
Package ‘zarr’
February 11, 2026

Title Native and Extensible R Driver for 'Zarr'

Version 0.2.0

Description The 'Zarr' specification is widely used to build libraries for the storage and retrieval of n-
dimensional array data from data stores ranging from local file systems to the cloud. This pack-
age is a native 'Zarr' implementation in R with support for all required features of 'Zarr' ver-
sion 3. It is designed to be extensible such that new stores, codecs and exten-
sions can be added easily.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.3

Imports blosc, jsonlite, methods, R6

Suggests bit64, curl, digest, qs2, testthat (>= 3.0.0), zlib

Config/testthat/edition 3

Config/Needs/website rmarkdown

Depends R (>= 4.1)

URL https://github.com/R-CF/zarr, https://r-cf.github.io/zarr/

BugReports https://github.com/R-CF/zarr/issues

NeedsCompilation no

Author Patrick Van Laake [aut, cre, cph]

Maintainer Patrick Van Laake <patrick@vanlaake.net>

Repository CRAN

Date/Publication 2026-02-11 12:20:02 UTC

Contents
array-indexing . 2
array_builder . 3
as_zarr . 6
chunk_grid_regular . 7

1

https://github.com/R-CF/zarr
https://r-cf.github.io/zarr/
https://github.com/R-CF/zarr/issues

2 array-indexing

create_zarr . 8
define_array . 9
open_zarr . 10
str.chunk_grid_regular . 11
str.zarr . 11
str.zarr_array . 12
str.zarr_group . 12
zarr . 13
zarr_array . 15
zarr_codec . 17
zarr_codec_blosc . 19
zarr_codec_bytes . 20
zarr_codec_crc32c . 22
zarr_codec_gzip . 23
zarr_codec_transpose . 24
zarr_codec_zstd . 26
zarr_data_type . 27
zarr_extension . 28
zarr_group . 29
zarr_httpstore . 31
zarr_localstore . 36
zarr_memorystore . 40
zarr_node . 44
zarr_store . 46
[[.zarr . 51
[[.zarr_group . 51

Index 53

array-indexing Extract or replace parts of a Zarr array

Description

These operators can be used to extract or replace data from an array by indices. Normal R array
selection rules apply. The only limitation is that the indices have to be consecutive.

Usage

S3 method for class 'zarr_array'
x[..., drop = TRUE]

array_builder 3

Arguments

x A zarr_array object of which to extract or replace the data.
... Indices specifying elements to extract or replace. Indices are numeric, empty

(missing) or NULL. Numeric values are coerced to integer or whole numbers.
The number of indices has to agree with the dimensionality of the array.

drop If TRUE (the default), degenerate dimensions are dropped, if FALSE they are re-
tained in the result.

Value

When extracting data, a vector, matrix or array, having dimensions as specified in the indices. When
replacing part of the Zarr array, returns x invisibly.

Examples

x <- array(1:100, c(10, 10))
z <- as_zarr(x)
arr <- z[["/"]]
arr[3:5, 7:9]

array_builder Array builder

Description

This class builds the metadata document for an array to be created or modified. It can also be used
to inspect the metadata document of an existing Zarr array.

The Zarr core specification is quite complex for arrays, including codecs and storage transformers
that are part optional, part mandatory, and dependent on each other. On top of that, extensions
defined outside of the core specification must also be handled in the same metadata document. This
class helps construct a valid metadata document, with support for (some) extensions. (If you need
support for a specific extension, open an issue on Github.)

When creating array definitions, the default is to use R ordering, meaning that a transpose codec
is added with the "order" parameters having the dimensions in reverse order. If you want to use
a different ordering, for instance to have a Zarr store with maximum portability, delete the default
transpose codec or set its ordering to the desired values. Note that the shape and chunk_shape
parameters are set in reference to the ordering in the transpose codec (or the default 0, 1, ... is no
transpose codec is present), but that within the R environment the shape and chunk shape are always
set to R ordering. This is necessary to be able to apply array operations on the data in R.

This class does not care about the "chunk_key_encoding" parameter. This is addressed at the level
of the store.

The "codecs" parameter has a default first codec of "transpose". This ensures that R matrices and
arrays can be stored in native column-major order with the store still accessible to environments
that use row-major order by default, such as Python. A second default codec is "bytes" that records
the endianness of the data. Other codecs may be added by the user, such as a compression codec.

This class only handles the mandatory attributes in a Zarr array metadata document. Optional
arguments may be set directly on the Zarr array after it has been created.

4 array_builder

Active bindings

format The Zarr format to build the metadata for. The value must be 3. After changing the format,
many fields will have been reset to a default value.

portable Logical flag to indicate if the array is specified for maximum portability across environ-
ments (e.g. Python, Java, C++). Default is FALSE. Setting the portability to TRUE implies that
R data will be permuted before writing the array to the store. A value of FALSE is therefore
more efficient.

data_type The data type of the Zarr array. After changing the format, many fields will have been
reset to a default value.

fill_value The value in the array of uninitialized data elements. The fill_value has to agree
with the data_type of the array.

shape The shape of the Zarr array, an integer vector of lengths along the dimensions of the array.
Setting the shape will reset the chunking settings to their default values.

chunk_shape The shape of each individual chunk in which to store the Zarr array. When set-
ting, pass in an integer vector of lengths of the same size as the shape of the array. The
shape of the array must be set before setting this. When reading, returns an instance of class
chunk_grid_regular.

codec_info (read-only) Retrieve a data.frame of registered codec modes and names for this ar-
ray.

codecs (read-only) A list with validated and instantiated codecs for processing data associated with
this array.

Methods

Public methods:
• array_builder$new()

• array_builder$print()

• array_builder$metadata()

• array_builder$add_codec()

• array_builder$remove_codec()

• array_builder$is_valid()

Method new(): Create a new instance of the array_builder class. Optionally, a metadata
document may be passed in as an argument to inspect the definition of an existing Zarr array, or
to use as a template for a new metadata document.

Usage:
array_builder$new(metadata = NULL)

Arguments:
metadata Optional. A JSON metadata document or list of metadata from an existing Zarr array.

This document will not be modified through any operation in this class.

Returns: An instance of this class.

Method print(): Print the array metadata to the console.

Usage:

array_builder 5

array_builder$print()

Method metadata(): Retrieve the metadata document to create a Zarr array.

Usage:

array_builder$metadata(format = "list")

Arguments:

format Either "list" or "JSON".

Returns: The metadata document in the requested format.

Method add_codec(): Adds a codec at the end of the currently registered codecs. Optionally,
the .position argument may be used to indicate a specific position of the codec in the list.
Codecs can only be added if their mode agrees with the mode of existing codecs - if this codec
does not agree with the existing codecs, a warning will be issued and the new codec will not be
registered.

Usage:

array_builder$add_codec(codec, configuration, .position = NULL)

Arguments:

codec The name of the codec. This must be a registered codec with an implementation that is
available from this package.

configuration List with configuration parameters of the codec. May be NULL or list() for
codecs that do not have configuration parameters.

.position Optional, the 1-based position where to insert the codec in the list. If the number is
larger than the list, the codec will be appended at the end of the list of codecs.

Returns: Self, invisibly.

Method remove_codec(): Remove a codec from the list of codecs for the array. A codec cannot
be removed if the remaining codecs do not form a valid chain due to mode conflicts.

Usage:

array_builder$remove_codec(codec)

Arguments:

codec The name of the codec to remove, a single character string.

Method is_valid(): This method indicates if the current specification results in a valid meta-
data document to create a Zarr array.

Usage:

array_builder$is_valid()

Returns: TRUE if a valid metadata document can be generated, FALSE otherwise.

6 as_zarr

as_zarr Convert an R object into a Zarr array

Description

This function creates a Zarr object from an R vector, matrix or array. Default settings will be taken
from the R object (data type, shape). Data is chunked into chunks of length 100 (or less if the array
is smaller) and compressed.

Usage

as_zarr(x, name = NULL, location = NULL)

Arguments

x The R object to convert. Must be a vector, matrix or array of a numeric or logical
type.

name Optional. The name of the Zarr array to be created.

location Optional. If supplied, either an existing zarr_group in a Zarr object, or a char-
acter string giving the location on a local file system where to persist the data.
If the argument is a zarr_group, argument name must be provided. If the argu-
ment gives the location for a new Zarr store then the location must be writable
by the calling code. As per the Zarr specification, it is recommended to use a
location that ends in ".zarr" when providing a location for a new store. If ar-
gument name is given then the Zarr array will be created in the root of the Zarr
store with that name. If the name argument is not given, a single-array Zarr store
will be created. If the location argument is not given, a Zarr object is created
in memory.

Value

If the location argument is a zarr_group, the new Zarr array is returned. Otherwise, the Zarr
object that is newly created and which contains the Zarr array, or an error if the Zarr object could
not be created.

Examples

x <- array(1:400, c(5, 20, 4))
z <- as_zarr(x)
z

chunk_grid_regular 7

chunk_grid_regular Chunk management

Description

This class implements the regular chunk grid for Zarr arrays. It manages reading from and writing
to Zarr stores, using the codecs for data transformation.

