Details)

default_ext The default file extension to add to the file if a file cannot be found at the pro-
vided path and the path does not have an extension (see Details)

finalize An optional function to run if a file is found. The function will receive the
request as the first argument, the response as the second, and anything passed
on through . .. in the dispatch method. Any return value from the function is
discarded. The function must accept . . .

continue A logical that should be returned if a file is found. Defaults to FALSE indicating
that the response should be send unmodified.

auth_flow A logical expression giving the authentication flow the client must pass to get
access to the resource.

auth_scope The scope requirements of the resource

route The name of the route in the header router to add the asset route to. Defaults to

the last route in the stack. If the route does not exist it will be created as the last
route in the stack

use_index Should an index. html file be served if present when a client requests the folder

fallthrough Should requests that doesn’t match a file enter the request loop or have a 404
response send directly

html_charset The charset to report when serving html files

headers A list of headers to add to the response. Will be combined with the global
headers of the app
validation An optional validation pattern. Presently, the only type of validation supported

"

is an exact string match of a header. For example, if validationis '"abc" =
"xyz"', then HTTP requests must have a header named abc (case-insensitive)
with the value xyz (case-sensitive). If a request does not have a matching header,
than httpuv will give a 403 Forbidden response. If the character (@) (the de-
fault), then no validation check will be performed.

except One or more url paths that should be excluded from the route. Requests match-
ing these will enter the standard router dispatch. The paths are interpreted as
subpaths to at, e.g. the final path to exclude will be at+exclude (see example)

Value

These functions return the api object allowing for easy chaining with the pipe

api_auth 9

Using annotation

When using annotated route files the functionality of api_assets() can be achieved like this:

#* Q@assets my_wd/ ./
NULL

When using annotated route files the functionality of api_statics() can be achieved like this:

#* @statics my_docs/ ~/
#* @except my_secret_folder/
NULL

Examples

Add asset serving through routr route
api() |>
api_assets("my_wd/", "./")

Add asset serving directly

api() |>
api_statics("my_docs”, "~/", except = "my_secret_folder/")
api_auth Add auth to an endpoint
Description

This function adds auth to a specific method + path. It does so by defining an auth flow which the
request must pass in order to proceed, as well as an optional vector of scopes required. The flow
is given as a logical expression of guards it must satisfy. If you have registered two guards, auth
and auth2, then a flow could be auth1 && auth?2 to require that both guards must be passed to gain
access. Alternatively you could use auth1 || auth2 to require that just one of them are passed.
Flows can be arbitrarily complex with nesting etc, but the OpenAPI spec has limits to what it can
describe so if you want to have an OpenAPI compliant api you must limit yourself to at most two
levels of nesting with the outer level being || (ie. (auth1 && auth2) || (auth3 && auth4) is ok,
but (auth1 || auth2) && (auth3 || auth4) is not due to the outer level being &&, and (auth1 &&
auth2) || (auth3 && (auth4 || auth5)) is not allowed because it has 3 nesting levels). This is
only a limitation of OpenAPI and plumber2 itself can handle all of the above. If scope is given
the scope of the user after successful authentication must contain all of the provided scopes. While
this function allows you to add authentication to a path directly, it is often more convenient to add
it along with the resource or functionality you want to protect. To that end, many functions such
as api_get() and api_report() also takes auth_flow and auth_scope as input and if given will
add auth to the relevant endpoint.

Usage

api_auth(api, method, path, auth_flow, auth_scope = NULL, add_doc = TRUE)

10 api_auth_guard

Arguments
api A plumber2 api object to add authentication to
method The HTTP method to add authentication to
path A string giving the path to be authenticated
auth_flow A logical expression giving the authentication flow the client must pass to get
access to the resource.
auth_scope The scope requirements of the resource
add_doc Should OpenAPI documentation be added for the authentication
Value

This functions return the api object allowing for easy chaining with the pipe

Examples

We are not adding the guards here - only the auth flow

We assume the guards ~oauth™, “basic™, and “key™ will be added
later
api() |>
api_datastore(storr::driver_environment()) |>
api_auth(
method = "get”,
path = "/user/<username>",
auth_flow = oauth || (basic && key)
)
api_auth_guard Add an auth guard to your API
Description

This function adds an auth guard to your API. Notably, this does not turn on auth for any of your
handlers but makes it available for reference in an auth flow. To use it, reference it in the auth_flow
argument of functions supporting it. Guards are defined using the various guard_x() constructors
in the fireproof package. Refer to these for further documentation

Usage
api_auth_guard(api, guard, name = NULL)

Arguments
api A plumber2 api object to add the authenticator to
guard A Guard subclass object defining an authentication scheme

name The name to use for referencing the guard in an authentication flow

api_datastore

Value

This functions return the api object allowing for easy chaining with the pipe

Using annotation

To add a guard to your api defined in an annotated file use the @authGuard tag:

#* @authGuard BasicAuth
fireproof::guard_basic(...)

The tag parameter (BasicAuth) provides the name for the guard

Examples

guard <- fireproof: :guard_key(
key_name = "plumber2-key",
validate = "MY_VERY_SECRET_KEY"
)

api() I>
api_datastore(storr::driver_environment()) [>
api_auth_guard(guard, "cookie_key")

11

api_datastore Persistent server-side data storage

Description

While using a session cookie is a convenient solution to persistent data storage between requests
it has the downside of requiring the data to be passed back and forth between server and client at
every exchange. This makes it impractical for all but the smallest snippets of data. An alternative
strategy is to use server-side storage which this function facilitates. It uses the firesale plugin under
the hood to provide a list-like interface to a storr-backed key-value store. storr in turn provides
interfaces to a range of backends such as redis, LMDB, and databases supported by DBI. Further it
provides simpler (but setup-free) solutions such as using an environment (obviously less persistent)

or a folder of rds files.

Usage

api_datastore(
api,
driver,
store_name = "datastore”,
gc_interval = 3600,
max_age = gc_interval

12 api_datastore

Arguments
api A plumber2 api object to add the datastore setup to
driver A storr compatible driver that defines the backend of the datastore
store_name The argument name under which the datastore will be available to the request
handlers
gc_interval The interval between running garbage collection on the backend
max_age The time since last request to pass before a session store is cleared
Details

Once you turn the datastore on with this function your request handlers will gain access to a new
argument (defaults to datastore but this can be changed with the store_name argument). The
datastore argument will contain a list holding two elements: global and session which in turn
will be list-like interfaces to the underlying key-value store. The global element access a store
shared by all sessions whereas the session element is scoped to the current session. Depending on
the value of max_age the session specific data is purged once a certain amount of time has passed
since the last request from that session.

Value

These functions return the api object allowing for easy chaining with the pipe

Using annotation

You can define a datastore backend using the @datastore tag and provide the driver specification
below the block

#* @datastore
storr::driver_dbi(...)

Examples

api() 1>
api_datastore(storr::driver_environment()) |>
api_get("hello”, function(datastore) {
if (length(datastore$session) == 0) {
datastore$global$count <- (datastore$global$count %||% @) + 1
datastore$session$not_first_visit <- TRUE
paste@("Welcome. You are visitor #", datastore$global$count)
} else {
"Welcome back”
}
1))

api_docs

13

api_docs

Configure your API for serving documentation for itself

Description

The OpenAPI standard offers a way to describe the various endpoints of your api in machine- and
human-readable way. On top of this, various solutions have been build to generate online documen-
tation of the API based on a provided OpenAPI spec. plumber2 offers support for RapiDoc, Redoc,
and Swagger as a UI frontend for the documentation and will also generate the spec for you based
on the tags in parsed files. If you are creating your API programmatically or you wish to add to
the autogenerated docs you can add docs manually, either when adding a handler (using the doc
argument), or with the api_doc_add() function

Usage

api_doc_setting(api, doc_type, doc_path, ...)

api_doc_add(api, doc, overwrite = FALSE, subset = NULL)

Arguments

api

doc_type

doc_path

doc

overwrite

subset

Value

A plumber2 api object to add docs or doc settings to
The type of API documentation to generate. Can be either "rapidoc” (the de-

non

fault), "redoc”, "swagger", or NULL (equating to not generating API docs)
The URL path to serve the api documentation from

plumber files or directories containing plumber files to be parsed in the given
order. The order of parsing determines the final order of the routes in the stack.
If ... contains a _server.yml file then all other files in . . . will be ignored and
the _server.yml file will be used as the basis for the API

A list with the OpenAPI documentation, usually constructed with one of the
helper functions

Logical. Should already existing documentation be removed or should it be
merged together with doc

A character vector giving the path to the subset of the docs to assign doc to

These functions return the api object allowing for easy chaining with the pipe

Using annotation

When using annotated route files documentation is automatically generated based on the annotation.
The following tags will contribute to documentation:

e @title

* @description

https://www.openapis.org
https://rapidocweb.com
https://redocly.com/redoc
https://swagger.io

14 api_docs

* @details
* @tos

* @license
* @contact
* Qtag

* @param

* @query

* @body

* @response
* @parsers
* @serializers

Documentation is only generated for annotations related to global documentation (a block followed
by the "_API" sentinel), request handlers (a block including one of @get, @head, @post, @put,
@delete, @connect, @Goptions, @trace, @patch, or @any), or report generation (a block including
@report)

Examples
Serve the docs from a different path
api() I>
api_doc_setting(doc_path = "__man__")

Add documentation to the api programmatically
api() I|>
api_doc_add(openapi
info = openapi_info(
title = "My awesome api”,
version = "1.0.0"
)
D)

Add documentation to a subset of the docs
api() >
api_doc_add(
openapi_operation(

summary = "Get the current date”,
responses = list(
"200" = openapi_response(
description = "Current Date”,
content = openapi_content(
"text/plain” = openapi_schema(character())
)
)
)

)’
subset = c("paths”, "/date"”, "get")

api_forward 15

api_forward Set up a plumber2 api to act as a reverse proxy

Description

You can set up your plumber2 api to act as reverse proxy and forward all requests to a specific
path (and it’s subpaths) to a different URL. In contrast to api_shiny(), api_forward() is not
responsible for launching whatever service is being proxied so this should be handled elsewhere.
The path will be stripped from the request before being forwarded to the url, meaning that if you set
up a proxy onmy/proxy/ to http://example. com, then a request for my/proxy/user/thomas will
end at http://example.com/user/thomas. Proxying is most useful when forwarding to internal
servers though you are free to forward to public URLs as well. However, for the later you’d usually
use a redirect instead (via api_redirect())

Usage
api_forward(api, path, url, except = NULL, auth_flow = NULL, auth_scope = NULL)

Arguments
api A plumber?2 api to add the shiny app to
path The path to serve the shiny app from
url The url to forward to
except Subpaths to path that should be exempt from forwarding
auth_flow A logical expression giving the authentication flow the client must pass to get
access to the resource.
auth_scope The scope requirements of the resource
Value

This functions return the api object allowing for easy chaining with the pipe

Using annotation
You can set up a reverse proxy in your annotated route file using the @forward tag

#* @forward /proxy http://127.0.0.1:56789
NULL

Examples

Serve wikipedia directly from your app
api() |>
api_forward("my_wiki/", "https://www.wikipedia.org")

16 api_logger

api_logger Set logging function and access log format for the API

Description

plumber?2 has a build-in logging facility that takes care of logging any conditions that are caught,
as well as access logs. Further it is possible to log custom messages using the 1og() method on the
api object. However, the actual logging is handled by a customizable function that can be set. You
can read more about the logging infrastructure in the fiery documentation. plumber2 reexports the
loggers provided by fiery so they are immediately available to the user.

Usage
api_logger(api, logger = NULL, access_log_format = NULL)
logger_null()
logger_console(format = "{time} - {event}: {messagel}")
logger_file(file, format = "{time} - {event}: {messagel}")
logger_logger(default_level = "INFO")
logger_otel(format = "{message}")
logger_switch(..., default = logger_null())
common_log_format

combined_log_format

Arguments
api A plumber? api object to set the logger on
logger A logger function. If NULL then the current logger is kept

access_log_format
A glue string giving the format for the access logs. plumber2 (through fiery)
provides the predefined common_log_format and combined_log_format, but
you can easily create your own. See fiery::loggers for which variables the glue
string has access to.

format A glue-like string specifying the format of the log entry. Only the variables
time, event, and message are available and must be given verbatim

file A file or connection to write to

default_level The log level to use for events that are not request, websocket, message,
warning, or error

api_message 17

A named list of loggers to use for different events. The same semantics as switch
is used so it is possible to let events fall through e.g. logger_switch(error =,
warning = logger_file('errors.log')).

default A catch-all logger for use with events not defined in . . .

