

LOONGSON

龙芯 1F 处理器数据手册

2015年6月

中国科学院计算技术研究所

龙芯中科技术有限公司

-阅读指南 -----

《龙芯 1F 数据手册》主要介绍龙芯 1F 的物理和电气特性。

修订历史

序号	日期	版本	变化
1	2013-12	V1.0	初稿
2	2014-10	V1.1	补充了含有芯片管脚编号和功能复用关系的表格,增加 了芯片功能管脚复用关系的示意图
3	2015-6	V1.2	增加辐射特性描述,增加 RAD_CTRL 建议值,修改 ISA 地址空间说明,增加复位斜率要求
4			

目 录

1	概述			. 1
	1.1	芯片主要	功能	2
		1.1.1	GS132 处理器核	. 2
		1.1.2	PCI 总线接口	. 3
			EMI	
			ISA	
			CAN	
			简易 1553B 控制器	
			智能 1553B 控制器	
			UART 控制器	
			ADOC	
			PWM	
			PCM	
			PPC	
		1.1.14	GPIO	. 8
		1.1.15	中断控制器	. 8
		1.1.16	JTAG 控制器	. 8
2	引脚	,		
	2.1	龙芯 1F 智	章脚分布	9
	2.2	约定		16
	2.3			
	2.4			
	2.5			
	2.6			
	2.7 2.8			
	2.8			
	2.10			
	2.11			
	2.12	GPIO		21
	2.13	电源接口		21
	2.14	密封环连	接点	21
3	系统	特性		22
	3.1	启动配置		22
	3.2	管脚复用		23
	3.3	地址空间	分配	31
	3.4	时钟与复	位控制	33
		3.4.1	时钟	33
		3.4.2	复位	33
	3.5	芯片控制	寄存器	34
		3.5.1	EMI 启动参数配置寄存器(emi_cfg)	35
		3.5.2	门控控制寄存器(clock_en)	36
		3.5.3	芯片状态和管脚复用配置寄存器(pin_cfg)	38
		3.5.4	脉冲计数器的中断状态(ppc_int)	
		3.5.5	脉冲计数器中断使能寄存器(ppc_int_en)	
		3.5.6	ECC 错误信息(ecc_err)	
		3.5.7	中断使能(int_en)	
		3.5.8	中断状态(int_status)	
			PCM_IN 状态(pcm_in_stasus)	
			PCM_OUT 状态(pcm_out_stasus)	

		3.5.11	输入 FIFO 状态(fifo_in_status)	43
		3.5.12	1553B 配置参数(1553B_cfg)	
		3.5.13	功能控制和状态寄存器(func_ctr)	44
		3.5.14	1553B 数据寄存器(1553B_data)	45
		3.5.15	扩展中断使能(ext_int_en)	45
		3.5.16	扩展中断状态(ext_int_status)	46
		3.5.17	扩展中断配置(ext_int_cfg)	46
		3.5.18	串口 0、1 的 FIFO 状态(ucount_1_0)	46
		3.5.19	串口 2、3 的 FIFO 状态(ucount_3_2)	47
		3.5.20	串口 4、5 的 FIFO 状态(ucount_5_4)	
		3.5.21	串口 6、7 的 FIFO 状态(ucount_7_6)	
		3.5.22	PWM 输出掩码寄存器 0 (pwm_mask0)	
		3.5.23	PWM 输出掩码寄存器 1(pwm_mask1)	
		3.5.24	信号输出源选择寄存器 0 (misc_sel0)	
		3.5.25	信号输出源选择寄存器 1 (misc_sel1)	50
		3.5.26	信号输出源选择寄存器 2(misc_sel2)	
		3.5.27	信号输出源选择寄存器 3(misc_sel3)	54
	3.6	中断		.56
4	电气	特性		58
	4.1	极限工作	:参数	.58
	4.2	推荐工作	:参数	.58
		4.2.1	直流电气特性	58
		4.2.2	交流电气特性	59
	4.3	功耗特性		.60
	4.4	抗辐射特	性	.60
	4.5	封装信息	· · · · · · · · · · · · · · · · · · ·	.60