Super class

zarr::zarr_extension -> chunk_grid_regular

Active bindings

chunk_shape (read-only) The dimensions of each chunk in the chunk grid of the associated array.

chunk_grid (read-only) The chunk grid of the associated array, i.e. the number of chunks in each
dimension.

chunk_encoding Set or retrieve the chunk key encoding to be used for creating store keys for
chunks.

data_type The data type of the array using the chunking scheme. This is set by the array when
starting to use chunking for file I/O.

codecs The list of codecs used by the chunking scheme. These are set by the array when starting
to use chunking for file I/O. Upon reading, the list of registered codecs.

store The store of the array using the chunking scheme. This is set by the array when starting to
use chunking for file I/O.

array_prefix The prefix of the array using the chunking scheme. This is set by the array when
starting to use chunking for file I/O.

Methods

Public methods:
• chunk_grid_regular$new()

• chunk_grid_regular$print()

• chunk_grid_regular$metadata_fragment()

• chunk_grid_regular$read()

• chunk_grid_regular$write()

Method new(): Initialize a new chunking scheme for an array.

Usage:
chunk_grid_regular$new(array_shape, chunk_shape)

Arguments:

array_shape Integer vector of the array dimensions.
chunk_shape Integer vector of the dimensions of each chunk.

8 create_zarr

Returns: An instance of chunk_grid_regular.

Method print(): Print a short description of this chunking scheme to the console.

Usage:
chunk_grid_regular$print()

Returns: Self, invisibly.

Method metadata_fragment(): Return the metadata fragment that describes this chunking
scheme.

Usage:
chunk_grid_regular$metadata_fragment()

Returns: A list with the metadata of this codec.

Method read(): Read data from the Zarr array into an R object.

Usage:
chunk_grid_regular$read(start, stop)

Arguments:

start, stop Integer vectors of the same length as the dimensionality of the Zarr array, indicat-
ing the starting and ending (inclusive) indices of the data along each axis.

Returns: A vector, matrix or array of data.

Method write(): Write data to the array.

Usage:
chunk_grid_regular$write(data, start, stop)

Arguments:

data An R object with the same dimensionality as the Zarr array.
start, stop Integer vectors of the same length as the dimensionality of the Zarr array, indicat-

ing the starting and ending (inclusive) indices of the data along each axis.

Returns: Self, invisibly.

create_zarr Create a Zarr store

Description

This function creates a Zarr v.3 instance, with a store located on the local file system. The root of
the Zarr store will be a group to which other groups or arrays can be added.

Usage

create_zarr(location)

define_array 9

Arguments

location Character string that indicates a location on a file system where the data in the
Zarr object will be persisted in a Zarr store in a directory. The character string
may contain UTF-8 characters and/or use a file URI format. The Zarr speci-
fication recommends that the location use the ".zarr" extension to identify the
location as a Zarr store.

Value

A zarr object.

Examples

fn <- tempfile(fileext = ".zarr")
my_zarr_object <- create_zarr(fn)
my_zarr_object$store$root
unlink(fn)

define_array Define the properties of a new Zarr array.

Description

With this function you can create a skeleton Zarr array from some key properties and a number of
derived properties. Compression of the data is set to a default algorithm and level. This function
returns an array_builder instance with which you can create directly the Zarr array, or set further
properties before creating the array.

Usage

define_array(data_type, shape)

Arguments

data_type The data type of the Zarr array.

shape An integer vector giving the length along each dimension of the array.

Value

A array_builder instance with which a Zarr array can be created.

10 open_zarr

Examples

x <- array(1:120, c(3, 8, 5))
def <- define_array("int32", dim(x))
def$chunk_shape <- c(4, 4, 4)
z <- create_zarr() # Creates a Zarr object in memory
arr <- z$add_array("/", "my_array", def)
arr$write(x)
arr

open_zarr Open a Zarr store

Description

This function opens a Zarr object, connected to a store located on the local file system or on a
remote server using the HTTP protocol. The Zarr object can be either v.2 or v.3.

Usage

open_zarr(location, read_only = FALSE)

Arguments

location Character string that indicates a location on a file system or a HTTP server where
the Zarr store is to be found. The character string may contain UTF-8 characters
and/or use a file URI format.

read_only Optional. Logical that indicates if the store is to be opened in read-only mode.
Default is FALSE for a local file system store, TRUE otherwise.

Value

A zarr object.

Examples

fn <- system.file("extdata", "africa.zarr", package = "zarr")
africa <- open_zarr(fn)
africa

str.chunk_grid_regular 11

str.chunk_grid_regular

Compact display of a regular chunk grid

Description

Compact display of a regular chunk grid

Usage

S3 method for class 'chunk_grid_regular'
str(object, ...)

Arguments

object A chunk_grid_regular instance.
... Ignored.

Examples

fn <- system.file("extdata", "africa.zarr", package = "zarr")
africa <- open_zarr(fn)
tas <- africa[["/tas"]]
str(tas$chunking)

str.zarr Compact display of a Zarr object

Description

Compact display of a Zarr object

Usage

S3 method for class 'zarr'
str(object, ...)

Arguments

object A zarr instance.
... Ignored.

Examples

fn <- system.file("extdata", "africa.zarr", package = "zarr")
africa <- open_zarr(fn)
str(africa)

12 str.zarr_group

str.zarr_array Compact display of a Zarr array

Description

Compact display of a Zarr array

Usage

S3 method for class 'zarr_array'
str(object, ...)

Arguments

object A zarr_array instance.
... Ignored.

Examples

fn <- system.file("extdata", "africa.zarr", package = "zarr")
africa <- open_zarr(fn)
tas <- africa[["/tas"]]
str(tas)

str.zarr_group Compact display of a Zarr group

Description

Compact display of a Zarr group

Usage

S3 method for class 'zarr_group'
str(object, ...)

Arguments

object A zarr_group instance.
... Ignored.

Examples

fn <- system.file("extdata", "africa.zarr", package = "zarr")
africa <- open_zarr(fn)
root <- africa[["/"]]
str(root)

zarr 13

zarr Zarr object

Description

This class implements a Zarr object. A Zarr object is a set of objects that make up an instance of a
Zarr data set, irrespective of where it is located. The Zarr object manages the hierarchy as well as
the underlying store.

A Zarr object may contain multiple Zarr arrays in a hierarchy. The main class for managing Zarr
arrays is zarr_array. The hierarchy is made up of zarr_group instances. Each zarr_array is located
in a zarr_group.

Value

A zarr object.

Active bindings

version (read-only) The version of the Zarr object.

root (read-only) The root node of the Zarr object, usually a zarr_group instance but it could also
be a zarr_array instance.

store (read-only) The store of the Zarr object.

groups (read-only) Retrieve the paths to the groups of the Zarr object, starting from the root group,
as a character vector.

arrays (read-only) Retrieve the paths to the arrays of the Zarr object, starting from the root group,
as a character vector.

Methods

Public methods:
• zarr$new()

• zarr$print()

• zarr$hierarchy()

• zarr$get_node()

• zarr$add_group()

• zarr$add_array()

• zarr$delete_group()

• zarr$delete_array()

• zarr$clone()

Method new(): Create a new Zarr instance. The Zarr instance manages the groups and arrays in
the Zarr store that it refers to. This instance provides access to all objects in the Zarr store.

Usage:
zarr$new(store)

14 zarr

Arguments:

store An instance of a zarr_store descendant class where the Zarr objects are located.

Method print(): Print a summary of the Zarr object to the console.

Usage:
zarr$print()

Method hierarchy(): Print the Zarr hierarchy to the console.

Usage:
zarr$hierarchy()

Method get_node(): Retrieve the group or array represented by the node located at the path.

Usage:
zarr$get_node(path)

Arguments:

path The path to the node to retrieve. Must start with a forward-slash "/".

Returns: The zarr_group or zarr_array instance located at path, or NULL if the path was not
found.

Method add_group(): Add a group below a given path.

Usage:
zarr$add_group(path, name)

Arguments:

path The path to the parent group of the new group, a single character string.
name The name for the new group, a single character string.

Returns: The newly created zarr_group, or NULL if the group could not be created.

Method add_array(): Add an array in a group with a given path.

Usage:
zarr$add_array(path, name, metadata)

Arguments:

path The path to the group of the new array, a single character string.
name The name for the new array, a single character string.
metadata A list with the metadata for the new array.

Returns: The newly created zarr_array, or NULL if the array could not be created.

Method delete_group(): Delete a group from the Zarr object. This will also delete the group
from the Zarr store. The root group cannot be deleted but it can be specified through path = "/"
in which case the root group loses any specific group metadata (with only the basic parameters
remaining), as well as any arrays and sub-groups if recursive = TRUE. Warning: this operation
is irreversible for many stores!

Usage:
zarr$delete_group(path, recursive = FALSE)

zarr_array 15

Arguments:

path The path to the group.
recursive Logical, default FALSE. If FALSE, the operation will fail if the group has any arrays

or sub-groups. If TRUE, the group and all Zarr objects contained by it will be deleted.

Returns: Self, invisible.

Method delete_array(): Delete an array from the Zarr object. If the array is the root of the
Zarr object, it will be converted into a regular Zarr object with a root group. Warning: this
operation is irreversible for many stores!