Using annotation

Logger setup doesn’t have a dedicated annotation tag, but you can set it up in a @lumber block

#* @plumber
function(api) {
api |>
api_logger(logger = logger_null())

Examples

Use a different access log format
api() |>
api_logger(access_log_format = combined_log_format)

Turn off logging
api() >
api_logger(logger_null())

api_message Add a handler to a WebSocket message

Description

WebSockets is a bidirectional communication channel that can be established at the request of the
client. While websocket communication is not really part of a standard REST api, it has many uses
and can easily be used together with one.

Usage

api_message(api, handler, async = NULL, then = NULL)

Arguments
api A plumber?2 api object to add the handler to
handler A function conforming to the specifications laid out in Details
async If FALSE create a regular handler. If TRUE, use the default async evaluator to

create an async handler. If a string, the async evaluator registered to that name
is used. If a function is provided then this is used as the async evaluator. See the
Async section for more detail

18 api_message

then A list of function to be called once the async handler is done. The functions will
be chained using promises: :then(). See the Async section for more detail

Details

A handler for a websocket message is much simpler than for requests in general since it doesn’t
have to concern itself with methods, paths, and responses. Any message handler registered will get
called in sequence when a websocket message is received from a client. Still, a few expectations

apply

Handler Arguments:

The handler can take any of the following arguments:

* message: Either a raw vector if the message received is in binary form or a single string,
giving the message sent from the client

 server: The Plumber2 object representing your server implementation
e client_id: A string uniquely identifying the session the request comes from

* request: The request that was initially used to establish the websocket connection with the
client as a reqres::Request object

Handler Return Value:

It is not expected that a websocket message sends a response and thus the handler is not required
to do anything like that. However, if the handler returns either a raw vector or a single string it is
taken as a signal to send this back to the client. Any other return value is silently ignored.

Value

This functions return the api object allowing for easy chaining with the pipe

Async

You can handle websocket messages asynchronously if needed. Like with request handlers you can
either do it manually by creating and returning a promise inside the handler, or by letting plumber2
convert your handler to an async handler using the async argument. Due to the nature of promises
a handler being converted to a promise can’t take request and server arguments, so if you need to
manipulate these you need to use then (more on this shortly). The same conventions about return
value holds for async message handlers as for regular ones.

Async chaining:

Because you can’t manipulate request or server in the async handler it may be needed to add
operations to perform once the async handler has finished. This can be done through the then
argument. This takes a list of functions to chain to the promise using promises: : then(). Before
the then chain is executed the return value of the async handler will be send back to the client if it
is a string or a raw vector. Each then call will receive the same arguments as a standard message
handler as well as result which will hold the return value of the previous handler in the chain.
For the first then call result will be whatever the main async handler returned. The return value
of the last call in the chain will be silently ignored.

api_on 19

Using annotation

A websocket message handler can be added to an API in an annotated route file by using the
@message tag

#x @message
function(message) {
if (message == "Hello") {
return("Hello, you...")
i
3

You can create async handlers with then chaining using annotation, through the @async and @then
tags

#* @message
#* @async
function(message) {
if (message == "Hello") {
return("Hello, you...")
3

3
#x @then

function(server) {
server$log("message”, "websocket message received")

}
Examples
api() >

api_message(
function(message) {

if (message == "Hello") {
return(”Hello, you...")
}
3
)
api_on Add a handler to an event
Description

During the life cycle of a plumber API various events will be fired, either automatically or manually.
See the article on events in fiery for a full overview. api_on() allows you to add handlers that are
called when specific events fire. api_off() can be used to remove the handler if necessary

https://fiery.data-imaginist.com/articles/events.html

20 api_on

Usage

api_on(api, event, handler, id = NULL)

api_off(api, id)

Arguments
api A plumber?2 api object to launch or stop
event A string naming the event to listen for
handler A function to call when event fires
id A string uniquely identifying the handler. If NULL a random id will be generated
making it impossible to remove the handler again
Value

These functions return the api object allowing for easy chaining with the pipe

Using annotation
Event handler setup doesn’t have a dedicated annotation tag, but you can set it up in a @lumber

block

#* @plumber
function(api) {

api |>
api_on("cycle-end”, function(server) {
server$log("message”, "tick-tock")
)]
3
Examples

Add a small console log to show the api is alive
pa <- api() |>
api_on("cycle-end”, function(server) {
server$log("message"”, "tick-tock")
}, id = "lifesign")

Remove it again
pa |>
api_off("lifesign")

api_package

21

api_package

Load up an API distributed with a package

Description

Packages can included one or more api specification(s) by storing the annotated route files and/or
_server.yml file in subfolders of ./inst/plumber2. The name of the subfolder will be the name

of the api
Usage
api_package(package = NULL, name = NULL, ...)
Arguments
package The name of the package that provides the api. If NULL then a list of available
apis across all installed packages is returned
name The name of the api. If NULL then a list of available apis in the given package is

returned
Arguments passed on to api

host A string that is a valid IPv4 address that is owned by this server

port A number or integer that indicates the server port that should be listened
on. Note that on most Unix-like systems including Linux and macOS, port
numbers smaller than 1024 require root privileges.

doc_type The type of API documentation to generate. Can be either "rapidoc’
(the default), "redoc”, "swagger", or NULL (equating to not generating API
docs)

doc_path The URL path to serve the api documentation from

reject_missing_methods Should requests to paths that doesn’t have a handler
for the specific method automatically be rejected with a 405 Method Not
Allowed response with the correct Allow header informing the client of the
implemented methods. Assigning a handler to "any" for the same path at
a later point will overwrite this functionality. Be aware that setting this to
TRUE will prevent the request from falling through to other routes that might
have a matching method and path. This setting anly affects handlers on the
request router.

ignore_trailing_slash Logical. Should the trailing slash of a path be ig-
nored when adding handlers and handling requests. Setting this will not
change the request or the path associated with but just ensure that both
path/to/resource and path/to/resource/ ends up in the same handler.

max_request_size Sets a maximum size of request bodies. Setting this will
add a handler to the header router that automatically rejects requests based
on their Content-Length header

22 api_redirect

shared_secret Assigns a shared secret to the api. Setting this will add a han-
dler to the header router that automatically rejects requests if their PLumber-Shared-Secret
header doesn’t contain the same value. Be aware that this type of authenti-
cation is very weak. Never put the shared secret in plain text but rely on e.g.
the keyring package for storage. Even so, if requests are send over HTTP
(not HTTPS) then anyone can read the secret and use it

compression_limit The size threshold in bytes for trying to compress the re-
sponse body (it is still dependant on content negotiation)

default_async The default evaluator to use for async request handling

env The parent environment to the environment the files should be evaluated in.
Each file will be evaluated in it’s own environment so they don’t interfere
with each other

Value

If package or name is NULL then a data frame providing available apis filtered on either package or
name (if any is provided) is returned. Otherwise a Plumber2 object representing the api is returned

Examples

Load one of the plumber2 examples
api_package("plumber2"”, "quickstart"”)

List all available apis
api_package()

api_redirect Redirect request to another resource

Description

While it is optimal that an API remains stable over its lifetime it is often not fully attainable. In order
to direct requests for resources that has been moved to the new location you can add a redirect that
ensures a smooth transition for clients still using the old path. Depending on the value of permanent
the redirect will respond with a 307 Temporary Redirect or 308 Permanent Redirect. fromand
to can contain path parameters and wildcards which will be matched between the two to construct
the correct redirect path. Further, to can either be a path to the same server or a fully qualified URL
to redirect requests to another server altogether.

Usage

api_redirect(api, method, from, to, permanent = TRUE)

api_report

Arguments

api
method
from

to

permanent

Value

23

A plumber?2 api object to add the redirect to
The HTTP method the redirect should respond to
The path the redirect should respond to

The path/URL to redirect the incoming request towards. After resolving any
path parameters and wildcards it will be used in the Location header

Logical. Is the redirect considered permanent or temporary? Determines the
type of redirect status code to use

This functions return the api object allowing for easy chaining with the pipe

Using annotation

You can specify redirects in an annotated plumber file using the @redirect tag. Precede the method
with a ! to mark the redirect as permanent

#* @redirect !get /old/data/x /new/data/*
#* @redirect any /unstable/endpoint /stable/endpoint

NULL

Examples

api() |>

api_redirect("get”, "/old/data/x", "/new/data/*")

api_report

Serve Quarto and Rmarkdown documents from a plumber2 api

Description

You can serve Quarto and Rmarkdown documents from a plumber2 api and have it automatically
render the report when requested. Reports are automatically cached to reduce overhead. Parame-
terized reports are supported and parameters can be provided either with the query string for GET
requests or in the request body for POST request. It is also possible to delete the cached render
using a DELETE request. See Details for more information

24

Usage

api_report(
api,
path,
report,

D

doc = NULL,

api_report

max_age = Inf,

async = TRUE,
NULL,

finalize

continue = FALSE,

cache_dir

tempfile(pattern = "plumber2_report"”),

cache_by_id = FALSE,

auth_flow

NULL,

auth_scope = NULL,

route = NULL

Arguments
api

path

report

doc

max_age

async

finalize

continue

cache_dir

cache_by_id

auth_flow

auth_scope

route

A plumber? api to serve the report with.

The base path to serve the report from. Additional endpoints will be created in
addition to this.

The path to the report to serve
Further arguments to quarto: :quarto_render () or rmarkdown: : render ()

An openapi_operation() documentation for the report. Only query parame-
ters will be used and a request body will be generated from this for the POST
methods.

The maximum age in seconds to keep a rendered report before initiating a re-
render

Should rendering happen asynchronously (using mirai)

An optional function to run before sending the response back. The function will
receive the request as the first argument, the response as the second, and the
server as the third.

A logical that defines whether the response is returned directly after rendering
or should be made available to subsequent routes

The location of the render cache. By default a temporary folder is created for it.

Should caching be scoped by the user id. If the rendering is dependent on user-
level access to different data this is necessary to avoid data leakage.

A logical expression giving the authentication flow the client must pass to get
access to the resource.

The scope requirements of the resource

The route this handler should be added to. Defaults to the last route in the stack.
If the route does not exist it will be created as the last route in the stack.

api_report 25

Details

Parameterized reports:

Parameters provided to parameterized reports are automatically type checked and casted based on
the default values in the report and the schema provided in the doc. Only the query parameters
will be used as the request body is inferred from that. It is important to understand that for Quarto
documents, the parameters are passed through as a yaml file and thus any type not supported by
yaml will not arrive unchanged to the document. Python reports are supported, but the type of
parameters cannot be inferred from the document so if you want type checking you will have to
provided schemas for them in the doc. For POST request where the parameters are provided in
the body, you must use JSON format.

Multiple outputs:

If a report has multiple different output formats then each format is accessible through a subpath
with the name of the format. The path provided in path will use content negotiation through the
Content-Type header to select a format. In addition, a path with the file extension added to path
can also be used to select the specific format. For the last two, if multiple formats share the same
mime type/file extension then only the first one can be selected.

Caching:

Reports are cached, by default in a temporary folder. You can chose a different folder with the
cache_dir argument. Cached versions can be deleted, thus forcing a rerender upon next request,
by sending a DELETE request. A DELETE request to the main path will delete all versions of the
report, whereas a DELETE request to one of the subpaths (see above) will only delete versions of
the specific output format. All different parameterized versions will always be deleted together.
Instead of sending DELETE requests you can also set a max_age which will force a rerender if
the render is older than the given argument.

If the content of the report is dependent on different credentials given by the user you can cache the
reports by session id so that every user will have it rendered uniquely for them. This is important
to prevent leakage of confidential data, but also ensures that the report looks as expected for each
user.

Value

This functions return the api object allowing for easy chaining with the pipe

Using annotation
A report can be served using an annotated route file by using the @report tag and proceeding the

annotation block with the path to the report

#* @report /quarterly
"my/awesome/report.qgmd”

Examples

api() 1>
api_report("”/quarterly”, "my/awesome/report.qmd")

26

api_request_handlers

api_request_handlers

Add a handler for a request

Description

This family of functions facilitates adding a request handler for a specific HTTP method and path.

