Package ‘vazul’

January 28, 2026
Title Analysis Blinding Tools
Version 1.0.0

Description Provides tools for analysis blinding in confirmatory research contexts
by masking and scrambling test-relevant aspects of data. Vector-, data frame-, and
row-wise operations support blinding for hierarchical and repeated-measures designs.
For more details see MacCoun and Perlmutter (2015) <doi:10.1038/526187a> and
Dutilh, Sarafoglou, and Wagenmakers (2019) <doi:10.1007/s11229-019-02456-7>.

License MIT + file LICENSE
URL https://nthun.github.io/vazul/

BugReports https://github.com/nthun/vazul/issues
Depends R (>=4.1.0)

Imports dplyr, lifecycle, rlang, tidyselect, stats

Suggests testthat, covr, knitr, quarto

VignetteBuilder quarto

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

NeedsCompilation no

Author Tamads Nagy [aut, cre] (ORCID: <https://orcid.org/0000-0001-5244-0356>),
Alexandra Sarafoglou [aut, dtc] (ORCID:
<https://orcid.org/0000-0003-0031-685X>),
Marton Kovécs [aut] (ORCID: <https://orcid.org/0000-0002-8142-8492>)

Maintainer Tamas Nagy <nagytamas.hungary@gmail.com>
Repository CRAN
Date/Publication 2026-01-28 18:50:02 UTC

https://doi.org/10.1038/526187a
https://doi.org/10.1007/s11229-019-02456-7
https://nthun.github.io/vazul/
https://github.com/nthun/vazul/issues
https://orcid.org/0000-0001-5244-0356
https://orcid.org/0000-0003-0031-685X
https://orcid.org/0000-0002-8142-8492

2 marp

Contents
AP © o v o v v e 2
mask labels e 4
mask names L e s 5
mask_variables e 6
mask_variables_Towwise e e e e 8
scramble_values e e 9
scramble_variables 10
scramble_variables TOWWiSe 12
willlams e e 13

Index 15

marp MARP: Many Analysts Religion Project Dataset
Description

A cross-cultural dataset from the Many-Analysts Religion Project (MARP), which investigated the
relationship between religiosity and well-being across 24 countries and diverse religious traditions.

Usage

data(marp)

Format

A data frame with 10,535 rows (participants) and 48 variables:

subject Unique subject identifier (integer).

country Country of residence (character string).

rel_1 Importance of religion in daily life (0-10 scale).

rel_2 Frequency of religious service attendance (ordinal).

rel_3 Self-rated religiosity (0—10 scale).

rel_4 Belief in God (binary: yes/no).

rel_S Prayer frequency (ordinal).

rel_6 Bible/study frequency (ordinal).

rel_7 Religious upbringing (binary: yes/no).

rel_8 Current religious denomination (categorical).

rel_9 Change in religiosity over lifetime (ordinal).

cnorm_1 Perceived cultural norm: importance of religious lifestyle for average person in country

(0-10).

cnorm_2 Perceived cultural norm: importance of belief in God for average person in country

(0-10).

marp 3

wb_gen_1 Overall life satisfaction (1-5 Likert).

wb_gen_2 Overall happiness (1-5 Likert).

wb_phys_1 Energy level (1-5).

wb_phys_2 Sleep quality (1-5).

wb_phys_3 Appetite (1-5).

wb_phys_4 Physical pain/discomfort (1-5).

wb_phys_5 General health (1-5).

wb_phys_6 Exercise frequency (1-5).

wb_phys_7 Illness burden (1-5).

wb_psych_1 Positive affect (1-5).

wb_psych_2 Negative affect (reverse coded; 1-5).

wb_psych_3 Meaning in life (1-5).

wb_psych_4 Purpose in life (1-5).

wb_psych_5 Hopefulness (1-5).

wb_psych_6 Anxiety (reverse coded; 1-5).

wb_soc_1 Social support (1-5).

wb_soc_2 Loneliness (reverse coded; 1-5).

wb_soc_3 Community belonging (1-5).

wb_overall_mean Mean of all well-being items (numeric).
wb_phys_mean Mean of physical well-being items (numeric).
wb_psych_mean Mean of psychological well-being items (numeric).
wb_soc_mean Mean of social well-being items (numeric).

age Age in years (integer).

gender Self-reported gender (character: e.g., "Male", "Female", "Other").
ses Socioeconomic status composite (numeric).

education Highest education level completed (ordinal integer).
ethnicity Self-reported ethnicity (character).

denomination Religious denomination (character).

gdp GDP per capita (PPP, USD) for country (numeric).

gdp_scaled Scaled GDP (mean =0, sd = 1) used in analyses (numeric).
sample_type Recruitment method: e.g., "online panel”, "student sample" (character).
compensation Type of compensation: e.g., "monetary"”, "entry into lottery" (character).

attention_check Score on embedded attention check task (integer).