Usage:
zarr$delete_array(path)

Arguments:

path The path to the array.

Returns: Self, invisible.

Method clone(): The objects of this class are cloneable with this method.

Usage:
zarr$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

zarr_array Zarr Array

Description

This class implements a Zarr array. A Zarr array is stored in a node in the hierarchy of a Zarr data
set. The array contains the data for an object.

Super class

zarr::zarr_node -> zarr_array

Active bindings

data_type (read-only) Retrieve the data type of the array.

shape (read-only) Retrieve the shape of the array, an integer vector.

chunking (read-only) The chunking engine for this array.

chunk_separator (read-only) Retrieve the separator to be used for creating store keys for chunks.

codecs The list of codecs that this array uses for encoding data (and decoding in inverse order).

16 zarr_array

Methods

Public methods:
• zarr_array$new()

• zarr_array$print()

• zarr_array$hierarchy()

• zarr_array$read()

• zarr_array$write()

Method new(): Initialize a new array in a Zarr hierarchy. The array must already exist in the
store

Usage:
zarr_array$new(name, metadata, parent, store)

Arguments:
name The name of the array.
metadata List with the metadata of the array.
parent The parent zarr_group instance of this new array, can be missing or NULL if the Zarr

object should have just this array.
store The zarr_store instance to persist data in.

Returns: An instance of zarr_array.

Method print(): Print a summary of the array to the console.

Usage:
zarr_array$print()

Method hierarchy(): Prints the hierarchy of the groups and arrays to the console. Usually
called from the Zarr object or its root group to display the full group hierarchy.

Usage:
zarr_array$hierarchy(idx, total)

Arguments:
idx, total Arguments to control indentation.

Method read(): Read some or all of the array data for the array.

Usage:
zarr_array$read(selection)

Arguments:
selection A list as long as the array has dimensions where each element is a range of indices

along the dimension to write. If missing, the entire array will be read.

Returns: A vector, matrix or array of data.

Method write(): Write data for the array. The data will be chunked, encoded and persisted in
the store that the array is using.

Usage:
zarr_array$write(data, selection)

zarr_codec 17

Arguments:

data An R vector, matrix or array with the data to write. The data in the R object has to agree
with the data type of the array.

selection A list as long as the array has dimensions where each element is a range of indices
along the dimension to write. If missing, the entire data object will be written.

Returns: Self, invisibly.

zarr_codec Zarr codecs

Description

Zarr codecs encode data from the user data to stored data, using one or more transformations, such
as compression. Decoding of stored data is the inverse process, whereby the codecs are applied in
reverse order.

Super class

zarr::zarr_extension -> zarr_codec

Active bindings

mode (read-only) Retrieve the operating mode of the encoding operation of the codec in form of a
string "array -> array", "array -> bytes" or "bytes -> bytes".

from (read-only) Character string that indicates the source data type of this codec, either "array" or
"bytes".

to (read-only) Character string that indicates the output data type of this codec, either "array" or
"bytes".

configuration (read-only) A list with the configuration parameters of the codec, exactly like they
are defined in Zarr. This field is read-only but each codec class has fields to set individual
parameters.

Methods

Public methods:
• zarr_codec$new()

• zarr_codec$copy()

• zarr_codec$print()

• zarr_codec$metadata_fragment()

• zarr_codec$encode()

• zarr_codec$decode()

Method new(): Create a new codec object.

Usage:

18 zarr_codec

zarr_codec$new(name, configuration)

Arguments:

name The name of the codec, a single character string.
configuration A list with the configuration parameters for this codec.

Returns: An instance of this class.

Method copy(): Create a new, independent copy of this codec.

Usage:

zarr_codec$copy()

Returns: This method always throws an error.

Method print(): Print a summary of the codec to the console.

Usage:

zarr_codec$print()

Method metadata_fragment(): Return the metadata fragment that describes this codec.

Usage:

zarr_codec$metadata_fragment()

Returns: A list with the metadata of this codec.

Method encode(): This method encodes a data object but since this is the base codec class the
"encoding" is a no-op.

Usage:

zarr_codec$encode(data)

Arguments:

data The data to be encoded.

Returns: The encoded data object, unaltered.

Method decode(): This method decodes a data object but since this is the base codec class the
"decoding" is a no-op.

Usage:

zarr_codec$decode(data)

Arguments:

data The data to be decoded.

Returns: The decoded data object, unaltered.

zarr_codec_blosc 19

zarr_codec_blosc Zarr blosc codec

Description

The Zarr "blosc" codec offers a number of compression options to reduce the size of a raw vector
prior to storing, and uncompressing when reading.

Super classes

zarr::zarr_extension -> zarr::zarr_codec -> zarr_codec_blosc

Active bindings

cname Set or retrieve the name of the compression algorithm. Must be one of "blosclz", "lz4",
"lz4hc", "zstd" or "zlib".

clevel Set or retrieve the compression level. Must be an integer between 0 (no compression) and
9 (maximum compression).

shuffle Set or retrieve the data shuffling of the compression algorithm. Must be one of "shuffle",
"noshuffle" or "bitshuffle".

typesize Set or retrieve the size in bytes of the data type being compressed. It is highly recom-
mended to leave this at the automatically determined value.

blocksize Set or retrieve the size in bytes of the blocks being compressed. It is highly recom-
mended to leave this at a value of 0 such that the blosc library will automatically determine
the optimal value.

Methods

Public methods:
• zarr_codec_blosc$new()

• zarr_codec_blosc$copy()

• zarr_codec_blosc$encode()

• zarr_codec_blosc$decode()

Method new(): Create a new "blosc" codec object. The typesize argument is taken from the data
type of the array passed in through the data_type argument and the shuffle argument is chosen
based on the data_type.

Usage:
zarr_codec_blosc$new(data_type, configuration = NULL)

Arguments:
data_type The zarr_data_type instance of the Zarr array that this codec is used for.
configuration Optional. A list with the configuration parameters for this codec. If not given,

the default compression of "zstd" with level 1 will be used.

Returns: An instance of this class.

20 zarr_codec_bytes

Method copy(): Create a new, independent copy of this codec.

Usage:

zarr_codec_blosc$copy()

Returns: An instance of zarr_codec_blosc.

Method encode(): This method compresses a data object using the "blosc" compression library.

Usage:

zarr_codec_blosc$encode(data)

Arguments:

data The raw vector to be compressed.

Returns: A raw vector with compressed data.

Method decode(): This method decompresses a data object using the "blosc" compression
library.

Usage:

zarr_codec_blosc$decode(data)

Arguments:

data The raw vector to be decoded.

Returns: A raw vector with the decoded data.

zarr_codec_bytes Zarr bytes codec

Description

The Zarr "bytes" codec encodes an R data object to a raw byte string, and decodes a raw byte string
to a R object, possibly inverting the endianness of the data in the operation.

Super classes

zarr::zarr_extension -> zarr::zarr_codec -> zarr_codec_bytes

Active bindings

endian Set or retrieve the endianness of the storage of the data with this codec. A string with value
of "big" or "little".

zarr_codec_bytes 21

Methods

Public methods:
• zarr_codec_bytes$new()

• zarr_codec_bytes$copy()

• zarr_codec_bytes$metadata_fragment()

• zarr_codec_bytes$encode()

• zarr_codec_bytes$decode()

Method new(): Create a new "bytes" codec object.
Usage:
zarr_codec_bytes$new(data_type, chunk_shape, configuration = NULL)

Arguments:
data_type The zarr_data_type instance of the Zarr array that this codec is used for.
chunk_shape The shape of a chunk of data of the array, an integer vector.
configuration Optional. A list with the configuration parameters for this codec. The element

endian specifies the byte ordering of the data type of the Zarr array. A string with value
"big" or "little". If not given, the default endianness of the platform is used.

Returns: An instance of this class.

Method copy(): Create a new, independent copy of this codec.
Usage:
zarr_codec_bytes$copy()

Returns: An instance of zarr_codec_bytes.

Method metadata_fragment(): Return the metadata fragment that describes this codec.
Usage:
zarr_codec_bytes$metadata_fragment()

Returns: A list with the metadata of this codec.

Method encode(): This method writes an R object to a raw vector in the data type of the Zarr
array. Prior to writing, any NA values are assigned the fill_value of the data_type of the Zarr
array. Note that the logical type cannot encode NA in Zarr and any NA values are set to FALSE.

Usage:
zarr_codec_bytes$encode(data)

Arguments:
data The data to be encoded.
Returns: A raw vector with the encoded data object.

Method decode(): This method takes a raw vector and converts it to an R object of an appro-
priate type. For all types other than logical, any data elements with the fill_value of the Zarr
data type are set to NA.

Usage:
zarr_codec_bytes$decode(data)

Arguments:
data The data to be decoded.
Returns: An R object with the shape of a chunk from the array.

22 zarr_codec_crc32c

zarr_codec_crc32c Zarr CRC32C codec

Description

The Zarr "CRC32C" codec computes a 32-bit checksum of a raw vector. Upon encoding the codec
appends the checksum to the end of the vector. When decoding, the final 4 bytes from the raw
vector are extracted and compared to the checksum of the remainder of the raw vector - if the two
don’t match a warning is generated.