Usage

api_get(

)

api,
path,

handler,

serializers = get_serializers(),
parsers = get_parsers(),
use_strict_serializer = FALSE,
download = FALSE,

async = FALSE,

auth_flow = NULL,

auth_scope = NULL,

then = NULL,

doc = NULL,

route = NULL

api_head(

)

api,
path,

handler,

serializers = get_serializers(),
parsers = get_parsers(),
use_strict_serializer = FALSE,
download = FALSE,

async = FALSE,

auth_flow = NULL,

auth_scope = NULL,

then = NULL,

doc = NULL,

route = NULL

api_post(

api,
path,

handler,

serializers = get_serializers(),
parsers = get_parsers(),

api_request_handlers

)

use_strict_serializer = FALSE,
download = FALSE,

async = FALSE,

auth_flow = NULL,

auth_scope = NULL,

then = NULL,

doc = NULL,

route = NULL

api_put(

)

api,
path,

handler,

serializers = get_serializers(),
parsers = get_parsers(),
use_strict_serializer = FALSE,
download = FALSE,

async = FALSE,

auth_flow = NULL,

auth_scope = NULL,

then = NULL,
doc = NULL,
route = NULL

api_delete(

)

api,
path,

handler,

serializers = get_serializers(),
parsers = get_parsers(),
use_strict_serializer = FALSE,
download = FALSE,

async = FALSE,

auth_flow = NULL,

auth_scope = NULL,

then = NULL,
doc = NULL,
route = NULL

api_connect(

api,
path,

handler,

serializers = get_serializers(),
parsers = get_parsers(),

27

28

)

use_strict_serializer = FALSE,
download = FALSE,

async = FALSE,

auth_flow = NULL,

auth_scope = NULL,

then = NULL,
doc = NULL,
route = NULL

api_options(

)

api,
path,

handler,

serializers = get_serializers(),
parsers = get_parsers(),
use_strict_serializer = FALSE,
download = FALSE,

async = FALSE,

auth_flow = NULL,

auth_scope = NULL,

then = NULL,

doc = NULL,

route = NULL

api_trace(

)

api,
path,

handler,

serializers = get_serializers(),
parsers = get_parsers(),
use_strict_serializer = FALSE,
download = FALSE,

async = FALSE,

auth_flow = NULL,

auth_scope = NULL,

then = NULL,

doc = NULL,

route = NULL

api_patch(

api,
path,

handler,

serializers = get_serializers(),
parsers = get_parsers(),

api_request_handlers

api_request_handlers 29

use_strict_serializer = FALSE,
download = FALSE,
async = FALSE,
auth_flow = NULL,
auth_scope = NULL,
then = NULL,
doc = NULL,
route = NULL
)

api_any(
api,
path,
handler,
serializers = get_serializers(),
parsers = get_parsers(),
use_strict_serializer = FALSE,
download = FALSE,
async = FALSE,
auth_flow = NULL,
auth_scope = NULL,

then = NULL,
doc = NULL,
route = NULL
)
Arguments
api A plumber?2 api object to add the handler to
path A string giving the path the handler responds to. See Details
handler A handler function to call when a request is matched to the path
serializers A named list of serializers that can be used to format the response before sending
it back to the client. Which one is selected is based on the request Accept header.
See get_serializers() for a helper to construct this
parsers A named list of parsers that can be used to parse the request body before pass-

ing it in as the body argument. Which one is selected is based on the request

Content-Type header. See get_parsers() for a helper to construct this
use_strict_serializer

By default, if a serializer that respects the requests Accept header cannot be

found, then the first of the provided ones are used. Setting this to TRUE will

instead send back a 406 Not Acceptable response

download Should the response mark itself for download instead of being shown inline?
Setting this to TRUE will set the Content-Disposition header in the response
to attachment. Setting it to a string is equivalent to setting it to TRUE but will
in addition also set the default filename of the download to the string value

async If FALSE create a regular handler. If TRUE, use the default async evaluator to
create an async handler. If a string, the async evaluator registered to that name

30

api_request_handlers

is used. If a function is provided then this is used as the async evaluator. See the
Async section for more detail

auth_flow A logical expression giving the authentication flow the client must pass to get
access to the resource.

auth_scope The scope requirements of the resource

then A list of function to be called once the async handler is done. The functions will
be chained using promises: :then(). See the Async section for more detail

doc A list with the OpenAPI spec for the endpoint

route The route this handler should be added to. Defaults to the last route in the stack.

If the route does not exist it will be created as the last route in the stack

Value

These functions return the api object allowing for easy chaining with the pipe

Using annotation

Handlers can be specified in an annotated route file using one of the method tags followed by the
path it pertains to. You can use various tags to describe the handler and these will automatically be
converted to OpenAPI documentation. Further, additional tags allow you to modify the behavior of
the handler, reflecting the arguments available in the functional approach.

#*x A handler for /user/<username>
#x
#* @param username:string The name of the user to provide information on
#x
#* @get /user/<username>
H#x
#* @response 200:{name:string, age:integer, hobbies:[string]} Important
#* information about the user such as their name, age, and hobbies
#x
function(username) {
find_user_in_db(username)

b

Handlers can be specified in an annotated route file using one of the method tags followed by the
path it pertains to. You can use various tags to describe the handler and these will automatically be
converted to OpenAPI documentation. Further, additional tags allow you to modify the behavior of
the handler, reflecting the arguments available in the functional approach.

#* A handler for /user/<username>

#x

#* @param username:string The name of the user to provide information on
H#x

#* @get /user/<username>

#x

#* @response 200:{name:string, age:integer, hobbies:[string]} Important

api_request_handlers 31

#x information about the user such as their name, age, and hobbies
H#x
function(username) {

find_user_in_db(username)

}

You can create async handlers with then chaining using annotation, through the @async and @then
tags

#* A handler for /user/<username>
H#x
#* @param username:string The name of the user to provide information on
%
#* @get /user/<username>
#x
#* @response 200:{name:string, age:integer, hobbies:[string]} Important
#* information about the user such as their name, age, and hobbies
#%
#x @async
function(username) {
find_user_in_db(username)

3

#x @then

function(server, response) {
server$log("message”, "async operation completed”)
response$set_header("etag"”, "abcdef")
Next

3

You can add authentication using the @auth and @authScope tags

#*x A handler for /user/<username>
#x
#* @param username:string The name of the user to provide information on
#x
#* @get /user/<username>
H#x
#* @response 200:{name:string, age:integer, hobbies:[string]l} Important
#*x information about the user such as their name, age, and hobbies
#x
#x @auth authl || auth2
#*x Q@authScope read, write
H#x
function(username) {
find_user_in_db(username)

}

32 api_request_handlers

HTTP Methods

The HTTP specs provide a selection of specific methods that clients can send to the server (your
plumber api). While there is no enforcement that the server follows any conventions you should
strive to create a server API that adheres to common expectations. It is not required that a server
understands all methods, most often the opposite is true. The HTTP methods are described below,
but consider consulting MDN to get acquainted with the HTTP spec in general

* GET: This method is used to request specific content and is perhaps the most ubiquitous method
in use. GET requests should only retrieve data and should not contain any body content

* HEAD: This method is identical to GET, except the response should only contain headers, no
body. Apart from this it is expected that a HEAD request is identical to a GET request for the
same resource

» POST: This method delivers content, in the form of a request body, to the server, potentially
causing a change in the server. In the context of plumber?2 it is often used to call functions that
require input larger than what can be put in the URL

* PUT: This method is used to update a specific resource on the server. In the context of a
standard plumber2 server this is rarely relevant, though usage can come up. PUT is considered
by clients to be idempotent meaning that sending the same PUT request multiple times have no
effect

» DELETE: This method deletes a resource and is the opposite to PUT. As with PUT this method
has limited use in most standard plumber2 servers

* CONNECT: This method request the establishment of a proxy tunnel. It is considered advanced
use and is very unlikely to have a use case for your plumber2 api

* OPTIONS: This method is used by clients to query a server about what methods and other
settings are supported on a server

* TRACE: This method is a form of ping that should send a response containing the request
(stripped of any sensitive information). Many servers disallow this method due to security
concerns

* PATCH: This method is like PUT but allows partial modification of a resource

Apart from the above, plumber2 also understands the ANY method which responds to requests to any
of the above methods, assuming that a specific handler for the method is not found. As the semantics
of the various methods are quite different an ANY handler should mainly be used for rejections or
for setting specific broad headers on the response, not as the main handler for the request

The Path

The path defines the URL the request is being made to with the root removed. If your plumber2

server runs from http://example.com/api/ and arequestis made to http://example.com/api/user/thomas/,
then the path would be user/thomas/. Paths can be static like the prior example, or dynamic as

described below:

Path arguments:

Consider you have a bunch of users. It would be impractical to register a handler for each one of
them. Instead you can use a dynamic path like with the following syntax: user/<username>/.
This path would be matched to any requests made to user/. . something. ./. The actual value of
..something.. (e.g. thomas) would be made available to the handler (see below). A path can
contain multiple arguments if needed, such as user/<username>/settings/<setting>/

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

api_request_handlers 33

Path wildcards:

Apart from path arguments it is also possible to be even less specific by adding a wildcard to the
path. The path user/#* will match both user/thomas/, user/thomas/settings/interests/,
and anything other path that begins with user/. As with arguments a path can contain multiple
wildcards but the use of these have very diminishing returns. Contrary to path arguments the
value(s) corresponding to * is not made available to the handler.

Path Priority:
With the existence of path arguments and wildcards it is possible that multiple handlers in a route
can be matched to a single request. Since only one can be selected we need to determine which one
wins. The priority is based on the specificity of the path. Consider a server containing the follow-
ing handler paths: user/thomas/, user/<username>/, user/<username>/settings/<setting>/,
user/*. These paths will have the following priority:

1. user/<username>/settings/<setting>/

2. user/thomas/

3. user/<username>/

4. user/*
The first spot is due to the fact that it is the path with the most elements so it is deemed most
specific. For the remaining 3 they all have the same number of elements, but static paths are

considered more specific than dynamic paths, and path arguments are considered more specific
than wildcards.

A request made to user/carl will thus end up in the third handler, while a request made to
user/thomas will end up in the second. This ordering makes it possible to both provide default
handlers as well as specializations for specific paths.

The Handler

The handler is a standard R function that is called when a request is made that matches the handlers
path (unless a more specific handler path exists — see above). A handler function can perform any
operation a normal R function can do, though you should consider strongly the security implications
of your handler functions. However, there are certain expectations in plumber around the arguments
a handler function takes and the return value it provides

Handler Arguments:
The handler function can take one or more of the following arguments.
* Path arguments: Any path arguments are passed on to the handler. If a handler is registered

for the following path user/<username>/settings/<setting>/ and it handles a request to
user/thomas/settings/interests/ then it will be called with username = "thomas”, setting = "interest”

* request: The request the handler is responding to as a reqres::Request object

* response: The response being returned to the client as a reqres::Response object
* server: The Plumber2 object representing your server implementation

e client_id: A string uniquely identifying the session the request comes from

* query: A list giving any additional arguments passed into the handler as part of the url query
string

* body: The request body, parsed as specified by the provided parsers

34 api_request_handlers

Handler Return Value:
Handlers can return a range of different value types, which will inform plumber2 what to do next:

Returning Next or Break:
These two control objects informs plumber2 to either proceed handling the request (Next) or
return the response as is, circumventing any remaining routes (Break)

Returning NULL or the response object:
This is the same as returning Next, i.e. it signals that handling can proceed

Returning a ggplot2 object:
If you return a ggplot2 object it will get plotted for you (and added to the response assuming a
graphics serializer is provided) before handling continues

Returning any other value:
Any kind of value returned that is not captured by the above description will be set to the
response body (overwriting what was already there) and handling is then allowed to continue

Handler conditions:

Like any function in R, a handler may need to signal that something happened, either by throwing
an error or warning or by emitting a message. You can use stop(), warning(), and message ()
as you are used to. For all of them, the condition message will end up in the log. Further, for
stop() any further handling of the request will end and a 500 Internal Error response is
returned. To take more control over problems you can use the abort_x() family of conditions
from reqres. Like stop() they will halt any further processing, but they also allow control over
what kind of response is sent back, what kind of information about the issue is communicated to
the client, and what kind of information is logged internally. The response they send back (except
for abort_status()) all adhere to the HTTP Problem spec defined in RFC 9457.