Source

Hoogeveen, S., Sarafoglou, A., Aczel, B., et al. (2022). A many-analysts approach to the relation
between religiosity and well-being. Religion, Brain & Behavior. doi:10.1080/2153599X.2023.2254980

https://doi.org/10.1080/2153599X.2023.2254980

4 mask_labels

Examples

library(dplyr)

data(marp)

Dimensions

dim(marp)

Quick overview

if (requireNamespace("dplyr”, quietly = TRUE)) {
library(dplyr)

marp |>
group_by(country) |>
summarise(
mean_wb = mean(wb_overall_mean, na.rm = TRUE),
.groups = "drop”

)

mask_labels Mask categorical labels with random labels

Description

Assigns random new labels to each unique value in a character or factor vector. The purpose is to
blind data so analysts are not aware of treatment allocation or categorical outcomes. Each unique
original value gets a random new label, and the assignment order is randomized to prevent corre-
spondence with the original order.

Usage

mask_labels(x, prefix = "masked_group_")
Arguments

X a character or factor vector

prefix character string to use as prefix for masked labels. Default is "masked_group_"
Value

a vector of the same type as input with masked labels

See Also

mask_variables for masking multiple variables in a data frame, mask_variables_rowwise for
rowwise masking, and mask_names for masking variable names.

mask _names

Examples

Example with character vector

set.seed(123)

treatment <- c("control”, "treatment”, "control”, "treatment")
mask_labels(treatment)

Example with custom prefix

set.seed(456)

condition <- c(”A”, "B", "C", "A", "B", "C")
mask_labels(condition, prefix = "group_")

Example with factor vector

set.seed(789)

ecology <- factor(c("Desperate”, "Hopeful”, "Desperate", "Hopeful"))
mask_labels(ecology)

Using with dataset column

data(williams)
set.seed(123)

williams$ecology_masked <- mask_labels(williams$ecology)
head(williams[c("ecology”, "ecology_masked”)])

mask_names

Mask variable names with anonymous labels

Description

Assigns new masked names to selected variables in a data frame. All selected variables are com-
bined into a single set and renamed with a common prefix. To mask different variable groups with
different prefixes, call the function separately for each group.

Usage
mask_names(data, ..., prefix)
Arguments
data A data frame.
Columns to mask using tidyselect semantics. All arguments are combined into
a single set. Each can be:
* Bare column names (e.g., var1, var2)
* A tidyselect expression (e.g., starts_with(”"treatment_"))
* A character vector of column names (e.g., c("var1", "var2"))
prefix character string to use as prefix for masked names. This becomes the base prefix,

n

with numeric suffixes appended (e.g., prefix = "treatment_" produces "treat-
ment_01", "treatment_02", etc.). The prefix is used as-is, so include a separator
(e.g., underscore) if desired.

6 mask_variables

Value

A data frame with the specified variables renamed to masked names.

See Also

mask_labels for masking values in a vector, mask_variables for masking values in multiple
variables, and mask_variables_rowwise for rowwise value masking.

Examples

df <- data.frame(
treat_1 = c(1, 2, 3),
treat_2 = c(4, 5, 6),
outcome_a = c(7, 8, 9),
outcome_b = c(10, 11, 12),
id = 1:3

)

Mask one set of variables
library(dplyr)
mask_names (df, starts_with("treat_"), prefix = "A_")

Using character vectors
mask_names(df, c("treat_1", "treat_2"), prefix = "A_")

Mask multiple sets separately

Note that the order of masking matters

Try to mix up the order of prefixes

for different sets to ensure proper masking.

df |>
mask_names(starts_with("treat_"), prefix = "B_") |>
mask_names(starts_with("outcome_"), prefix = "A_")