Super classes

zarr::zarr_extension -> zarr::zarr_codec -> zarr_codec_crc32c

Methods

Public methods:

• zarr_codec_crc32c$new()

• zarr_codec_crc32c$copy()

• zarr_codec_crc32c$encode()

• zarr_codec_crc32c$decode()

Method new(): Create a new "crc32c" codec object.

Usage:
zarr_codec_crc32c$new()

Arguments:

configuration Optional. A list with the configuration parameters for this codec but since this
codec doesn’t have any the argument is always ignored.

Returns: An instance of this class.

Method copy(): Create a new, independent copy of this codec.

Usage:
zarr_codec_crc32c$copy()

Returns: An instance of zarr_codec_crc32c.

Method encode(): This method computes the CRC32C checksum of a data object and appends
it to the data object.

Usage:
zarr_codec_crc32c$encode(data)

Arguments:

data A raw vector whose checksum to compute.

Returns: The input data raw vector with the 32-bit checksum appended to it.

zarr_codec_gzip 23

Method decode(): This method extracts the CRC32C checksum from the trailing 32-bits of
a data object. It then computes the CRC32C checksum from the data object (less the trailing
32-bits) and compares the two values. If the values differ, a warning will be issued.

Usage:
zarr_codec_crc32c$decode(data)

Arguments:

data The raw vector whose checksum to verify.

Returns: The data raw vector with the trailing 32-bits removed.

zarr_codec_gzip Zarr gzip codec

Description

The Zarr "gzip" codec compresses a raw vector prior to storing, and uncompresses the raw vector
when reading.

Super classes

zarr::zarr_extension -> zarr::zarr_codec -> zarr_codec_gzip

Active bindings

level The compression level of the gzip codec, an integer value between 0L (no compression) and
9 (maximum compression).

Methods

Public methods:
• zarr_codec_gzip$new()

• zarr_codec_gzip$copy()

• zarr_codec_gzip$encode()

• zarr_codec_gzip$decode()

Method new(): Create a new "gzip" codec object.

Usage:
zarr_codec_gzip$new(configuration = NULL)

Arguments:

configuration Optional. A list with the configuration parameters for this codec. The element
level specifies the compression level of this codec, ranging from 0 (no compression) to 9
(maximum compression).

Returns: An instance of this class.

Method copy(): Create a new, independent copy of this codec.

24 zarr_codec_transpose

Usage:
zarr_codec_gzip$copy()

Returns: An instance of zarr_codec_gzip.

Method encode(): This method encodes a data object.

Usage:
zarr_codec_gzip$encode(data)

Arguments:

data The data to be encoded.

Returns: The encoded data object.

Method decode(): This method decodes a data object.

Usage:
zarr_codec_gzip$decode(data)

Arguments:

data The data to be decoded.

Returns: The decoded data object.

zarr_codec_transpose Zarr transpose codec

Description

The Zarr "transpose" codec registers the storage order of a data object relative to the canonical
row-major ordering of Zarr. If the registered ordering is different from the native ordering on the
platform where the array is being read, the data object will be permuted upon reading.

R data is arranged in column-major order. The most efficient storage arrangement between Zarr and
R is thus column-major ordering, avoiding encoding to the canonical row-major ordering during
storage and decoding to column-major ordering during a read. If the storage arrangement is not
row-major ordering, a transpose codec must be added to the array definition. Note that within R,
both writing and reading are no-ops when data is stored in column-major ordering. On the other
hand, when no transpose codec is defined for the array, there will be an automatic transpose of
the data on writing and reading to maintain compatibility with the Zarr specification. Using the
array_builder will automatically add the transpose codec to the array definition.

For maximum portability (e.g. with Zarr implementations outside of R that do not implement the
transpose codec), data should be stored in row-major order, which can be achieved by not including
this codec in the array definition.

Super classes

zarr::zarr_extension -> zarr::zarr_codec -> zarr_codec_transpose

zarr_codec_transpose 25

Active bindings

order Set or retrieve the 0-based ordering of the dimensions of the array when storing

Methods

Public methods:

• zarr_codec_transpose$new()

• zarr_codec_transpose$copy()

• zarr_codec_transpose$encode()

• zarr_codec_transpose$decode()

Method new(): Create a new "transpose" codec object.

Usage:
zarr_codec_transpose$new(shape_length, configuration = list())

Arguments:

shape_length The length of the shape of the array that this codec operates on.
configuration Optional. A list with the configuration parameters for this codec. The element

order specifies the ordering of the dimensions of the shape relative to the Zarr canonical ar-
rangement. An integer vector with a length equal to argument shape_length. The ordering
must be 0-based. If not given, the default R ordering is used.

Returns: An instance of this class.

Method copy(): Create a new, independent copy of this codec.

Usage:
zarr_codec_transpose$copy()

Returns: An instance of zarr_codec_transpose.

Method encode(): This method permutes a data object to match the desired dimension ordering.

Usage:
zarr_codec_transpose$encode(data)

Arguments:

data The data to be permuted, an R matrix or array.

Returns: The permuted data object, a matrix or array in Zarr store dimension order.

Method decode(): This method permutes a data object from a Zarr store to an R matrix or array.

Usage:
zarr_codec_transpose$decode(data)

Arguments:

data The data to be permuted, from a Zarr store.

Returns: The permuted data object, an R matrix or array.

26 zarr_codec_zstd

zarr_codec_zstd Zarr "zstd" codec

Description

This class provides the codec for "zstd" compression.

Super classes

zarr::zarr_extension -> zarr::zarr_codec -> zarr_codec_zstd

Active bindings

level The compression level of the zstd codec, an integer value between 1L (fast) and 20 (maxi-
mum compression).

Methods

Public methods:
• zarr_codec_zstd$new()

• zarr_codec_zstd$copy()

• zarr_codec_zstd$encode()

• zarr_codec_zstd$decode()

Method new(): Create a new "zstd" codec object.

Usage:
zarr_codec_zstd$new(configuration = NULL)

Arguments:

configuration Optional. A list with the configuration parameters for this codec. The element
level specifies the compression level of this codec, ranging from 1 (no compression) to 20
(maximum compression).

Returns: An instance of this class.

Method copy(): Create a new, independent copy of this codec.

Usage:
zarr_codec_zstd$copy()

Returns: An instance of zarr_codec_zstd.

Method encode(): This method encodes a raw data object.

Usage:
zarr_codec_zstd$encode(data)

Arguments:

data The raw data to be encoded.

zarr_data_type 27

Returns: The encoded raw data object.

Method decode(): This method decodes a raw data object.

Usage:
zarr_codec_zstd$decode(data)

Arguments:

data The raw data to be decoded.

Returns: The decoded raw data object.

zarr_data_type Zarr data types

Description

This class implements a Zarr data type as an extension point. This class also manages the "fill_value"
attribute associated with the data type.

Super class

zarr::zarr_extension -> zarr_data_type

Active bindings

data_type The data type for the Zarr array, a single character string. Setting the data type will also
set the fill value to its default value.

Rtype (read-only) The R data type corresponding to the Zarr data type.

signed (read-only) Flag that indicates if the Zarr data type is signed or not.

size (read-only) The size of the data type, in bytes.

fill_value The fill value for the Zarr array, a single value that agrees with the range of the
data_type.

Methods

Public methods:
• zarr_data_type$new()

• zarr_data_type$print()

• zarr_data_type$metadata_fragment()

Method new(): Create a new data type object.

Usage:
zarr_data_type$new(data_type, fill_value = NULL)

Arguments:

data_type The name of the data type, a single character string.

28 zarr_extension

fill_value Optionally, the fill value for the data type.
Returns: An instance of this class.

Method print(): Print a summary of the data type to the console.
Usage:
zarr_data_type$print()

Method metadata_fragment(): Return the metadata fragment for this data type and its fill
value.

Usage:
zarr_data_type$metadata_fragment()

Returns: A list with the metadata fragment.

zarr_extension Zarr extension support

Description

Many aspects of a Zarr array are implemented as extensions. More precisely, all core properties of a
Zarr array except for its shape are defined as extension points, down to its data type. This class is the
basic ancestor for extensions. It supports generation of the appropriate metadata for the extension,
as well as processing in more specialized descendant classes.

Extensions can be nested. For instance, a sharding object contains one or more codecs, with both
the sharding object and the codec being extension points.

Active bindings

name The name of the extension. Setting the name may be restricted by descendant classes.

Methods

Public methods:
• zarr_extension$new()

• zarr_extension$metadata_fragment()

Method new(): Create a new extension object.
Usage:
zarr_extension$new(name)

Arguments:
name The name of the extension, a single character string.
Returns: An instance of this class.

Method metadata_fragment(): Return the metadata fragment that describes this extension
point object. This includes the metadata of any nested extension objects.

Usage:
zarr_extension$metadata_fragment()

Returns: A list with the metadata of this extension point object.

zarr_group 29

zarr_group Zarr Group

Description

This class implements a Zarr group. A Zarr group is a node in the hierarchy of a Zarr object. A
group is a container for other groups and arrays.

A Zarr group is identified by a JSON file having required metadata, specifically the attribute "node_type":
"group".