While it may feel like a good idea to send a detailed error message back to the client it is often
better to only inform the client of what they need to change to solve the issue. Too much informa-
tion about internal implementation details can be a security risk and forwarding internal errors to
a client can help inform the client about how the server has been implemented.

Async handling
plumber?2 supports async handling of requests in one of two ways:

1. The handler you provide returns a promise object

2. You set async = TRUE (or the name of a registered async evaluator) when adding the handler

For 1), there is no more to do. You have full custody over the created promise and any then()-
chaining that might be added to it. For 2) it is a bit different. In that case you provide a regular
function and plumber2 takes care of converting it to a promise. Due to the nature of promises a
handler being converted to a promise can’t take request, response, and server arguments, so if
you need to manipulate these you need to use then (more on this shortly). The async handler should
yield the value that the response should ultimately get assigned to the body or have plotting side
effects (in which case the plot will get added to the response).

Async chaining:

Because you can’t manipulate request response, or server in the async handler it may be
needed to add operations to perform once the async handler has finished. This can be done through
the then argument (or using the @then tag in annotated route files). This takes a list of functions

https://datatracker.ietf.org/doc/html/rfc9457

api_request_handlers 35

to chain to the promise using promises: : then(). Before the then chain is executed the response
will get the return value of the main handler assigned to the body. Each then call will receive the
same arguments as a standard request handler as well as result which will hold the return value
of the previous handler in the chain. For the first then call result will be a boolean signalling if
the async handler wants request handling to proceed to the next route or terminate early. The last
call in the chain must return Next or Break to signal if processing should be allowed to continue
to the next route.

Authentication

plumber2 supports various authentication schemas which can be added with api_auth_guard().
An authentication flow for the handler can then be specified with the auth_flow argument and
optional scopes can be set with the auth_scope argument. The flow is defined by a logical ex-
pression referencing the names of the authenticators part of the flow. Assuming two authenticators
are available, auth1 and auth2, then a flow could be auth1 && auth2 to require the request passes
both authenticators. Alternatively it could be auth1 | | auth2 to require the request passing either.
Flows can be arbitrarily complex with nesting etc, but he OpenAPI spec has limits to what it can
describe so if you want to have an OpenAPI compliant api you must limit yourself to at most two
levels of nesting with the outer level being | | (ie. (authl & auth2) || (auth3 && auth4) is ok,
but (authl || auth2) && (auth3 || auth4) is not due to the outer level being &&, and (auth1 &&
auth2) || (auth3 && (auth4 || auth5)) is not allowed because it has 3 nesting levels). This is
only a limitation of OpenAPI and plumber? itself can handle all of the above.

plumber?2 also supports requiring specific scopes to access resources. If you require these you must
make sure the authenticator provides scopes upon a successful authentication, otherwise the request
will be denied.

See Also

Other Request Handlers: api_request_header_handlers

Examples

Standard use
api() >
api_get(”/hello/<name:string>", function(name) {
list(
msg = pasted("Hello
)
D

"

nyn
, hame, "!")

Specify serializers
api() 1>
api_get(
"/hello/<name:string>",
function(name) {
list(
msg = paste@(”Hello
)

n

, hame, "!")

}’

serializers = get_serializers(c(”json”, "xml"))

36

)

Request a download and make it async

api() 1>
api_get(
"/the_plot",
function() {

plot(1:10, 1:10)

}7

serializers = get_serializers(c("png"”, "jpeg")),

download = TRUE,

async = TRUE

api_request_header_handlers

api_request_header_handlers

Add a handler for a request header

Description

These handlers are called before the request body has been received and lets you preemptively reject
requests before receiving their full content. If the handler does not return Next then the request will
be returned at once. Most of your logic, however, will be in the main handlers and you are asked to
consult the api_request_handlers docs for in-depth details on how to use request handlers in general.

Usage

api_get_header(
api,
path,
handler,

serializers = get_serializers(),
parsers = get_parsers(),
use_strict_serializer = FALSE,
download = FALSE,

async = FALSE,

then = NULL,

route = NULL

api_head_header(

api,
path,

handler,

serializers = get_serializers(),
parsers = get_parsers(),
use_strict_serializer = FALSE,

api_request_header_handlers

download = FALSE,
async = FALSE,

then = NULL,
route = NULL
)
api_post_header(
api,
path,
handler,

serializers = get_serializers(),

parsers = get_parsers(),
use_strict_serializer =
download = FALSE,

async = FALSE,

then = NULL,

route = NULL
)
api_put_header(

api,

path,

handler,

serializers = get_serializers(),

parsers = get_parsers(),
use_strict_serializer =
download = FALSE,

async = FALSE,

then = NULL,
route = NULL
)
api_delete_header(
api,
path,
handler,

serializers = get_serializers(),

parsers = get_parsers(),
use_strict_serializer =
download = FALSE,

async = FALSE,

then = NULL,

route = NULL

)

api_connect_header(
api,
path,

37

38

)

handler,

serializers = get_serializers(),
parsers = get_parsers(),
use_strict_serializer = FALSE,
download = FALSE,

async = FALSE,

then = NULL,

route = NULL

api_options_header(

)

api,
path,

handler,

serializers = get_serializers(),
parsers = get_parsers(),
use_strict_serializer = FALSE,
download = FALSE,

async = FALSE,

then = NULL,

route = NULL

api_trace_header(

)

api,
path,

handler,

serializers = get_serializers(),
parsers = get_parsers(),
use_strict_serializer = FALSE,
download = FALSE,

async = FALSE,

then = NULL,

route = NULL

api_patch_header(

api,
path,

handler,

serializers = get_serializers(),
parsers = get_parsers(),
use_strict_serializer = FALSE,
download = FALSE,

async = FALSE,

then = NULL,

route = NULL

api_request_header_handlers

api_request_header_handlers 39

api_any_header(
api,
path,
handler,
serializers = get_serializers(),
parsers = get_parsers(),
use_strict_serializer = FALSE,
download = FALSE,
async = FALSE,

then = NULL,
route = NULL
)
Arguments
api A plumber? api object to add the handler to
path A string giving the path the handler responds to. See Details
handler A handler function to call when a request is matched to the path
serializers A named list of serializers that can be used to format the response before sending
it back to the client. Which one is selected is based on the request Accept header.
See get_serializers() for a helper to construct this
parsers A named list of parsers that can be used to parse the request body before pass-

ing it in as the body argument. Which one is selected is based on the request
Content-Type header. See get_parsers() for a helper to construct this

use_strict_serializer
By default, if a serializer that respects the requests Accept header cannot be
found, then the first of the provided ones are used. Setting this to TRUE will
instead send back a 406 Not Acceptable response

download Should the response mark itself for download instead of being shown inline?
Setting this to TRUE will set the Content-Disposition header in the response
to attachment. Setting it to a string is equivalent to setting it to TRUE but will
in addition also set the default filename of the download to the string value

async If FALSE create a regular handler. If TRUE, use the default async evaluator to
create an async handler. If a string, the async evaluator registered to that name
is used. If a function is provided then this is used as the async evaluator. See the
Async section for more detail

then A list of function to be called once the async handler is done. The functions will
be chained using promises: : then(). See the Async section for more detail

route The route this handler should be added to. Defaults to the last route in the stack.
If the route does not exist it will be created as the last route in the stack

Value

These functions return the api object allowing for easy chaining with the pipe

40 api_run

Using annotation

Adding request header handler is done in the same way as for standard request handlers. The only
difference is that you include a @header tag as well. It is not normal to document header requests
as they usually exist as internal controls. You can add @noDoc to avoid generating OpenAPI docs
for the handler

#* A header handler authorizing users
#x
#* @get /*
#%
#* @header
#* @noDoc
function(client_id, response) {
if (user_is_allowed(username)) {
Next
} else {
response$status <- 404L
Break

See Also

Other Request Handlers: api_request_handlers

Examples

Simple size limit (better to use build-in functionality)
api() |>
api_post_header(
"/
function(request, response) {
if (request$get_header("content-type”) > 1024) {
response$status <- 413L
Break
} else {
Next
}
}
)

api_run Launch the API

Description

This function starts the api with the settings it has defined.

api_run

Usage

api_run(
api,
host =
port =

41

block = !is_interactive(),

showcase

L

is_interactive(),

silent = FALSE

)

api_stop(api)

Arguments

api

host, port

block

showcase

silent

Value

A plumber?2 api object to launch or stop

Host and port to run the api on. If not provided the host and port used during the
creation of the Plumber?2 api will be used

Should the console be blocked while running (alternative is to run in the back-
ground). Defaults to FALSE in interactive sessions and TRUE otherwise. Note
that while setting block = FALSE will allow you to continue interacting with the
main session you will not be able to call the api from within the session since it
is still executing in the same thread.

Should the default browser open up at the server address. If TRUE then a browser
opens at the root of the api, unless the api contains OpenAPI documentation in
which case it will open at that location. If a string the string is used as a path to
add to the root before opening.

Arguments passed on to the start handler

Should startup messaging by silenced

These functions return the api object allowing for easy chaining with the pipe, even though they
will often be the last part of the chain

Examples

pa <- api() |>

api_get("/", function() {
list(msg = "Hello World")

D>

api_on("start”, function(...) {
cat("I'm alive")

D

Start the server
pa |> api_run(block = FALSE)

42 api_security_cors

Stop it again
pa |> api_stop()

api_security_cors Set up CORS for a path in your plumber2 API

Description

This function adds Cross-Origin Resource Sharing (CORS) to a path in your API. The function can
be called multiple times to set up CORS for multiple paths, potentially with different settings for
each path. CORS is a complex specification and more can be read about it at the CORS plugin
documentation.

Usage

api_security_cors(
api,
path = "/x",
origin = "x",
methods = c("get"”, "head”,
allowed_headers = NULL,
exposed_headers = NULL,
allow_credentials = FALSE,
max_age = NULL

n n

put”, "patch”, "post”, "delete"),

)
Arguments
api A plumber?2 api object to add the plugin to
path The path that the policy should apply to. routr path syntax applies, meaning that
wilcards and path parameters are allowed.
origin The origin allowed for the path. Can be one of:

* A boolean. If TRUE then all origins are permitted and the preflight response
will have the Access-Control-Allow-Origin header reflect the origin of
the request. If FALSE then all origins are denied

* The string "*" which will allow all origins and set Access-Control-Allow-Origin
to *. This is different than setting it to TRUE because * instructs browsers
that any origin is allowed and it may use this information when searching
the cache

* A character vector giving allowed origins. If the request origin matches any
of these then the Access-Control-Allow-Origin header in the response
will reflect the origin of the request

* A function taking the request and returning TRUE if the origin is permitted
and FALSE if it is not. If permitted the Access-Control-Allow-Origin
header will reflect the request origin

api_security_cors 43

methods The HTTP methods allowed for the path
allowed_headers
A character vector of request headers allowed when making the request. If the
request contains headers not permitted, then the response will be blocked by the
browser. NULL will allow any header by reflecting the Access-Control-Request-Headers
header value from the request into the Access-Control-Allow-Headers header
in the response.
exposed_headers
A character vector of response headers that should be made available to the
client upon a succesful request

allow_credentials
A boolean indicating whether credentials are allowed in the request. Creden-
tials are cookies or HTTP authentication headers, which are normally stripped
from fetch() requests by the browser. If this is TRUE then origin cannot be *
according to the spec

max_age The duration browsers are allowed to keep the preflight response in the cache

Value

This functions return the api object allowing for easy chaining with the pipe

Using annotation

To add CORS to a path you can add @cors <origin> to a handler annotation. <origin> must
be one or more URLs or *, separated by comma (meaning it is not possible to provide a function
using the annotation). This will add CORS to all endpoints described in the block. The annotation
doesn’t allow setting allowed_headers, exposed_headers, allow_credentials or max_age and
the default values will be used.