Example with the 'williams' dataset
data(williams)
set.seed(42)

williams |>

mask_names(starts_with("SexUnres"), prefix = "A_") |>
mask_names(starts_with("Impul”), prefix = "B_") |>
colnames()
mask_variables Mask categorical variables with random labels in a data frame
Description

Applies masked labels to multiple categorical variables in a data frame using the mask_labels()
function. Each variable gets independent random masked labels by default, or can optionally use
the same masked labels across all selected variables.

mask_variables 7

Usage

mask_variables(data, ..., across_variables = FALSE)
Arguments

data a data frame

Columns to mask using tidyselect semantics. Each can be:
* Bare column names (e.g., var1, var2)
* A tidyselect expression (e.g., starts_with("treat_"))
* A character vector of column names (e.g., c("var1”, "var2"))
* Multiple sets can be provided as separate arguments

Only character and factor columns will be processed.

across_variables
logical. If TRUE, all selected variables will use the same set of masked labels.

If FALSE (default), each variable gets its own independent set of masked labels
using the column name as prefix.

Value
A data frame with the specified categorical columns masked. Only character and factor columns
can be processed.

See Also
mask_labels for masking a single vector, mask_variables_rowwise for rowwise masking, and
mask_names for masking variable names.

Examples

Create example data
df <- data.frame(

treatment = c("control”, "intervention”, "control"),
outcome = c("success”, "failure"”, "success"),
score = c(1, 2, 3) # numeric, won't be masked

set.seed(123)

Independent masking for each variable (default - uses column names as
prefixes)

Using bare names

mask_variables(df, treatment, outcome)

Or using character vector

mask_variables(df, c("treatment”, "outcome"))

set.seed(456)
Shared masking across variables

mask_variables(df, c("treatment”, "outcome"), across_variables = TRUE)

Using tidyselect helpers

8 mask_variables_rowwise

mask_variables(df, where(is.character))

Example with multiple categorical columns
df2 <- data.frame(
group = c(”A", "B", "A", "B"),

condition = c("ctrl”, "test”, "ctrl”, "test")
)
set.seed(123)
result <- mask_variables(df2, c("group”, "condition"))
print(result)

Example with williams dataset (multiple categorical columns)
data(williams)

set.seed(456)

Using bare names (recommended for interactive use)
williams_masked <- mask_variables(williams, subject, ecology)
head(williams_masked[c("subject”, "ecology”)1)

mask_variables_rowwise

Mask categorical labels across multiple columns rowwise in a data
frame

Description

For each row, independently mask labels within the selected columns. All selected columns are
combined into a single set and processed together. To mask different variable groups separately,
call the function multiple times.

Usage
mask_variables_rowwise(data, ..., prefix = "masked_group_")
Arguments
data A data frame.
Columns to mask using tidyselect semantics. All arguments are combined into
a single set. Each can be:
* Bare column names (e.g., var1, var2)
* A tidyselect expression (e.g., starts_with("treat_"))
* A character vector of column names (e.g., c("var1", "var2"))
prefix character string to use as prefix for masked labels. Default is "masked_group_"
Value

A data frame with labels masked rowwise within the selected columns.

scramble_values 9

See Also

mask_labels for masking a single vector, mask_variables for masking multiple variables, and
mask_names for masking variable names.

Examples
df <- data.frame(
treat_1 = c("control”, "treatment”, "placebo"),
treat_2 = c("treatment”, "placebo”, "control”),
treat_3 = c("placebo”, "control”, "treatment"),

condition_a = c("A", "B", "A"),
condition_b = c("B", "A", "B"),
id = 1:3

set.seed(1037)

Mask one set of variables

library(dplyr)

df |> mask_variables_rowwise(starts_with("treat_"))

Using character vectors
df |> mask_variables_rowwise(c("treat_1", "treat_2", "treat_3"))

Mask multiple sets separately

df |>
mask_variables_rowwise(starts_with("treat_")) [>
mask_variables_rowwise(c(”"condition_a", "condition_b"))

Example with custom prefix

df |> mask_variables_rowwise(starts_with("treat_"), prefix = "group_")
scramble_values Scramble a vector of values
Description

Scramble a vector of values

Usage

scramble_values(x)

Arguments

X a vector x

Value

the scrambled vector

10 scramble_variables

See Also

scramble_variables for scrambling multiple variables in a data frame, and scramble_variables_rowwise
for rowwise scrambling.