Super class

zarr::zarr_node -> zarr_group

Active bindings

children (read-only) The children of the group. This is a list of zarr_group and zarr_array
instances, or the empty list if the group has no children.

groups (read-only) Retrieve the paths to the sub-groups of the hierarchy starting from the current
group, as a character vector.

arrays (read-only) Retrieve the paths to the arrays of the hierarchy starting from the current group,
as a character vector.

Methods

Public methods:
• zarr_group$new()

• zarr_group$print()

• zarr_group$hierarchy()

• zarr_group$build_hierarchy()

• zarr_group$get_node()

• zarr_group$count_arrays()

• zarr_group$add_group()

• zarr_group$add_array()

• zarr_group$delete()

• zarr_group$delete_all()

Method new(): Open a group in a Zarr hierarchy. The group must already exist in the store.

Usage:
zarr_group$new(name, metadata, parent, store)

Arguments:

name The name of the group. For a root group, this is the empty string "".
metadata List with the metadata of the group.

30 zarr_group

parent The parent zarr_group instance of this new group, can be missing or NULL for the root
group.

store The zarr_store instance to persist data in.

Returns: An instance of zarr_group.

Method print(): Print a summary of the group to the console.

Usage:
zarr_group$print()

Method hierarchy(): Prints the hierarchy of the group and its subgroups and arrays to the
console. Usually called from the Zarr object or its root group to display the full group hierarchy.

Usage:
zarr_group$hierarchy(idx = 1L, total = 1L)

Arguments:
idx, total Arguments to control indentation. Should both be 1 (the default) when called in-

teractively. The values will be updated during recursion when there are groups below the
current group.

Method build_hierarchy(): Return the hierarchy contained in the store as a tree of group
and array nodes. This method only has to be called after opening an existing Zarr store - this is
done automatically by user-facing code. After that, users can access the children property of
this class.

Usage:
zarr_group$build_hierarchy()

Returns: This zarr_group instance with all of its children linked.

Method get_node(): Retrieve the group or array represented by the node located at the path
relative from the current group.

Usage:
zarr_group$get_node(path)

Arguments:
path The path to the node to retrieve. The path is relative to the group, it must not start with a

slash "/". The path may start with any number of double dots ".." separated by slashes "/" to
denote groups higher up in the hierarchy.

Returns: The zarr_group or zarr_array instance located at path, or NULL if the path was not
found.

Method count_arrays(): Count the number of arrays in this group, optionally including arrays
in sub-groups.

Usage:
zarr_group$count_arrays(recursive = TRUE)

Arguments:
recursive Logical flag that indicates if arrays in sub-groups should be included in the count.

Default is TRUE.

zarr_httpstore 31

Method add_group(): Add a group to the Zarr hierarchy under the current group.

Usage:

zarr_group$add_group(name)

Arguments:

name The name of the new group.

Returns: The newly created zarr_group instance, or NULL if the group could not be created.

Method add_array(): Add an array to the Zarr hierarchy in the current group.

Usage:

zarr_group$add_array(name, metadata)

Arguments:

name The name of the new array.

metadata A list with the metadata for the new array, or an instance of class array_builder
whose data make a valid array definition.

Returns: The newly created zarr_array instance, or NULL if the array could not be created.

Method delete(): Delete a group or an array contained by this group. When deleting a group
it cannot contain other groups or arrays. Warning: this operation is irreversible for many stores!

Usage:

zarr_group$delete(name)

Arguments:

name The name of the group or array to delete. This will also accept a path to a group or array
but the group or array must be a node directly under this group.

Returns: Self, invisibly.

Method delete_all(): Delete all the groups and arrays contained by this group, including any
sub-groups and arrays. Any specific metadata attached to this group is deleted as well - only a
basic metadata document is maintained. Warning: this operation is irreversible for many stores!

Usage:

zarr_group$delete_all()

Returns: Self, invisibly.

zarr_httpstore Zarr Store for HTTP access

32 zarr_httpstore

Description

This class implements a Zarr HTTP store. With this class Zarr stores on web servers can be read. For
Zarr v.2 HTTP stores there exists a standard for publishing arrays on the store, using consolidated
metadata. This class will look for such metadata in the root of the store. If no consolidated metadata
is found then a regular group or array is searched for. Note that if a group is found that there is no
standard process to determine what arrays are available in the store and where they are located
relative to the root. Typically such information is found in the attributes of the group and you are
advised to inspect those attributes and refer to the documentation of the store publisher.

This class performs no sanity checks on any of the arguments passed to the methods, for perfor-
mance reasons. Since this class should be accessed through group and array objects, it is up to that
code to ensure that arguments are valid, in particular keys and prefixes.

Super class

zarr::zarr_store -> zarr_httpstore

Active bindings

friendlyClassName (read-only) Name of the class for printing.

root (read-only) The root of the HTTP store, identical to its URL.

uri (read-only) The URI of the store location.

separator (read-only) The default chunk separator of the store, usually a slash ’/’.

Methods

Public methods:
• zarr_httpstore$new()

• zarr_httpstore$exists()

• zarr_httpstore$clear()

• zarr_httpstore$erase()

• zarr_httpstore$erase_prefix()

• zarr_httpstore$list_dir()

• zarr_httpstore$list_prefix()

• zarr_httpstore$set()

• zarr_httpstore$set_if_not_exists()

• zarr_httpstore$get()

• zarr_httpstore$get_metadata()

• zarr_httpstore$set_metadata()

• zarr_httpstore$is_group()

• zarr_httpstore$create_group()

• zarr_httpstore$create_array()

Method new(): Create an instance of this class.
HTTP stores are read-only. Currently two types of Zarr store can be accessed. A Zarr v.2 consol-
idated metadata file at the root of the store (immediately below the URL) can identify a hierarchy
of groups and arrays. Alternatively, a store with a group or a single array, either v.2 or v.3.

zarr_httpstore 33

Usage:
zarr_httpstore$new(url)

Arguments:

url The path to the HTTP store to be opened. The URL may use UTF-8 code points.

Returns: An instance of this class.

Method exists(): Check if a key exists in the store. The key can point to a group, an array, or
a metadata file. This check is only relevant for HTTP stores with consolidated metadata. In other
cases the single group or array will be at the root.

Usage:
zarr_httpstore$exists(key)

Arguments:

key Character string. The key that the store will be searched for.

Returns: TRUE if argument key is found, FALSE otherwise.

Method clear(): Clearing the store is not supported.

Usage:
zarr_httpstore$clear()

Returns: FALSE.

Method erase(): Removing a key from the store is not supported.

Usage:
zarr_httpstore$erase(key)

Arguments:

key Ignored.

Returns: FALSE.

Method erase_prefix(): Removing keys from the store is not supported.

Usage:
zarr_httpstore$erase_prefix(prefix)

Arguments:

prefix Ignored.

Returns: FALSE.

Method list_dir(): Retrieve all keys and prefixes with a given prefix and which do not contain
the character "/" after the given prefix. In other words, this retrieves all the nodes in the store below
the node indicated by the prefix.

Usage:
zarr_httpstore$list_dir(prefix)

Arguments:

prefix Character string. The prefix whose nodes to list.

34 zarr_httpstore

Returns: A character array with all keys found in the store immediately below the prefix, both
for groups and arrays.

Method list_prefix(): Retrieve all keys and prefixes with a given prefix.

Usage:
zarr_httpstore$list_prefix(prefix)

Arguments:
prefix Character string. The prefix whose nodes to list.

Returns: A character vector with all paths found in the store below the prefix location, both
for groups and arrays.

Method set(): Storing a (key, value) pair is not supported.

Usage:
zarr_httpstore$set(key, value)

Arguments:
key Ignored.
value Ignored.

Returns: Self, invisibly.

Method set_if_not_exists(): Storing a (key, value) pair is not supported.

Usage:
zarr_httpstore$set_if_not_exists(key, value)

Arguments:
key Ignored.
value Ignored.

Returns: Self, invisibly.

Method get(): Retrieve the value associated with a given key.

Usage:
zarr_httpstore$get(key, prototype = NULL, byte_range = NULL)

Arguments:
key Character string. The key for which to get data.
prototype Ignored. The only buffer type that is supported maps directly to an R raw vector.
byte_range Ignored. The full data value is always returned.

Returns: A raw vector with the data pointed at by the key.

Method get_metadata(): Retrieve the metadata document of the node at the location indicated
by the prefix argument. The metadata will always be presented to the caller in the Zarr v.3
format. Attributes, if present, will be added.

Usage:
zarr_httpstore$get_metadata(prefix)

Arguments:

zarr_httpstore 35

prefix The prefix of the node whose metadata document to retrieve.

Returns: A list with the metadata, or NULL if the prefix is not pointing to a Zarr group or array.

Method set_metadata(): Setting metadata is not supported.

Usage:

zarr_httpstore$set_metadata(prefix, metadata)

Arguments:

prefix Ignored.

metadata Ignored.

Returns: Self, invisible

Method is_group(): Test if path is pointing to a Zarr group.

Usage:

zarr_httpstore$is_group(path)

Arguments:

path The path to test.

Returns: TRUE if the path points to a Zarr group, FALSE otherwise.

Method create_group(): Creating a new group in the store is not supported.