#* A handler for /user/<username>
H#x
#* @param username:string The name of the user to provide information on
#%
#* @get /user/<username>
#x
#* @response 200:{name:string, age:integer, hobbies:[string]} Important
#* information about the user such as their name, age, and hobbies
#%
#* @cors https://example.com, https://another-site.com
#%
function(username) {
find_user_in_db(username)

b

See Also

Other security features: api_security_headers(), api_security_resource_isolation()

44 api_security_headers

Examples

Set up cors for your asset/ path for the https://examples.com origin

api() 1>
api_security_cors(
path = "asset/*",
origin = "https://examples.com”

)

api_security_headers Add various security related headers to your plumber2 API

Description

This function adds the SecurityHeaders plugin to your plumber2 API. Please consult the documen-
tation for the plugin for up-to-date information on its behaviour.

Usage
api_security_headers(
api,
content_security_policy = csp(default_src = "self"”, script_src = "self”,
script_src_attr = "none"”, style_src = c("self”, "https:"”, "unsafe-inline"), img_src =
c("self", "data:"), font_src = c("self”, "https:"”, "data:"), object_src = "none”,
base_uri = "self", form_action = "self”, frame_ancestors = "self",

upgrade_insecure_requests = TRUE),
content_security_policy_report_only = NULL,
cross_origin_embedder_policy = NULL,

cross_origin_opener_policy = "same-origin”,
cross_origin_resource_policy = "same-origin”,
origin_agent_cluster = TRUE,

referrer_policy = "no-referrer”,

strict_transport_security = sts(max_age = 63072000, include_sub_domains = TRUE),
x_content_type_options = TRUE,

x_dns_prefetch_control = FALSE,

x_download_options = TRUE,

x_frame_options = "SAMEORIGIN",

x_permitted_cross_domain_policies = "none”,
X_xss_protection = FALSE
)
Arguments
api A plumber?2 api object to add the plugin to

content_security_policy
Set the value of the Content-Security-Policy header. See firesafety::csp()
for documentation of its values

api_security_headers 45

content_security_policy_report_only
Set the value of the Content-Security-Policy-Report-Only header. See
firesafety: :csp() for documentation of its values
cross_origin_embedder_policy
Set the value of the Cross-Origin-Embedder-Policy. Possible values are
"unsafe-none”, "require-corp”, and "credentialless”
cross_origin_opener_policy
Set the value of the Cross-0Origin-Opener-Policy. Possible values are "unsafe-none”,
"same-origin-allow-popups”, "same-origin”, and "noopener-allow-popups”
cross_origin_resource_policy
Set the value of the Cross-Origin-Resource-Policy. Possible values are
"same-site"”, "same-origin”, and "cross-origin”
origin_agent_cluster
Set the value of the Origin-Agent-Cluster. Possible values are TRUE and
FALSE
referrer_policy
Set the value of the Referrer-Policy. Possible values are "no-referrer”,

n on n n

"no-referrer-when-downgrade”, "origin”, "origin-when-cross-origin”,
"same-origin”, "strict-origin”, "strict-origin-when-cross-origin”,
and "unsafe-url”
strict_transport_security
Set the value of the Strict-Transport-Security header. See firesafety: :sts()
for documentation of its values
x_content_type_options
Set the value of the X-Content-Type-Options. Possible values are TRUE and
FALSE
x_dns_prefetch_control
Set the value of the X-DNS-Prefetch-Control. Possible values are TRUE and
FALSE
x_download_options
Set the value of the X-Download-Options. Possible values are TRUE and FALSE
x_frame_options
Set the value of the X-Frame-Options. Possible values are "DENY" and "SAMEORIGIN"
x_permitted_cross_domain_policies
Set the value of the X-Permitted-Cross-Domain-Policies. Possible val-
ues are "none”, "master-only”, "by-content-type", "by-ftp-filename”,
"all"”, and "none-this-response”
X_Xss_protection
Set the value of the X-XSS-Protection. Possible values are TRUE and FALSE

Value

This functions return the api object allowing for easy chaining with the pipe

Using annotation

Security headers doesn’t have a dedicated annotation tag, but you can set it up in a @lumber block

46 api_security_resource_isolation

#* @plumber
function(api) {
api |>
api_security_headers()

See Also

Other security features: api_security_cors(), api_security_resource_isolation()

Examples

Add default security headers to an API

api() I>
api_security_headers()

api_security_resource_isolation
Set up resource isolation for a path

Description

This function adds resource isolation to a path in your APIL. The function can be called multiple
times to set up resource isolation for multiple paths, potentially with different settings for each path.
You can read in depth about resource isolation at the Resourcelsolation plugin documentation.

Usage
api_security_resource_isolation(
api,
path = "/%",
allowed_site = "same-site”,

forbidden_navigation = c("object”, "embed"),
allow_cors = TRUE

)
Arguments
api A plumber?2 api object to add the plugin to
path The path that the policy should apply to. routr path syntax applies, meaning that

wilcards and path parameters are allowed.
allowed_site The allowance level to permit. Either cross-site, same-site, or same-origin.

forbidden_navigation
A vector of destinations not allowed for navigational requests. See the Sec-Fetch-Dest
documentation for a description of possible values. The special value "all” is
also permitted which is the equivalent of passing all values.

allow_cors Should Sec-Fetch-Mode: cors requests be allowed

https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Headers/Sec-Fetch-Dest
https://developer.mozilla.org/en-US/docs/Web/HTTP/Reference/Headers/Sec-Fetch-Dest

api_session_cookie 47

Value

This functions return the api object allowing for easy chaining with the pipe

Using annotation

To add resource isolation to a path you can add @rip <allowed_site> to a handler annotation.
This will add resource isolation to all endpoints described in the block. The annotation doesn’t
allow setting forbidden_navigation or allow_cors and the default values will be used.

#*x A handler for /user/<username>
#x
#* @param username:string The name of the user to provide information on
H#x
#x @get /user/<username>
#x
#* @response 200:{name:string, age:integer, hobbies:[string]} Important
#* information about the user such as their name, age, and hobbies
#x
#* @rip same-origin
H#x
function(username) {
find_user_in_db(username)

}

See Also

Other security features: api_security_cors(), api_security_headers()

Examples

Set up resource isolation for everything inside a user path

api() |>
api_security_resource_isolation(
path = "<user>/x"
)
api_session_cookie Turn on session cookie data storage for your API
Description

If you need to keep data between requests, but don’t want to store it server-side (see api_datastore())
you can instead pass it back and forth as an encrypted session cookie. This function sets it up on
your api and after it’s use you can now access and set session data in the request and response
$session field. Be aware that session data is send back and forth with all requests and should thus
be kept minimal to avoid congestion on your server.

48 api_session_cookie
Usage
api_session_cookie(
api,
key,
name = "reqres”,
expires = NULL,
max_age = NULL,
path = NULL,
secure = NULL,
same_site = NULL
)
Arguments
api A plumber2 api object to add the session cookie setup to
key A 32-bit secret key as a hex encoded string or a raw vector to use for encrypting
the session cookie. A valid key can be generated using reqres: : random_key ().
NEVER STORE THE KEY IN PLAIN TEXT. Optimally use the keyring pack-
age to store it
name The name of the cookie
expires A POSIXct object given the expiration time of the cookie
max_age The number of seconds to elapse before the cookie expires
path The URL path this cookie is related to
secure Should the cookie only be send over https
same_site Either "Lax", "Strict”, or "None" indicating how the cookie can be send dur-
ing cross-site requests. If this is set to "None"” then secure must also be set to
TRUE
Value

These functions return the api object allowing for easy chaining with the pipe

Using annotation

Session cookie setup doesn’t have a dedicated annotation tag, but you can set it up in a @lumber

block

#* @plumber

function(api) {

api |>

api_session_cookie(keyring: :key_get("my_secret_plumber_key"))

api_shiny 49

Examples

key <- regres::random_key()

api() 1>
api_session_cookie(key, secure = TRUE) |>
api_get("/", function(request) {
if (isTRUE(request$session$foo)) {
msg <- "You've been here before”
} else {
msg <- "You must be new here”
request$session$foo <- TRUE
}
list(
msg = msg
)
b))

api_shiny Serve a Shiny app from a plumber2 api

Description

You can serve one or more shiny apps as part of a plumber2 api. The shiny app launches in a
background process and the api will work as a reverse proxy to forward requests to path to the
process and relay the response to the client. The shiny app is started along with the api and shut
down once the api is stopped. This functionality requires the shiny and callr packages to be installed.
Be aware that all requests to subpaths of path will be forwarded to the shiny process, and thus not
end up in your normal route

Usage
api_shiny(api, path, app, except = NULL, auth_flow = NULL, auth_scope = NULL)

Arguments
api A plumber?2 api to add the shiny app to
path The path to serve the shiny app from
app A shiny app object
except Subpaths to path that should not be forwarded to the shiny app. Be sure it
doesn’t contains paths that the shiny app needs
auth_flow A logical expression giving the authentication flow the client must pass to get
access to the resource.
auth_scope The scope requirements of the resource
Value

This functions return the api object allowing for easy chaining with the pipe

50 async_evaluators

Using annotation

A shiny app can be served using an annotated route file by using the @shiny tag and proceeding the
annotation block with the shiny app object

#*x @shiny /my_app/
shiny: :shinyAppDir("./shiny")

Examples

blank_shiny <- shiny::shinyApp(
ui = shiny::fluidPage(),
server = shiny::shinyServer(function(...) {})

)

api() |>
api_shiny("my_app/"”, blank_shiny)

async_evaluators Async evaluators provided by plumber

Description

These functions support async request handling. You can register your own as well using register_async().

Usage

mirai_async(...)

Arguments
Further argument passed on to the internal async function. See Details for in-
formation on which function handles the formatting internally in each async
evaluator

Value

A function taking expr and envir. The former is the expression to evaluate and the latter is an
environment with additional variables that should be made available during evaluation

Provided evaluators

* mirai_async() uses mirai::mirai(). It is registered as "mirai”. Be aware that for this
evaluator to be performant you should start up multiple persistent background processes. See
mirai::daemons().

create_server_yml 51

Examples

Use the default mirai backend by setting “async = TRUE® with a handler
pa <- api() |>

api_get("/hello/<name:string>", function(name) {
list(

msg = paste@("Hello ", name, "!")
)
}, async = TRUE)
create_server_yml Create a _server.yml file to describe your API

Description

While you can manually create a plumber2 API by calling api (), you will often need to deploy the
api somewhere else. To facilitate this you can create a _server.yml that encapsulates all of your
settings and plumber files. If you call api() with a path to such a file the API will be constructed
according to its content.

Usage
create_server_yml(..., path = ".", constructor = NULL, freeze_opt = TRUE)
Arguments
path to files and/or directories that contain annotated plumber files to be used by
your API
path The folder to place the generated _server.yml file in

constructor The path to a file that creates a plumber2 API object. Can be omitted in which
case an API object will be created for you

freeze_opt Logical specifying whether any options you currently have locally (either as
environment variables or R options) should be written to the _server.yml file.
Shared secret will never be written to the file and you must find a different way
to move that to your deployment server.

Examples

create_server_yml(
"path/to/a/plumber/file.R"
)

52 get_opts

get_opts Retrieve options for creating a plumber2 api

Description

You can provide options for your plumber2 api which will be picked up when you create the API
with api(). Options can be set either through the internal options() functionality, or by setting en-
vironment variables. In the former case, the name of the option must be prefixed with "plumber2.”,
in the latter case the variable name must be in upper case and prefixed with "PLUMBER2_". If the
option is stored as an environment variable then the value is cast to the type giving in default. See
the docs for api () for the default values of the different options.

Usage
get_opts(x, default = NULL)

all_opts()
Arguments
X The name of the option
default The default value, if x is not set
Value

For get_opts The value of x, if any, or default. For all_opts() a named list of all the options
that are set

plumber?2 options

The following options are currently recognized by plumber2. They are all read at creation time and
have a parallel argument in api() where you can also see their default values. This means that
changing an option after creation/during running will have no effect.