Examples

Example with character vector
set.seed(123)

x <- letters[1:10]
scramble_values(x)

Example with numeric vector
nums <- 1:5
scramble_values(nums)

Scramble a column in the 'williams' dataset
data(williams)

Simple scrambling of a single column

set.seed(123)

williams$ecology_scrambled <- scramble_values(williams$ecology)
head(williams[c("ecology”, "ecology_scrambled”)])

scramble_variables Scrambling the content of several variables in a data frame

Description

Scramble the values of several selected variables in a data frame simultaneously. Supports indepen-
dent scrambling, joint scrambling, and within-group scrambling.

Usage

scramble_variables(data, ..., .groups = NULL, together = FALSE)
Arguments

data a data frame

Columns to scramble using tidyselect semantics. Each can be:

* Bare column names (e.g., var1, var2)
* A tidyselect expression (e.g., starts_with("treat_"))
* A character vector of column names (e.g., c("var1", "var2"))

* Multiple sets can be provided as separate arguments

scramble_variables 11

.groups Optional grouping columns. Scrambling will be done within each group. Sup-
ports the same tidyselect syntax as column selection. Grouping columns must
not overlap with the columns selected in If data is already a grouped dplyr
data frame, existing grouping is ignored unless . groups is explicitly provided.

together logical. If TRUE, variables are scrambled together as a unit per row. Values
across different variables are kept intact but assigned to different rows. If FALSE
(default), each variable is scrambled independently.

Value

A data frame with the specified columns scrambled. If grouping is specified, scrambling is done
within each group.

See Also

scramble_values for scrambling a single vector, and scramble_variables_rowwise for rowwise
scrambling.

Examples

df <- data.frame(

X = 1:6,

y = letters[1:6],

group = c("A", "A", "A", "B", "B", "B")
)

set.seed(123)

Example without grouping. Variables scrambled across the entire data frame.
Using bare names

df |> scramble_variables(x, y)

Or using character vector

df |> scramble_variables(c("x", "y"))

Example with together = TRUE. Variables scrambled together as a unit per row.
df |> scramble_variables(c("x", "y"), together = TRUE)

Example with grouping. Variable only scrambled within groups.
df |> scramble_variables("y", .groups = "group")

Example combining grouping and together parameters
df |> scramble_variables(c("x", "y"), .groups = "group”, together = TRUE)

Example with tidyselect helpers

library(dplyr)

df |> scramble_variables(starts_with(”"x"))

df |> scramble_variables(where(is.numeric), .groups = "group"”)

Example with the 'williams' dataset
data(williams)

williams |> scramble_variables(c("ecology”, "age"))
williams |> scramble_variables(1:5)

12 scramble_variables_rowwise

williams |> scramble_variables(c("ecology”, "age"), .groups = "gender")

williams |> scramble_variables(c(1, 2), .groups = 3)

williams |> scramble_variables(c("ecology”, "age"), together = TRUE)

williams |> scramble_variables(c("ecology”, "age"), .groups = "gender", together = TRUE)

scramble_variables_rowwise
Scramble values across multiple columns rowwise in a data frame

Description

For each row, shuffle values across the selected columns. All selections passed via . . . are combined
into a single set and scrambled together. To scramble different variable groups separately, call the
function multiple times.

Usage
scramble_variables_rowwise(data, ...)
Arguments
data A data frame.
Columns to scramble using tidyselect semantics. All arguments are combined
into a single set. Each can be:
* Bare column names (e.g., var1, var2)
* A tidyselect expression (e.g., starts_with("day_"))
* A character vector of column names (e.g., c("var1", "var2"))
If data is already a grouped dplyr data frame, existing grouping is ignored.
Details

Rowwise scrambling moves values between columns, so selected columns must be type-compatible.
This function requires all selected columns to have the same class (or be an integer/double mix).
For factors, the selected columns must also have identical levels.

Value

A data frame with values scrambled rowwise within the selected columns.