Usage:

zarr_httpstore$create_group(path, name)

Arguments:

path, name Ignored.

Returns: An error indicating that the group could not be created.

Method create_array(): Creating a new array in the store is not supported.

Usage:

zarr_httpstore$create_array(parent, name, metadata)

Arguments:

parent, name, metadata Ignored.

Returns: An error indicating that the array could not be created.

36 zarr_localstore

zarr_localstore Zarr Store for the Local File System

Description

This class implements a Zarr store for the local file system. With this class Zarr stores on devices
accessible through the local file system can be read and written to. This includes locally attached
drives, removable media, NFS mounts, etc.

The chunking pattern is to locate all the chunks of an array in a single directory. That means that
chunks have names like "c0.0.0" in the array directory.

This class performs no sanity checks on any of the arguments passed to the methods, for perfor-
mance reasons. Since this class should be accessed through group and array objects, it is up to that
code to ensure that arguments are valid, in particular keys and prefixes.

Super class

zarr::zarr_store -> zarr_localstore

Active bindings

friendlyClassName (read-only) Name of the class for printing.

root (read-only) The root directory of the file system store.

uri (read-only) The URI of the store location.

separator (read-only) The default chunk separator of the local file store, usually a dot ’.’.

Methods

Public methods:
• zarr_localstore$new()

• zarr_localstore$exists()

• zarr_localstore$clear()

• zarr_localstore$erase()

• zarr_localstore$erase_prefix()

• zarr_localstore$list_dir()

• zarr_localstore$list_prefix()

• zarr_localstore$set()

• zarr_localstore$set_if_not_exists()

• zarr_localstore$get()

• zarr_localstore$get_metadata()

• zarr_localstore$set_metadata()

• zarr_localstore$is_group()

• zarr_localstore$create_group()

• zarr_localstore$create_array()

zarr_localstore 37

Method new(): Create an instance of this class.
If the root location does not exist, it will be created. The location on the file system must be
writable by the process creating the store. The store is not yet functional in the sense that it is
just an empty directory. Write a root group with .$create_group('/', '') or an array with
.$create_array('/', '', metadata) for a single-array store before any other operations on
the store.
If the root location does exist on the file system it must be a valid Zarr store, as determined by the
presence of a "zarr.json" file. It is an error to try to open a Zarr store on an existing location where
this metadata file is not present.

Usage:
zarr_localstore$new(root, read_only = FALSE)

Arguments:

root The path to the local store to be created or opened. The path may use UTF-8 code points.
Following the Zarr specification, it is recommended that the root path has an extension of
".zarr" to easily identify the location as a Zarr store. When creating a file store, the root
directory cannot already exist.

read_only Flag to indicate if the store is opened read-only. Default FALSE.

Returns: An instance of this class.

Method exists(): Check if a key exists in the store. The key can point to a group, an array, or
a chunk.

Usage:
zarr_localstore$exists(key)

Arguments:

key Character string. The key that the store will be searched for.

Returns: TRUE if argument key is found, FALSE otherwise.

Method clear(): Clear the store. Remove all keys and values from the store. Invoking this
method deletes affected files on the file system and this action can not be undone. The only file
that will remain is "zarr.json" or ".zgroup" (version 2) in the root of this store.

Usage:
zarr_localstore$clear()

Returns: TRUE if the operation proceeded, FALSE otherwise.

Method erase(): Remove a key from the store. The key must point to an array chunk or an
empty group. The location of the key and all of its values are removed.

Usage:
zarr_localstore$erase(key)

Arguments:

key Character string. The key to remove from the store.

Returns: TRUE if the operation proceeded, FALSE otherwise.

38 zarr_localstore

Method erase_prefix(): Remove all keys in the store that begin with a given prefix. The
last location in the prefix is preserved while all keys below are removed from the store. Any
metadata extensions added to the group pointed to by the prefix will be deleted as well - only a
basic group-identifying metadata file will remain.

Usage:
zarr_localstore$erase_prefix(prefix)

Arguments:
prefix Character string. The prefix to groups or arrays to remove from the store, including in

child groups.

Returns: TRUE if the operation proceeded, FALSE otherwise.

Method list_dir(): Retrieve all keys and prefixes with a given prefix and which do not contain
the character "/" after the given prefix. In other words, this retrieves all the nodes in the store below
the node indicated by the prefix.

Usage:
zarr_localstore$list_dir(prefix)

Arguments:
prefix Character string. The prefix whose nodes to list.

Returns: A character array with all keys found in the store immediately below the prefix, both
for groups and arrays.

Method list_prefix(): Retrieve all keys and prefixes with a given prefix.
Usage:
zarr_localstore$list_prefix(prefix)

Arguments:
prefix Character string. The prefix whose nodes to list.

Returns: A character vector with all paths found in the store below the prefix location, both
for groups and arrays.

Method set(): Store a (key, value) pair. The key points to a specific file (shard or chunk
of an array) in a store, rather than a group or an array. The key must be relative to the root of
the store (so not start with a "/") and may be composite. It must include the name of the file. An
example would be "group/subgroup/array/c0.0.0". The group hierarchy and the array must have
been created before. If the value exists, it will be overwritten.

Usage:
zarr_localstore$set(key, value)

Arguments:
key The key whose value to set.
value The value to set, a complete chunk of data, a raw vector.

Returns: Self, invisibly, or an error.

Method set_if_not_exists(): Store a (key, value) pair. The key points to a specific file
(shard or chunk of an array) in a store, rather than a group or an array. The key must be relative
to the root of the store (so not start with a "/") and may be composite. It must include the name of
the file. An example would be "group/subgroup/array/c0.0.0". The group hierarchy and the array
must have been created before. If the key exists, nothing will be written.

zarr_localstore 39

Usage:
zarr_localstore$set_if_not_exists(key, value)

Arguments:
key The key whose value to set.
value The value to set, a complete chunk of data.

Returns: Self, invisibly, or an error.

Method get(): Retrieve the value associated with a given key.

Usage:
zarr_localstore$get(key, prototype = NULL, byte_range = NULL)

Arguments:
key Character string. The key for which to get data.
prototype Ignored. The only buffer type that is supported maps directly to an R raw vector.
byte_range If NULL, all data associated with the key is retrieved. If a single positive integer,

all bytes starting from a given byte offset to the end of the object are returned. If a single
negative integer, the final bytes are returned. If an integer vector of length 2, request a
specific range of bytes where the end is exclusive. If the range ends after the end of the
object, the entire remainder of the object will be returned. If the given range is zero-length
or starts after the end of the object, an error will be returned.

Returns: An raw vector of data, or NULL if no data was found.

Method get_metadata(): Retrieve the metadata document of the node at the location indicated
by the prefix argument. The metadata will always be presented to the caller in the Zarr v.3
format.

Usage:
zarr_localstore$get_metadata(prefix)

Arguments:
prefix The prefix of the node whose metadata document to retrieve.

Returns: A list with the metadata, or NULL if the prefix is not pointing to a Zarr group or array.

Method set_metadata(): Set the metadata document of the node at the location indicated by
the prefix argument. The formatting of the metadata should always use the Zarr v.3 format, it
will be converted internally if the store is Zarr v.2.

Usage:
zarr_localstore$set_metadata(prefix, metadata)

Arguments:
prefix The prefix of the node whose metadata document to set.
metadata The metadata to persist, either a list or an instance of array_builder.

Returns: Self, invisible

Method is_group(): Test if path is pointing to a Zarr group.

Usage:
zarr_localstore$is_group(path)

40 zarr_memorystore

Arguments:
path The path to test.

Returns: TRUE if the path points to a Zarr group, FALSE otherwise.

Method create_group(): Create a new group in the store under the specified path.

Usage:
zarr_localstore$create_group(path, name)

Arguments:
path The path to the parent group of the new group. Ignored when creating a root group.
name The name of the new group. This may be an empty string "" to create a root group. It is

an error to supply an empty string if a root group or array already exists.

Returns: A list with the metadata of the group, or an error if the group could not be created.

Method create_array(): Create a new array in the store under the specified path to the parent
argument.

Usage:
zarr_localstore$create_array(parent, name, metadata)

Arguments:
parent The path to the parent group of the new array. Ignored when creating a root array.
name The name of the new array. This may be an empty string "" to create a root array. It is an

error to supply an empty string if a root group or array already exists.
metadata A list with the metadata for the array. The list has to be valid for array construction.

Use the array_builder class to create and or test for validity. An element "chunk_key_encoding"
will be added to the metadata if not already present or with a value other than a dot "." or a
slash "/".

Returns: A list with the metadata of the array, or an error if the array could not be created.

References

https://zarr-specs.readthedocs.io/en/latest/v3/stores/filesystem/index.html

zarr_memorystore In-memory Zarr Store

Description

This class implements a Zarr store in RAM memory. With this class Zarr stores can be read and
written to. Obviously, any data is not persisted after the memory store is de-referenced and garbage-
collected.

All data is stored in a list. The Zarr array itself has a list with the metadata, its chunks have names
like "c.0.0.0" and they have an R array-like value.