* host: The address to serve the server from

* port: The port to use for the server

* docType: The ui to use for serving OpenAPI documentation

* docPath: The path to serve the documentation from

* rejectMissingMethods: Should requests to paths that doesn’t have a handler for the specific
method automatically be rejected with a 405 Method Not Allowed response

* ignoreTrailingSlash: Should the trailing slash of a path be ignored when adding handlers and
handling requests

* maxRequestSize: The maximum allowed size of request bodies
 sharedSecret: A shared secret the request must contain to be permitted
¢ compressionLimit: The threshold for response size before automatic compression is used

 async: The default async engine to use

Next 53

Examples

Using “options()"

old_opts <- options(plumber2.port = 9889L)
get_opts("port”)

options(old_opts)

Using environment variables
old_env <- Sys.getenv("PLUMBER2_PORT")
Sys.setenv(PLUMBER2_PORT = 9889)

If no default is provided the return value is a string
get_opts("port”)

Provide a default to hint at the options type
get_opts("port”, 8080L)

Sys.setenv(PLUMBER2_PORT = old_env)

Next Router control flow

Description

In plumber2 your API can have multiple middleware that a request passes through. At any point can
you short-circuit the remaining middleware by returning Break, which instructs plumber2 to return
the response as is. Returning Next indicates the opposite, ie that the request should be allowed to
pass on to the next middleware in the chain. A handler function that doesn’t return either of these
are assumed to return a value that should be set to the response body and implicitely continue to the
next middleware.

Usage
Next
Break
should_break(x)

Arguments

X An object to test

Value

A boolean value

54 openapi
Examples

should_break() only returns TRUE with Break

should_break(10)

should_break (FALSE)

should_break(Next)

should_break(Break)

openapi Construct OpenAPI specifications

Description

These helper functions aid in constructing OpenAPI compliant specifications for your API. The
return simple lists and you may thus forego these helpers and instead construct it all manually (or
import it from a json or yaml file). The purpose of these helpers is mainly in basic input checking
and for documenting the structure. Read more about the spec at https://spec.openapis.org/
0as/v3.0.0.html

Usage

openapi (
openapi = "3.0.0",
info = openapi_info(),
paths = list(),
tags = list()

openapi_info(
title = character(),
description = character(),
terms_of_service = character(),
contact = openapi_contact(),
license = openapi_license(),
version = character()

openapi_contact(name = character(), url = character(), email = character())

openapi_license(name = character(), url = character())
openapi_path(

summary = character(),

description = character(),

https://spec.openapis.org/oas/v3.0.0.html
https://spec.openapis.org/oas/v3.0.0.html

openapi

get = openapi_operation(),

put = openapi_operation(),
post = openapi_operation(),
delete = openapi_operation(),
options = openapi_operation(),
head = openapi_operation(),
patch = openapi_operation(),
trace = openapi_operation(),
parameters = list()

openapi_operation(
summary = character(),
description = character(),
operation_id = character(),
parameters = list(),
request_body = openapi_request_body(),
responses = list(),
tags = character()

openapi_parameter(
name = character(),
location = c("path”, "query", "header"”, "cookie"),
description = character(),
required = logical(),
schema = openapi_schema(),
content = openapi_content(),

openapi_header(description = character(), schema = openapi_schema())

55

openapi_schema(x, default = NULL, min = NULL, max = NULL, ..., required = NULL)

openapi_content(...)

openapi_request_body(
description = character(),
content = openapi_content(),
required = logical()

)

openapi_response(
description = character(),
content = openapi_content(),
headers = list()

56

openapi

openapi_tag(name = character(), description = character())

Arguments

openapi

info

paths

tags

title

description

The OpenAPI version the spec adheres to. The helpers assume 3.0.0 so this is
also the default value

A list as constructed by openapi_info()

A named list. The names correspond to endpoints and the elements are lists as
constructed by openapi_path()

For openapi() a list with elements corresponding to the value constructed by
openapi_tag(). For openapi_operation() a character vector or a list of
strings

A string giving the title of the API

A longer description of the respective element. May use markdown

terms_of_service

contact
license
version
name
url
email

summary

A URL to the terms of service for the API

A list as constructed by openapi_contact()

A list as constructed by openapi_license()

A string giving the version of the API

The name of the contact, license, parameter, or tag

The URL pointing to the contact or license information
An email address for the contact

A one-sentence summary of the path or operation

get, put, post, delete, options, head, patch, trace

parameters

operation_id
request_body

responses

location

required

schema

content

A list describing the specific HTTP method when requested for the path, as
constructed by openapi_operation()

A list of parameters that apply to the path and/or operation. If this is given in
openapi_path() it is inherited by all its operations.

A unique string that identifies this operation in the API
A list as constructed by openapi_request_body ()

A named list with the name corresponding to the response code and the elements
being lists as constructed by openapi_response()

Where this parameter is coming from. Either "path”, "query”, "header”, or
"cookie".

For openapi_parameter a boolean indicating if this is a required parameter
("path” parameters are always required). For openapi_schema() a character
vector naming the required properties of an object.

A description of the data as constructed by openapi_schema
A list as constructed by openapi_content().

Further named arguments to be added to the element. For openapi_content()
named elements as constructed by openapi_schema()

57

openapi
X An R object corresponding to the type of the schema. Supported types are:
e integer: Will signal type: integer
* numeric: Will signal type: number
* character: Will signal type: string
» factor: Will signal type: string and enum set the factor levels
* raw: Will signal type:string; format: binary
* Date: Will signal type:string; format: date
e POSIXt: Will signal type:string; format: date-time
e list: If unnamed it must be a one-length list and will signal type: array
and items set to the schema of its element. If named it will signal type:
object and properties set to the schema of each element.
* AsIs: Will signal a type equivalent to the value of the input (must be a
string)
default A default value for the parameter. Must be reconsilable with the type of x
min, max Bounds for the value of the parameter
headers A named list with names corresponding to headers and elements as constructed
by openapi_header ()
Value
A list
Examples

Create docs for an API with a single endpoint
doc <- openapi(
info = openapi_info(
title = "My awesome api”,
version = "1.0.0"
),
paths = list(
"/hello/{name}" = openapi_path(
get = openapi_operation(
summary = "Get a greeting”,
parameters = list(
openapi_parameter(

name = "name”,
location = "path”,
description = "Your name”,
schema = openapi_schema(character())
)
),
responses = list(
"200" = openapi_response(
description = "a kind message”,
content = openapi_content(
"text/plain” = openapi_schema(character())
)

)

58

Add it to an api
api() |>
api_doc_add(doc)

parsers

parsers

Parser functions provided by plumber2

Description

These functions cover a large area of potential request body formats. They are all registered to their
standard mime types but users may want to use them to register them to alternative types if they

know it makes sense.
Usage

parse_csv(...)

parse_octet()

parse_rds(...)

parse_feather(...)
parse_parquet(...)

parse_text(multiple

parse_tsv(...)

parse_yaml(...)

parse_geojson(...)

FALSE)

parse_multipart(parsers = get_parsers())

Arguments

Further argument passed on to the internal parsing function. See Details for
information on which function handles the parsing internally in each parser

parsers 59

multiple logical: should the conversion be to a single character string or multiple individ-
ual characters?
parsers A list of parsers to use for parsing the parts of the body
Value

A function accepting a raw vector along with a directives argument that provides further direc-
tives from the Content-Type to be passed along

Provided parsers

* parse_csv() uses readr::read_csv() for parsing. It is registered as "csv" for the mime
types application/csv, application/x-csv, text/csv, and text/x-csv

* parse_multipart uses webutils: :parse_multipart() for the initial parsing. It then goes
through each part and tries to find a parser that matches the content type (either given directly
or guessed from the file extension provided). If a parser is not found it leaves the value as a
raw vector. It is registered as "multi" for the mime type multipart/=*

* parse_octet() passes the raw data through unchanged. It is registered as "octet” for the
mime type application/octet-stream

* parse_rds() uses unserialize() for parsing. It is registered as "rds"” for the mime type
application/rds

* parse_feather() uses arrow: :read_feather() for parsing. It is registered as "feather”
for the mime types application/vnd.apache.arrow.file and application/feather

* parse_parquet() uses arrow: :read_parquet() for parsing. It is registered as "parquet”
for the mime type application/vnd.apache.parquet

* parse_text() uses rawToChar() for parsing. It is registered as "text"” for the mime types
text/plain and text/*

* parse_tsv() uses readr::read_tsv() for parsing. It is registered as "tsv" for the mime
types application/tab-separated-values and text/tab-separated-values

* parse_yaml() uses yaml::yaml.load() for parsing. It is registered as "yaml" for the mime
types text/vnd.yaml, application/yaml, application/x-yaml, text/yaml, and text/x-yaml

* parse_geojson() uses geojsonsf: :geojson_sf() for parsing. Itis registered as "geojson"
for the mime types application/geo+json and application/vdn.geo+json

Additional registered parsers:
* reqres::parse_json() is registered as "json" for the mime types application/json and
text/json
* regres::parse_queryform() is registered as "form" for the mime type application/x-www-form-urlencoded

* reqres::parse_xml() is registered as "xml" for the mime types application/xml and
text/xml

* regres::parse_html() is registered as "html" for the mime type text/html

See Also

register_parser()

60 Plumber2

Examples

You can use parsers directly when adding handlers

pa <- api() |>
api_post(”/hello/<name:string>", function(name, body) {

list(
msg = paste@("Hello ", name, "!")
)
}, parsers = list("text/csv" = parse_csv()))
Plumber2 The Plumber2 Class
Description

This class encapsulates all of the logic of a plumber2 api, and is what gets passed around in the
functional api of plumber2. The Plumber? class is a subclass of the fiery::Fire class. Please consult
the documentation for this for additional information on what this type of server is capable of.
Note that the Plumber2 objects are reference objects, meaning that any change to it will change all
instances of the object.

Initialization:
A new Plumber2-object is initialized using the new() method on the generator:

api <- Plumber2$new()

However, most users will use the functional api of the package and thus construct one using api ()

Copying:

As Plumber2 objects are using reference semantics new copies of an api cannot be made simply
be assigning it to a new variable. If a true copy of a Plumber2 object is desired, use the clone()
method.

Super class

fiery::Fire -> Plumber2

Active bindings

request_router The router handling requests

header_router The router handling partial requests (the request will pass through this router prior
to reading in the body)

doc_type The type of API documentation to generate. Can be either "rapidoc” (the default),
"redoc”, "swagger"”, or NULL (equating to not generating API docs)

doc_path The URL path to serve the api documentation from

doc_args Further arguments to the documentation UI

Plumber2 61

Methods

Public methods:
e Plumber2$new()
e Plumber2$format()
e Plumber2$ignite()
e Plumber2$add_route()
e Plumber2$request_handler()
e Plumber2$message_handler ()
* Plumber2$redirect()
e Plumber2$parse_file()
* Plumber2$add_api_doc()
e Plumber2$add_shiny()
* Plumber2$add_report()
e Plumber2$forward()
e Plumber2$add_auth_guard()
e Plumber2$add_auth()
e Plumber2$clone()

Method new(): Create a new Plumber?2 api
Usage:
Plumber2$new(
host = get_opts("host”, "127.0.0.1"),
port = get_opts("port”, 8080),
doc_type = get_opts("docType”, "rapidoc"),
doc_path = get_opts("docPath”, "__docs__"),
reject_missing_methods = get_opts("rejectMissingMethods”, FALSE),
ignore_trailing_slash = get_opts("ignoreTrailingSlash”, TRUE),
max_request_size = get_opts("maxRequestSize"),
shared_secret = get_opts("”sharedSecret"),
compression_limit = get_opts(”"compressionLimit”, 1000),

default_async = get_opts("async”, "mirai”),
env = caller_env()

)

Arguments:

host A string overriding the default host

port An port number overriding the default port

doc_type The type of API documentation to generate. Can be either "rapidoc” (the default),
"redoc”, "swagger", or NULL (equating to not generating API docs)

doc_path The URL path to serve the api documentation from

reject_missing_methods Should requests to paths that doesn’t have a handler for the specific
method automatically be rejected with a 405 Method Not Allowed response with the correct
Allow header informing the client of the implemented methods. Assigning a handler to
"any” for the same path at a later point will overwrite this functionality. Be aware that
setting this to TRUE will prevent the request from falling through to other routes that might
have a matching method and path. This setting only affects handlers on the request router.