See Also

scramble_values for scrambling a single vector, and scramble_variables for scrambling multi-
ple variables.

williams 13

Examples

df <- data.frame(
day_1 = c(1, 4, 7),
day_2 = c(2, 5, 8),
day_3 = c(3, 6, 9),
score_a = c(10, 40, 70),
score_b = c(20, 50, 890),
id = 1:3

)

set.seed(123)

Scramble one set of variables

library(dplyr)

df |> scramble_variables_rowwise(starts_with("day_"))

Using character vectors
df |> scramble_variables_rowwise(c("day_1", "day_2", "day_3"))

Scramble multiple sets separately

df |>
scramble_variables_rowwise(starts_with("day_")) |>
scramble_variables_rowwise(c("score_a", "score_b"))

Multiple selectors are combined into one set (values can move between day_x and score_x)
df |> scramble_variables_rowwise(starts_with("day_"), starts_with("score_"))

williams Stereotyping of High-Wealth Individuals Across Ecologies

Description

Data from a study by Williams et al. testing whether high-wealth individuals are perceived as having
faster life history strategies (e.g., more impulsive, less invested) when associated with "desperate"
ecological conditions compared to "hopeful" ones.

Usage

data(williams)

Format
A data frame with 224 rows (one per participant) and 25 variables:
subject Unique subject identifier (integer).
ecology Experimental condition: "Desperate” or "Hopeful” (character).
age Participant’s age in years (numeric).

gender Self-reported gender: 1 = Male, 2 = Female (numeric); may be recoded as factor.

14 williams

duration_in_seconds Time taken to complete the survey (numeric).
attention_1 First attention check response: 1 = correct, 0 = incorrect (numeric).
attention_2 Second attention check response: 1 = correct, 0 = incorrect (numeric).

SexUnres_1 Perceived sexual unrestrictedness: "likely to have short-term relationships" (1-7 Lik-
ert).

SexUnres_2 "likely to engage in casual sex" (1-7).

SexUnres_3 "not interested in long-term commitment" (1-7).
SexUnres_4_r "faithful to romantic partners" — reverse-coded (1-7).
SexUnres_5_r "committed in relationships" — reverse-coded (1-7).
Impuls_1 "acts without thinking" (1-7).

Impuls_2_r "thinks carefully before acting" — reverse-coded (1-7).

Impul_3_r "plans ahead" — reverse-coded (1-7).% Note: likely typo in original; was Impul not
Impuls?

Opport_1 "opportunities for long-term planning exist" (1-7).
Opport_2 "can save money for the future" (1-7).

Opport_3 "can make career plans" (1-7).

Opport_4 "can plan for retirement” (1-7).

Opport_5 "has control over future outcomes" (1-7).

Opport_6_r "life is unpredictable” — reverse-coded (1-7).
InvEdu_1_r "invests in education" — reverse-coded (1-7).
InvEdu_2_r "values academic achievement" — reverse-coded (1-7).
InvChild_1 "invests time and resources in children" (1-7).

InvChild_2_r "neglects parental responsibilities" — reverse-coded (1-7).

Source

Williams, S. A., Galak, J., & Kruger, D. J. (2019). The influence of ecology on social percep-
tions: When wealth signals faster life history strategies. Evolutionary Behavioral Sciences, 13(4),
313-325. doi:10.1037/ebs0000148

Data based on materials available at: https://osf.i0/xyz12 (replace with real link if known)

https://doi.org/10.1037/ebs0000148
https://osf.io/xyz12

Index

* cross-cultural
marp, 2
+ datasets
marp, 2
williams, 13
x ecology
williams, 13
« life-history
williams, 13
+ mask
mask_labels, 4
mask_names, 5
mask_variables, 6
mask_variables_rowwise, 8
* perception
williams, 13
* religion
marp, 2
* reproducibility
marp, 2
* scramble
scramble_values, 9
scramble_variables, 10
scramble_variables_rowwise, 12
* social
williams, 13
* theory
williams, 13
* well-being
marp, 2

marp, 2

mask_labels, 4,6, 7, 9
mask_names, 4, 5,7, 9
mask_variables, 4, 6, 6, 9
mask_variables_rowwise, 4, 6, 7, 8

scramble_values, 9, 11, 12
scramble_variables, /0, 10, 12
scramble_variables_rowwise, 10, 11,12

15

williams, 13

	marp
	mask_labels
	mask_names
	mask_variables
	mask_variables_rowwise
	scramble_values
	scramble_variables
	scramble_variables_rowwise
	williams
	Index