This class performs no sanity checks on any of the arguments passed to the methods, for perfor-
mance reasons. Since this class should be accessed through group and array objects, it is up to that
code to ensure that arguments are valid, in particular keys and prefixes.

zarr_memorystore 41

Super class

zarr::zarr_store -> zarr_memorystore

Active bindings

friendlyClassName (read-only) Name of the class for printing.

separator (read-only) The separator of the memory store, always a dot ’.’.

keys (read-only) The defined keys in the store.

Methods

Public methods:
• zarr_memorystore$new()

• zarr_memorystore$exists()

• zarr_memorystore$clear()

• zarr_memorystore$erase()

• zarr_memorystore$erase_prefix()

• zarr_memorystore$list_dir()

• zarr_memorystore$list_prefix()

• zarr_memorystore$set()

• zarr_memorystore$set_if_not_exists()

• zarr_memorystore$get()

• zarr_memorystore$get_metadata()

• zarr_memorystore$create_group()

• zarr_memorystore$create_array()

Method new(): Create an instance of this class.

Usage:
zarr_memorystore$new()

Returns: An instance of this class.

Method exists(): Check if a key exists in the store. The key can point to a group, an array
(having a metadata list as its value) or a chunk.

Usage:
zarr_memorystore$exists(key)

Arguments:

key Character string. The key that the store will be searched for.

Returns: TRUE if argument key is found, FALSE otherwise.

Method clear(): Clear the store. Remove all keys and values from the store. Invoking this
method deletes all data and this action can not be undone.

Usage:
zarr_memorystore$clear()

42 zarr_memorystore

Returns: TRUE. This operation always proceeds successfully once invoked.

Method erase(): Remove a key from the store. The key must point to an array or a chunk. If
the key points to an array, the key and all of subordinated keys are removed.

Usage:
zarr_memorystore$erase(key)

Arguments:

key Character string. The key to remove from the store.

Returns: TRUE. This operation always proceeds successfully once invoked, even if argument
key does not point to an existing key.

Method erase_prefix(): Remove all keys in the store that begin with a given prefix.

Usage:
zarr_memorystore$erase_prefix(prefix)

Arguments:

prefix Character string. The prefix to groups or arrays to remove from the store, including in
child groups.

Returns: TRUE. This operation always proceeds successfully once invoked, even if argument
prefix does not point to any existing keys.

Method list_dir(): Retrieve all keys with a given prefix and which do not contain the character
"/" after the given prefix. In other words, this retrieves all the keys in the store below the key
indicated by the prefix.

Usage:
zarr_memorystore$list_dir(prefix)

Arguments:

prefix Character string. The prefix whose nodes to list.

Returns: A character array with all keys found in the store immediately below the prefix.

Method list_prefix(): Retrieve all keys and prefixes with a given prefix.

Usage:
zarr_memorystore$list_prefix(prefix)

Arguments:

prefix Character string. The prefix to nodes to list.

Returns: A character vector with all paths found in the store below the prefix location.

Method set(): Store a (key, value) pair. If the value exists, it will be overwritten.

Usage:
zarr_memorystore$set(key, value)

Arguments:

key The key whose value to set.
value The value to set, typically a complete chunk of data, a raw vector.

zarr_memorystore 43

Returns: Self, invisibly.

Method set_if_not_exists(): Store a (key, value) pair. If the key exists, nothing will be
written.

Usage:
zarr_memorystore$set_if_not_exists(key, value)

Arguments:
key The key whose value to set.
value The value to set, a complete chunk of data.

Returns: Self, invisibly, or an error.

Method get(): Retrieve the value associated with a given key.

Usage:
zarr_memorystore$get(key, prototype = NULL, byte_range = NULL)

Arguments:
key Character string. The key for which to get data.
prototype Ignored. The only buffer type that is supported maps directly to an R raw vector.
byte_range If NULL, all data associated with the key is retrieved. If a single positive integer,

all bytes starting from a given byte offset to the end of the object are returned. If a single
negative integer, the final bytes are returned. If an integer vector of length 2, request a
specific range of bytes where the end is exclusive. If the range ends after the end of the
object, the entire remainder of the object will be returned. If the given range is zero-length
or starts after the end of the object, an error will be returned.

Returns: An raw vector of data, or NULL if no data was found.

Method get_metadata(): Retrieve the metadata document at the location indicated by the
prefix argument.

Usage:
zarr_memorystore$get_metadata(prefix)

Arguments:
prefix The prefix whose metadata document to retrieve.

Returns: A list with the metadata, or NULL if the prefix is not pointing to a Zarr array.

Method create_group(): Create a new group in the store under the specified path.

Usage:
zarr_memorystore$create_group(path, name)

Arguments:
path The path to the parent group of the new group. Ignored when creating a root group.
name The name of the new group. This may be an empty string "" to create a root group. It is

an error to supply an empty string if a root group or array already exists.

Returns: A list with the metadata of the group, or an error if the group could not be created.

Method create_array(): Create a new array in the store under key constructed from the
specified path to the parent argument and the name. The key may not already exist in the store.

44 zarr_node

Usage:

zarr_memorystore$create_array(parent, name, metadata)

Arguments:

parent The path to the parent group of the new array. This is ignored if the name argument is
the empty string.

name The name of the new array.

metadata A list with the metadata for the array. The list has to be valid for array construction.
Use the array_builder class to create and or test for validity. An element "chunk_key_encoding"
will be added to the metadata if it not already there or contains an invalid separator.

Returns: A list with the metadata of the array, or an error if the array could not be created.

zarr_node Zarr Hierarchy node

Description

This class implements a Zarr node. The node is an element in the hierarchy of the Zarr object. As
per the Zarr specification, the node is either a group or an array. Thus, this class is the ancestor of
the zarr_group and zarr_array classes. This class manages common features such as names, key,
prefixes and paths, as well as the hierarchy between nodes and the zarr_store for persistent storage.

This class should never have to be instantiated or accessed directly. Instead, use instances of
zarr_group or zarr_array. Function arguments are largely not checked, the group and array
instances should do so prior to calling methods here. The big exception is checking the validity of
node names.

Active bindings

name (read-only) The name of the node.

parent (read-only) The parent of the node. For a root node this returns NULL, otherwise this
zarr_group or zarr_array instance.

store (read-only) The store of the node.

path (read-only) The path of this node, relative to the root node of the hierarchy.

prefix (read-only) The prefix of this node, relative to the root node of the hierarchy.

metadata (read-only) The metadata document of this node, a list.

attributes (read-only) Retrieve the list of attributes of this object. Attributes can be added or
modified with the set_attribute() method or removed with the delete_attributes()
method.

zarr_node 45

Methods

Public methods:
• zarr_node$new()

• zarr_node$print_attributes()

• zarr_node$set_attribute()

• zarr_node$delete_attributes()

• zarr_node$save()

Method new(): Initialize a new node in a Zarr hierarchy.

Usage:
zarr_node$new(name, metadata, parent, store)

Arguments:
name The name of the node.
metadata List with the metadata of the node.
parent The parent node of this new node. Must be omitted when initializing a root node.
store The store to persist data in. Ignored if a parent is specified.

Method print_attributes(): Print the metadata "attributes" to the console. Usually called by
the zarr_group and zarr_array print() methods.

Usage:
zarr_node$print_attributes(...)

Arguments:
... Arguments passed to embedded functions. Of particular interest is width = . to specify the

maximum width of the columns.

Method set_attribute(): Add an attribute to the metadata of the object. If an attribute name
already exists, it will be overwritten.

Usage:
zarr_node$set_attribute(name, value)

Arguments:
name The name of the attribute. The name must begin with a letter and be composed of letters,

digits, and underscores, with a maximum length of 255 characters.
value The value of the attribute. This can be of any supported type, including a vector or list of

values. In general, an attribute should be a character value, a numeric value, a logical value,
or a short vector or list of any of these.

Returns: Self, invisibly.

Method delete_attributes(): Delete attributes. If an attribute in name is not present this
method simply returns.

Usage:
zarr_node$delete_attributes(name)

Arguments:
name Vector of names of the attributes to delete.

46 zarr_store

Returns: Self, invisibly.

Method save(): Persist any edits to the group or array to the store.

Usage:
zarr_node$save()

zarr_store Zarr Abstract Store

Description

This class implements a Zarr abstract store. It provides the basic plumbing for specific imple-
mentations of a Zarr store. It implements the Zarr abstract store interface, with some extensions
from the Python zarr.abc.store.Store abstract class. Functions set_partial_values() and
get_partial_values() are not implemented.

Active bindings

friendlyClassName (read-only) Name of the class for printing.

read_only (read-only) Flag to indicate if the store is read-only.

supports_consolidated_metadata Flag to indicate if the store can consolidate metadata.

supports_deletes Flag to indicate if keys and arrays can be deleted.

supports_listing Flag to indicate if the store can list its keys.

supports_partial_writes Deprecated, always FALSE.

supports_writes Flag to indicate if the store can write data.

version (read-only) The Zarr version of the store.

separator (read-only) The default separator between elements of chunks of arrays in the store.
Every store typically has a default which is used when creating arrays. The actual chunk
separator being used is determined by looking at the "chunk_key_encoding" attribute of each
array.