62 Plumber2

ignore_trailing_slash Logical. Should the trailing slash of a path be ignored when adding
handlers and handling requests. Setting this will not change the request or the path associ-
ated with but just ensure that both path/to/resource and path/to/resource/ ends up in
the same handler. This setting will only affect routes that are created automatically.

max_request_size Sets a maximum size of request bodies. Setting this will add a handler to
the header router that automatically rejects requests based on their Content-Length header

shared_secret Assigns a shared secret to the api. Setting this will add a handler to the header
router that automatically rejects requests if their PLumber-Shared-Secret header doesn’t
contain the same value. Be aware that this type of authentication is very weak. Never put
the shared secret in plain text but rely on e.g. the keyring package for storage. Even so, if
requests are send over HTTP (not HTTPS) then anyone can read the secret and use it

compression_limit The size threshold in bytes for trying to compress the response body (it
is still dependant on content negotiation)

default_async The default evaluator to use for async request handling
env An environment that will be used as the default execution environment for the API

Returns: A Plumber2 object

Method format(): Human readable description of the api object

Usage:
Plumber2$format(...)

Arguments:

. ignored

Returns: A character vector

Method ignite(): Begin running the server. Will trigger the start event

Usage:
Plumber2$ignite(
block = FALSE,
showcase = is_interactive(),

silént = FALSE
)
Arguments:
block Should the console be blocked while running (alternative is to run in the background)

showcase Should the default browser open up at the server address. If TRUE then a browser
opens at the root of the api, unless the api contains OpenAPI documentation in which case
it will open at that location. If a string the string is used as a path to add to the root before
opening.
. Arguments passed on to the start handler
silent Should startup messaging by silenced

Method add_route(): Add a new route to either the request or header router

Usage:
Plumber2$add_route(name, route = NULL, header = FALSE, after = NULL, root ="")

Plumber2 63

Arguments:

name The name of the route to add. If a route is already present with this name then the provided
route (if any) is merged into it

route The route to add. If NULL a new empty route will be created

header Logical. Should the route be added to the header router?

after The location to place the new route on the stack. NULL will place it at the end. Will not
have an effect if a route with the given name already exists.

root The root path to serve this route from.

Method request_handler(): Add ahandler to a request. See api_request_handlers for detailed
information
Usage:
Plumber2$request_handler(
method,
path,
handler,
serializers = NULL,
parsers = NULL,
use_strict_serializer = FALSE,
auth_flow = NULL,
auth_scope = NULL,
download = FALSE,
async = FALSE,
then = NULL,
doc = NULL,
route = NULL,
header = FALSE

)

Arguments:

method The HTTP method to attach the handler to

path A string giving the path the handler responds to.

handler A handler function to call when a request is matched to the path

serializers A named list of serializers that can be used to format the response before sending
it back to the client. Which one is selected is based on the request Accept header

parsers A named list of parsers that can be used to parse the request body before passing it in
as the body argument. Which one is selected is based on the request Content-Type header

use_strict_serializer By default, if a serializer that respects the requests Accept header
cannot be found, then the first of the provided ones are used. Setting this to TRUE will
instead send back a 406 Not Acceptable response

auth_flow The authentication flow the request must be validated by to be allowed into the
handler, provided as a logical expression of authenticator names

auth_scope The scope required to access this handler given a successful authentication. Unless
your authenticators provide scopes this should be NULL

download Should the response mark itself for download instead of being shown inline? Setting
this to TRUE will set the Content-Disposition header in the response to attachment.
Setting it to a string is equivalent to setting it to TRUE but will in addition also set the default
filename of the download to the string value

64

Plumber2

async If FALSE create a regular handler. If TRUE, use the default async evaluator to create an
async handler. If a string, the async evaluator registered to that name is used. If a function
is provided then this is used as the async evaluator

then A function to call at the completion of an async handler

doc OpenAPI documentation for the handler. Will be added to the paths$<handler_path>$<handler_method>

portion of the APIL.

route The route this handler should be added to. Defaults to the last route in the stack. If the
route does not exist it will be created as the last route in the stack.

header Logical. Should the handler be added to the header router

Method message_handler(): Add a handler to a WebSocket message. See api_message for
detailed information

Usage:

Plumber2$message_handler(handler, async = FALSE, then = NULL)

Arguments:
handler A function conforming to the specifications laid out in api_message()

async If FALSE create a regular handler. If TRUE, use the default async evaluator to create an
async handler. If a string, the async evaluator registered to that name is used. If a function
is provided then this is used as the async evaluator

then A function to call at the completion of an async handler

Method redirect(): Add aredirect to the header router. Depending on the value of permanent
it will respond with a 307 Temporary Redirect or 308 Permanent Redirect. from and to can
contain path parameters and wildcards which will be matched between the two to construct the
correct redirect path.

Usage:

Plumber2$redirect(method, from, to, permanent = TRUE)

Arguments:
method The HTTP method the redirect should respond to
from The path the redirect should respond to

to The path/URL to redirect the incoming request towards. After resolving any path parameters
and wildcards it will be used in the Location header

permanent Logical. Is the redirect considered permanent or temporary? Determines the type
of redirect status code to use

Method parse_file(): Parses a plumber file and updates the app according to it
Usage:
Plumber2$parse_file(file, env = NULL)
Arguments:

file The path to a file to parse

env The parent environment to the environment the file should be evaluated in. If NULL the
environment provided at construction will be used

Method add_api_doc(): Add a (partial) OpenAPI spec to the api docs

Plumber2 65

Usage:
Plumber2$add_api_doc(doc, overwrite = FALSE, subset = NULL)

Arguments:

doc A list with the OpenAPI documentation

overwrite Logical. Should already existing documentation be removed or should it be merged
together with doc

subset A character vector giving the path to the subset of the docs to assign doc to

Method add_shiny(): Add a shiny app to an api. See api_shiny() for detailed information

Usage:
Plumber2$add_shiny(
path,
app,
except = NULL,
auth_flow = NULL,
auth_scope = NULL
)

Arguments:

path The path to serve the app from

app A shiny app object

except Subpaths to path that should not be forwarded to the shiny app. Be sure it doesn’t
contains paths that the shiny app needs

auth_flow The authentication flow the request must be validated by to be allowed into the
handler, provided as a logical expression of authenticator names

auth_scope The scope required to access this handler given a successful authentication. Unless
your authenticators provide scopes this should be NULL

Method add_report(): Render and serve a Quarto or Rmarkdown document from an endpoint.
See api_report() for more information.

Usage:
Plumber2$add_report(
path,
report,
doc = NULL,
max_age = Inf,
async = TRUE,
finalize = NULL,
continue = FALSE,
cache_dir = tempfile(pattern = "plumber2_report"),
cache_by_id = FALSE,
auth_flow = NULL,
auth_scope = NULL,
route = NULL

66

Plumber2

Arguments:
path The base path to serve the report from. Additional endpoints will be created in addition
to this.
report The path to the report to serve
. Further arguments to quarto: :quarto_render () or rmarkdown: : render ()

doc An openapi_operation() documentation for the report. Only query parameters will be
used and a request body will be generated from this for the POST methods.

max_age The maximum age in seconds to keep a rendered report before initiating a re-render
async Should rendering happen asynchronously (using mirai)

finalize An optional function to run before sending the response back. The function will
receive the request as the first argument, the response as the second, and the server as the
third.

continue A logical that defines whether the response is returned directly after rendering or
should be made available to subsequent routes

cache_dir The location of the render cache. By default a temporary folder is created for it.

cache_by_id Should caching be scoped by the user id. If the rendering is dependent on user-
level access to different data this is necessary to avoid data leakage.

auth_flow The authentication flow the request must be validated by to be allowed into the
handler, provided as a logical expression of authenticator names

auth_scope The scope required to access this handler given a successful authentication. Unless
your authenticators provide scopes this should be NULL

route The route this handler should be added to. Defaults to the last route in the stack. If the
route does not exist it will be created as the last route in the stack.

Method forward(): Add a reverse proxy from a path to a given URL. See api_forward() for
more details

Usage:

Plumber2$forward(path, url, except = NULL, auth_flow = NULL, auth_scope = NULL)

Arguments:

path The root to forward from

url The url to forward to

except Subpaths to path that should be exempt from forwarding

auth_flow The authentication flow the request must be validated by to be allowed into the
handler, provided as a logical expression of authenticator names

auth_scope The scope required to access this handler given a successful authentication. Unless
your authenticators provide scopes this should be NULL

Method add_auth_guard(): Adds an auth guard to your API which can then be referenced in
auth flows.

Usage:

Plumber2$add_auth_guard(guard, name = NULL)

Arguments:

guard An Guard subclass object defining the scheme

name The name to use for referencing the scheme in an auth flow

register_async 67

Method add_auth(): Add an auth flow to an endpoint
Usage:
Plumber2$add_auth(method, path, auth_flow, auth_scope = NULL, add_doc = TRUE)
Arguments:
method The HTTP method to add auth to
path A string giving the path to be authenticated

auth_flow A logical expression giving the auth flow the client must pass to get access to the
resource

auth_scope The scope requirements of the resource
add_doc Should OpenAPI documentation be added for the authentication

Method clone(): The objects of this class are cloneable with this method.
Usage:
Plumber2$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

register_async Register an async evaluator

Description

plumber supports async request handling in two ways. Either manual by returning a promise from
the handler, or automatic through the @async tag / async argument in the handler functions. The
default evaluator is controlled by the plumber2.async option or the PLUMBER2_ASYNC environment
variable.

Usage

register_async(name, fun, dependency = NULL)

show_registered_async()

get_async(name = NULL, ...)
Arguments
name The name of the evaluator
fun A function that, upon calling it returns an evaluator taking an expr and envir

argument. See the async evaluator functions for examples
dependency Package dependencies for the evaluator.

Arguments passed on to the async function creator

68

Examples

register_parser

Register an async evaluator based on future (the provided mirai backend is

superior in every way so this is for illustrative purpose)

future_async <- function(...) {
function(expr, envir) {
promises: : future_promise(
expr = expr,
envir = envir,
substitute = FALSE,

)

}
}
register_async("future”, future_async, c("promises”, "future"))
register_parser Register or fetch a parser
Description

plumber2 comes with many parsers that should cover almost all standard use cases. Still you might

want to provide some of your own, which this function facilitates.

Usage

register_parser(name, fun, mime_types, default = TRUE)

show_registered_parsers()

get_parsers(parsers = NULL)

Arguments

name The name to register the parser function to. If already present the current parser
will be overwritten by the one provided by you

fun A function that, when called, returns a binary function that can parse a request
body. The first argument takes a raw vector with the binary encoding of the
request body, the second argument takes any additional directives given by the
requests Content-Type header

mime_types One or more mime types that this parser can handle. The mime types are allowed
to contain wildcards, e.g. "text/x"

default Should this parser be part of the default set of parsers

parsers Parsers to collect. This can either be a character vector of names of registered

parsers or a list. If it is a list then the following expectations apply:

register_serializer 69

* Any unnamed elements containing a character vector will be considered as
names of registered parsers constructed with default values. The special
value "..." will fetch all the parsers that are otherwise not specified in the
call

* Any element containing a function are considered as a provided parser and
the element must be named by the mime type the parser understands (wild-
cards allowed)

* Any remaining named elements will be considered names of registered
parsers that should be constructed with the arguments given in the element

Details

If you want to register your own parser, then the function you register must be a factory function,
i.e. a function returning a function. The returned function must accept two arguments, the first
being a raw vector corresponding to the request body, the second being the parsed directives from
the request Content-Type header. All arguments to the factory function should be optional.

Value

For get_parsers a named list of parser functions named by their mime types. The order given in
parsers is preserved.

See Also

parsers

register_serializer()

Examples

Register a parser that splits at a character and converts to number
register_parser(”comma”, function(delim = " ") {
function(raw, directive) {
as.numeric(strsplit(rawToChar(raw), delim)[[11])
}
}, mime_types = "text/plain”, default = FALSE)

register_serializer Register or fetch a serializer

Description

plumber2 comes with many serializers that should cover almost all standard use cases. Still you
might want to provide some of your own, which this function facilitates.

70

Usage

register_serializer

register_serializer(name, fun, mime_type, default = TRUE)

show_registered_serializers()

get_serializers(serializers = NULL)

Arguments

name
fun
mime_type

default

serializers

Details

The name to register the serializer function to. If already present the current
serializer will be overwritten by the one provided by you

A function that, when called, returns a unary function that can serialize a re-
sponse body to the mime type defined in mime_type

The format this serializer creates. You should take care to ensure that the value
provided is a standard mime type for the format

Should this serializer be part of the default set of serializers

Serializers to collect. This can either be a character vector of names of registered
serializers or a list. If it is a list then the following expectations apply:

* Any unnamed elements containing a character vector will be considered as
names of registered serializers constructed with default values. The special
value "..." will fetch all the serializers that are otherwise not specified in
the call.

* Any element containing a function are considered as a provided serializer
and the element must be named by the mime type the serializer understands

* Any remaining named elements will be considered names of registered se-
rializers that should be constructed with the arguments given in the element

If you want to register your own serializer, then the function you register must be a factory function,
i.e. a function returning a function. The returned function must accept a single argument which is
the response body. All arguments to the factory function should be optional.

Value

For get_serializers a named list of serializer functions named by their mime type. The order
given in serializers is preserved.

Note

Using the . ..

will provide remaining graphics serializers if a graphics serializer is explicitely re-

quested elsewhere. Otherwise it will provide the remaining non-graphics serializers. A warning is
thrown if a mix of graphics and non-graphics serializers are requested.

See Also

serializers

register_serializer()

serializers 71

Examples

Add a serializer that deparses the value
register_serializer("deparse”, function(...) {
function(x) {
deparse(x, ...)
}
}, mime_type = "text/plain”)

serializers Serializer functions provided by plumber2

Description

These functions cover a large area of potential response body formats. They are all registered to
their standard mime type but users may want to use them to register them to alternative types if they
know it makes sense.

Usage

format_csv(...)

format_tsv(...)

format_rds(version = "3", ascii = FALSE, ...)
format_geojson(...)

format_feather(...)

format_parquet(...)

format_yaml(...)

format_htmlwidget(...)

format_format(..., sep = "\n")
format_print(..., sep = "\n")
format_cat(..., sep = "\n")

format_unboxed(...)
format_png(...)

format_jpeg(...)

72 serializers
format_tiff(...)
format_svg(...)
format_bmp(...)
format_pdf(...)
Arguments
Further argument passed on to the internal formatting function. See Details for
information on which function handles the formatting internally in each serial-
izer
version the workspace format version to use. NULL specifies the current default version
(3). The only other supported value is 2, the default from R 1.4.0 to R 3.5.0.
ascii a logical. If TRUE or NA, an ASCII representation is written; otherwise (default)
a binary one. See also the comments in the help for save.
sep The separator between multiple elements
Value

A function accepting the response body

Provided serializers

format_csv() uses readr::format_csv() for formatting. It is registered as "csv” to the
mime type text/csv

format_tsv() uses readr::format_tsv() for formatting. It is registered as "tsv" to the
mime type text/tsv

format_rds() uses serialize() for formatting. It is registered as "rds" to the mime type
application/rds

format_geojson() uses geojsonsf::sfc_geojson() or geojsonsf::sf_geojson() for
formatting depending on the class of the response body. It is registered as "geojson” to
the mime type application/geo+json

J

format_feather() uses arrow: :write_feather () for formatting. It is registered as " feather’
to the mime type application/vnd.apache.arrow.file

format_parquet() uses nanoparquet: :write_parquet() for formatting. It is registered as
"parquet” to the mime type application/vnd.apache.parquet

format_yaml () uses yaml: :as.yaml() for formatting. It is registered as "yaml” to the mime
type text/yaml

format_htmlwidget() uses htmlwidgets: :saveWidget() for formatting. It is registered as
"htmlwidget” to the mime type text/html

format_format() uses format() for formatting. It is registered as "format"” to the mime
type text/plain

serializers 73

e format_print() uses print() for formatting. It is registered as "print” to the mime type
text/plain

» format_cat() uses cat() for formatting. Itis registered as "cat” to the mime type text/plain

» format_unboxed() uses regres::format_json() with auto_unbox = TRUE for formatting.
It is registered as "unboxedJSON" to the mime type application/json

Additional registered serializers:

* regres::format_json() is registered as "json" to the mime type application/json
* regres::format_html() is registered as "html" to the mime type text/html

* regres::format_xml() is registered as "xml" to the mime type text/xml

* regres::format_plain() is registered as "text" to the mime type text/plain

Provided graphics serializers

Serializing graphic output is special because it requires operations before and after the handler is
executed. Further, handlers creating graphics are expected to do so through side-effects (i.e. call
to graphics rendering) or by returning a ggplot2 object. If you want to create your own graphics
serializer you should use device_formatter () for constructing it.

e format_png() uses ragg::agg_png() for rendering. It is registered as "png"” to the mime
type image/png

» format_jpeg() uses ragg: :agg_jpeg() for rendering. It is registered as " jpeg” to the mime
type image/jpeg

e format_tiff() uses ragg::agg_tiff () forrendering. Itis registered as "tiff" to the mime
type image/tiff

» format_svg() uses svglite::svglite() for rendering. It is registered as "svg" to the mime
type image/svg+xml

e format_bmp() uses grDevices: :bmp() for rendering. It is registered as "bmp” to the mime
type image/bmp

* format_pdf () uses grDevices: :pdf () for rendering. It is registered as "pdf” to the mime
type application/pdf

See Also

register_serializer()

Examples

You can use serializers directly when adding handlers
pa <- api() [|>
api_get("/hello/<name:string>", function(name) {
list(
msg = paste@("Hello
)

}, serializers = list("application/json” = format_unboxed()))

”

, hame, "!")

Index

* Request Handlers
api_request_handlers, 26
api_request_header_handlers, 36

+ datasets
api_logger, 16
Next, 53

* security features
api_security_cors, 42
api_security_headers, 44
api_security_resource_isolation,

46

abort_x(), 34

add_plumber2_tag, 2

adding a handler, 6

all_opts (get_opts), 52

api, 4, 21

api(), 51, 52, 60

api_add_route, 6

api_any (api_request_handlers), 26

api_any_header
(api_request_header_handlers),
36

api_assets, 7

api_auth,9

api_auth_guard, 10

api_auth_guard(), 35

api_connect (api_request_handlers), 26

api_connect_header
(api_request_header_handlers),
36

api_datastore, 11

api_datastore(), 47

api_delete (api_request_handlers), 26

api_delete_header
(api_request_header_handlers),
36

api_doc_add (api_docs), 13

api_doc_setting (api_docs), 13

api_docs, 13

74

api_forward, 15

api_forward(), 66

api_get (api_request_handlers), 26

api_get(), 9

api_get_header
(api_request_header_handlers),
36

api_head (api_request_handlers), 26

api_head_header
(api_request_header_handlers),
36

api_logger, 16

api_message, 17, 64

api_message(), 64

api_off (api_on), 19

api_on, 19

api_options (api_request_handlers), 26

api_options_header
(api_request_header_handlers),
36

api_package, 21

api_package(), 5

api_parse (api), 4

api_patch (api_request_handlers), 26

api_patch_header
(api_request_header_handlers),
36

api_post (api_request_handlers), 26

api_post_header
(api_request_header_handlers),
36

api_put (api_request_handlers), 26

api_put_header
(api_request_header_handlers),
36

api_redirect, 22

api_redirect(), 15

api_report, 23

api_report(), 9, 65

INDEX

api_request_handlers, 26, 36, 40, 63

api_request_header_handlers, 35, 36

api_run, 40

api_security_cors, 42, 46, 47

api_security_headers, 43,44, 47

api_security_resource_isolation, 43, 46,
46

api_session_cookie, 47

api_shiny, 49

api_shiny(), 15, 65

api_statics (api_assets), 7

api_stop (api_run), 40

api_trace (api_request_handlers), 26

api_trace_header
(api_request_header_handlers),
36

apply_plumber2_block(), 3

async evaluator, 67

async_evaluators, 50

Break (Next), 53

cat(), 73

combined_log_format (api_logger), 16
common_log_format (api_logger), 16
CORS, 42

create_server_yml, 51

device_formatter(), 73

fiery documentation, /6
fiery::Fire, 60
fiery::loggers, 16

firesafety: :csp(), 44, 45
firesafety: :sts(), 45
format(), 72

format_bmp (serializers), 71
format_cat (serializers), 71
format_csv (serializers), 71
format_feather (serializers), 71
format_format (serializers), 71
format_geojson (serializers), 71
format_htmlwidget (serializers), 71
format_jpeg (serializers), 71
format_parquet (serializers), 71
format_pdf (serializers), 71
format_png (serializers), 71
format_print (serializers), 71
format_rds (serializers), 71

75

format_svg (serializers), 71
format_tiff (serializers), 71
format_tsv (serializers), 71
format_unboxed (serializers), 71
format_yaml (serializers), 71

get_async (register_async), 67

get_opts, 52

get_opts(), S5

get_parsers (register_parser), 68

get_parsers(), 29, 39

get_serializers (register_serializer),
69

get_serializers(), 29, 39

glue, 16

grDevices: :bmp(), 73

grDevices: :pdf (), 73

Guard, 10, 66

guards, 9

is_plumber_api (api), 4

logger_console (api_logger), 16
logger_file (api_logger), 16
logger_logger (api_logger), 16
logger_null (api_logger), 16
logger_otel (api_logger), 16
logger_switch (api_logger), 16

message(), 34
mirai::daemons(), 50
mirai::mirai(), 50

mirai_async (async_evaluators), 50

Next, 36, 53

one of the helper functions, I3
openapi, 54

openapi_contact (openapi), 54
openapi_content (openapi), 54
openapi_header (openapi), 54
openapi_info (openapi), 54
openapi_license (openapi), 54
openapi_operation (openapi), 54
openapi_operation(), 24, 66
openapi_parameter (openapi), 54
openapi_path (openapi), 54
openapi_request_body (openapi), 54
openapi_response (openapi), 54
openapi_schema (openapi), 54

76

openapi_tag (openapi), 54
options(), 52

parse_csv (parsers), 58
parse_feather (parsers), 58
parse_geojson (parsers), 58
parse_multipart (parsers), 58
parse_octet (parsers), 58
parse_parquet (parsers), 58
parse_rds (parsers), 58
parse_text (parsers), 58
parse_tsv (parsers), 58
parse_yaml (parsers), 58
parsers, 58, 69
Plumber2, 4, 5, 18, 22, 33, 60
print(), 73
promises::then(), I8, 30, 35, 39

ragg::agg_jpeg(), 73

ragg: :agg_png(Q), 73
ragg::agg_tiff(), 73
rawToChar(), 59

readr: :format_csv(), 72
readr: :format_tsv(), 72
readr::read_csv(), 59
readr::read_tsv(), 59
register_async, 67
register_async(), 50
register_parser, 68
register_parser(), 59
register_serializer, 69
register_serializer(), 69, 70, 73
regres::format_html(), 73
regres::format_json(), 73
regres::format_plain(), 73
regres::format_xml(), 73
regres: :parse_html(), 59
regres: :parse_json(), 59
regres: :parse_queryform(), 59
regres: :parse_xml(), 59
regres: :random_key(), 48
regres: :Request, I8, 33
regres: :Response, 33
request handlers, I8
Resourcelsolation, 46
routr: :Route, 6

save, 72
SecurityHeaders, 44

INDEX

serialize(), 72

serializers, 70, 71

session cookie, 11

should_break (Next), 53

show_registered_async (register_async),
67

show_registered_parsers
(register_parser), 68

show_registered_serializers
(register_serializer), 69

standard request handlers, 40

stop(), 34

svglite::svglite(), 73

switch, 17

the handler functions, 67
unserialize(), 59

warning(), 34
webutils: :parse_multipart(), 59

yaml::as.yaml(), 72
yaml::yaml.load(), 59

	add_plumber2_tag
	api
	api_add_route
	api_assets
	api_auth
	api_auth_guard
	api_datastore
	api_docs
	api_forward
	api_logger
	api_message
	api_on
	api_package
	api_redirect
	api_report
	api_request_handlers
	api_request_header_handlers
	api_run
	api_security_cors
	api_security_headers
	api_security_resource_isolation
	api_session_cookie
	api_shiny
	async_evaluators
	create_server_yml
	get_opts
	Next
	openapi
	parsers
	Plumber2
	register_async
	register_parser
	register_serializer
	serializers
	Index