Methods

Public methods:
• zarr_store$new()

• zarr_store$clear()

• zarr_store$erase()

• zarr_store$erase_prefix()

• zarr_store$exists()

• zarr_store$get()

• zarr_store$getsize()

• zarr_store$getsize_prefix()

• zarr_store$is_empty()

zarr_store 47

• zarr_store$list()

• zarr_store$list_dir()

• zarr_store$list_prefix()

• zarr_store$set()

• zarr_store$set_if_not_exists()

• zarr_store$get_metadata()

• zarr_store$set_metadata()

• zarr_store$create_group()

• zarr_store$create_array()

Method new(): Create an instance of this class. Since this class is "abstract", it should not be
instantiated directly - it is intended to be called by descendant classes, exclusively.

Usage:
zarr_store$new(read_only = FALSE, version = 3L)

Arguments:
read_only Flag to indicate if the store is read-only. Default FALSE.
version The version of the Zarr store. By default this is 3.

Returns: An instance of this class.

Method clear(): Clear the store. Remove all keys and values from the store.

Usage:
zarr_store$clear()

Returns: Self, invisibly.

Method erase(): Remove a key from the store. This method is part of the abstract store
interface in ZEP0001.

Usage:
zarr_store$erase(key)

Arguments:
key Character string. The key to remove from the store.

Returns: Self, invisibly.

Method erase_prefix(): Remove all keys and prefixes in the store that begin with a given
prefix. This method is part of the abstract store interface in ZEP0001.

Usage:
zarr_store$erase_prefix(prefix)

Arguments:
prefix Character string. The prefix to groups or arrays to remove from the store, including in

child groups.

Returns: Self, invisibly.

Method exists(): Check if a key exists in the store.

Usage:

48 zarr_store

zarr_store$exists(key)

Arguments:
key Character string. The key that the store will be searched for.

Returns: TRUE if argument key is found, FALSE otherwise.

Method get(): Retrieve the value associated with a given key. This method is part of the abstract
store interface in ZEP0001.

Usage:
zarr_store$get(key, prototype, byte_range)

Arguments:
key Character string. The key for which to get data.
prototype Ignored. The only buffer type that is supported maps directly to an R raw vector.
byte_range If NULL, all data associated with the key is retrieved. If a single positive integer,

all bytes starting from a given byte offset to the end of the object are returned. If a single
negative integer, the final bytes are returned. If an integer vector of length 2, request a
specific range of bytes where the end is exclusive. If the range ends after the end of the
object, the entire remainder of the object will be returned. If the given range is zero-length
or starts after the end of the object, an error will be returned.

Returns: An raw vector of data, or NULL if no data was found.

Method getsize(): Return the size, in bytes, of a value in a Store.

Usage:
zarr_store$getsize(key)

Arguments:
key Character string. The key whose length will be returned.

Returns: The size, in bytes, of the object.

Method getsize_prefix(): Return the size, in bytes, of all objects found under the group
indicated by the prefix.

Usage:
zarr_store$getsize_prefix(prefix)

Arguments:
prefix Character string. The prefix to groups to scan.

Returns: The size, in bytes, of all the objects under a group, as a single integer value.

Method is_empty(): Is the group empty?

Usage:
zarr_store$is_empty(prefix)

Arguments:
prefix Character string. The prefix to the group to scan.

Returns: TRUE is the group indicated by argument prefix has no sub-groups or arrays, FALSE
otherwise.

zarr_store 49

Method list(): Retrieve all keys in the store. This method is part of the abstract store interface
in ZEP0001.

Usage:
zarr_store$list()

Returns: A character vector with all keys found in the store, both for groups and arrays.

Method list_dir(): Retrieve all keys and prefixes with a given prefix and which do not contain
the character "/" after the given prefix. This method is part of the abstract store interface in
ZEP0001.

Usage:
zarr_store$list_dir(prefix)

Arguments:

prefix Character string. The prefix to groups to list.

Returns: A list with all keys found in the store immediately below the prefix, both for groups
and arrays.

Method list_prefix(): Retrieve all keys and prefixes with a given prefix. This method is part
of the abstract store interface in ZEP0001.

Usage:
zarr_store$list_prefix(prefix)

Arguments:

prefix Character string. The prefix to groups to list.

Returns: A character vector with all fully-qualified keys found in the store, both for groups and
arrays.

Method set(): Store a (key, value) pair.

Usage:
zarr_store$set(key, value)

Arguments:

key The key whose value to set.
value The value to set, typically a chunk of data.

Returns: Self, invisibly.

Method set_if_not_exists(): Store a key to argument value if the key is not already present.
This method is part of the abstract store interface in ZEP0001.

Usage:
zarr_store$set_if_not_exists(key, value)

Arguments:

key The key whose value to set.
value The value to set, typically an R array.

Returns: Self, invisibly.

50 zarr_store

Method get_metadata(): Retrieve the metadata document of the node at the location indicated
by the prefix argument.

Usage:
zarr_store$get_metadata(prefix)

Arguments:

prefix The prefix of the node whose metadata document to retrieve.

Method set_metadata(): Set the metadata document of the node at the location indicated by
the prefix argument. This is a no-op for stores that have no writing capability. Other stores must
override this method.

Usage:
zarr_store$set_metadata(prefix, metadata)

Arguments:

prefix The prefix of the node whose metadata document to set.
metadata The metadata to persist, either a list or an instance of array_builder.

Returns: Self, invisible.

Method create_group(): Create a new group in the store under the specified path to the parent
argument. The parent path must point to a Zarr group.

Usage:
zarr_store$create_group(parent, name)

Arguments:

parent The path to the parent group of the new group.
name The name of the new group.

Returns: A list with the metadata of the group, or an error if the group could not be created.

Method create_array(): Create a new array in the store under the specified path to the parent
argument. The parent path must point to a Zarr group.

Usage:
zarr_store$create_array(parent, name)

Arguments:

parent The path to the parent group of the new array.
name The name of the new array.

Returns: A list with the metadata of the array, or an error if the array could not be created.

References

https://zarr-specs.readthedocs.io/en/latest/v3/core/index.html#abstract-store-interface

[[.zarr 51

[[.zarr Get a group or array from a Zarr object

Description

This method can be used to retrieve a group or array from the Zarr object by its path.

Usage

S3 method for class 'zarr'
x[[i]]

Arguments

x A zarr object to extract a group or array from.

i The path to a group or array in x.

Value

An instance of zarr_group or zarr_array, or NULL if the path is not found.

Examples

z <- create_zarr()
z[["/"]]

[[.zarr_group Get a group or array from a Zarr group

Description

This method can be used to retrieve a group or array from the Zarr group by a relative path to the
desired group or array.

Usage

S3 method for class 'zarr_group'
x[[i]]

Arguments

x A zarr_group object to extract a group or array from.

i The path to a group or array in x. The path is relative to the group, it must not
start with a slash "/". The path may start with any number of double dots ".."
separated by slashes "/" to denote groups higher up in the hierarchy.

52 [[.zarr_group

Value

An instance of zarr_group or zarr_array, or NULL if the path is not found.

Examples

z <- create_zarr()
z$add_group("/", "tst")
z$add_group("/tst", "subtst")
tst <- z[["/tst"]]
tst[["subtst"]]

Index

[.zarr_array (array-indexing), 2
[[,zarr-group-method ([[.zarr_group), 51
[[,zarr-method ([[.zarr), 51
[[.zarr, 51
[[.zarr_group, 51

array-indexing, 2
array_builder, 3, 9, 24, 31, 39, 40, 44, 50
as_zarr, 6

chunk_grid_regular, 4, 7
create_zarr, 8

define_array, 9

open_zarr, 10

str.chunk_grid_regular, 11
str.zarr, 11
str.zarr_array, 12
str.zarr_group, 12

zarr, 9, 10, 13
zarr::zarr_codec, 19, 20, 22–24, 26
zarr::zarr_extension, 7, 17, 19, 20, 22–24,

26, 27
zarr::zarr_node, 15, 29
zarr::zarr_store, 32, 36, 41
zarr_array, 13, 14, 15, 30, 44, 45
zarr_codec, 17
zarr_codec_blosc, 19
zarr_codec_bytes, 20
zarr_codec_crc32c, 22
zarr_codec_gzip, 23
zarr_codec_transpose, 24
zarr_codec_zstd, 26
zarr_data_type, 19, 21, 27
zarr_extension, 28
zarr_group, 6, 13, 14, 29, 30, 44, 45
zarr_httpstore, 31
zarr_localstore, 36

zarr_memorystore, 40
zarr_node, 44
zarr_store, 14, 16, 30, 44, 46

53

	array-indexing
	array_builder
	as_zarr
	chunk_grid_regular
	create_zarr
	define_array
	open_zarr
	str.chunk_grid_regular
	str.zarr
	str.zarr_array
	str.zarr_group
	zarr
	zarr_array
	zarr_codec
	zarr_codec_blosc
	zarr_codec_bytes
	zarr_codec_crc32c
	zarr_codec_gzip
	zarr_codec_transpose
	zarr_codec_zstd
	zarr_data_type
	zarr_extension
	zarr_group
	zarr_httpstore
	zarr_localstore
	zarr_memorystore
	zarr_node
	zarr_store
	[[.zarr
	[[.zarr_group
	Index