图目录

图	2-1	龙芯 1F 管脚分布	9
图	3-1	管脚复用关系示意	31
图	4-1	交流电气特性	58
冬	4-2	PAD 尺寸	60
冬	4-3	封装底视图	60
冬	4-4	封装顶视图	61
冬	4-5	封装侧视图	61

表目录

表 2-1 龙芯 1F 芯片管脚功能与位置	10
表 2-2 信号类型代码	17
表 2-3 三模控制信号	17
表 2-4 JTAG 信号	17
表 2-5 PCI 接口信号	17
表 2-6 1553B 接口信号	18
表 2-7 UART 接口信号	19
表 2-8 AD 接口信号	19
表 2-9 OC 接口信号	20
表 2-10 PCM 接口信号	20
表 2-11 PPC 接口信号	20
表 2-12 GPIO 接口信号	21
表 2-13 电源接口	21
表 3-1 龙芯 1F 的上电配置说明	22
表 3-2 OC 功能管脚	24
表 3-3 PWM 功能管脚	24
表 3-4 PPC 功能管脚	25
表 3-5 外部扩展中断功能管脚	26
表 3-6 PCM_IN 功能管脚	26
表 3-7 PCM_OUT 功能管脚	27
表 3-8 GPIO 功能管脚	28
表 3-9 UART 功能管脚	29
表 3-10 CAN 功能管脚	30
表 3-11 ISA 总线接口信号	30
表 3-12 EMI 接口信号	30
表 3-13 地址空间分配之 CPU 视角	31
表 3-14 地址空间分配之 PCI 视角	31
表 3-15 地址空间分配之 ISA 视角	32
表 3-16 芯片控制寄存器列表	32
表 4-1 龙芯 1F 极限工作参数	57
表 4-2 直流电气特性	57
表 4-3 PCI 接口时序	58

龙芯 1F 处理器数据手册 表目录

LOONGSON

表 4-4 1553B 接口时序	59
表 4-5 JTAG 接口时序	59
表 4-6 其它信号时序	59
表 4-7 封装延迟	62

1 概述

龙芯 1F 是龙芯 1E 处理器的配套 IO 桥芯片。其目标是通过集成航天领域常用的遥测遥控功能接口和外围接口,在为龙芯 1E 处理器进行配套的同时在航天领域的遥测遥控应用中替代 FPGA 的使用,满足航天测控领域核心芯片自主化的需求。龙芯 1F 采用 180nm 的 CMOS 工艺实现,主频在 25 摄氏度,IO 与核心供电压分别为 3.3V、1.8V 时为 33.33Mhz,功耗约 1 瓦。龙芯 1F 集成了星上常用的遥测遥控功能接口(AD 采集控制逻辑、PCM 遥测遥控控制逻辑、OC 门控制逻辑、脉宽调制 PWM、可编程脉冲计数器 PPC、GPIO 等)、外部总线接口(PCI、ISA、1553B、CAN、EMI)、标准测试接口(JTAG)以及一个简单的 GS132 处理器核。

龙芯 1F 具有以下关键特性:

- 集成一个 GS132 单发射 32 位龙芯处理器核
- 集成32位PCI总线接口
- 集成 16/8 位 EMI 接口,支持系统启动,在 16 位模式时支持 ECC 和 8 位的写操作
- 集成 16 位 ISA 接口
- 集成 1 个 CAN 总线控制器
- 集成1个简易1553B控制器,允许龙芯1F作为1553B总线上的简易终端设备
- 集成1个智能1553B 控制器,允许龙芯1F 作为1553B 总线上的BC
 或RT
- 集成8路UART串口
- 集成 1 个 AD 采集控制器,支持 128 路数据采集,一次最多采集 32 路数据
- 集成2个OC门控制器,每个控制器最多控制32路OC
- 集成 4 个脉宽调制 PWM 控制器,每个 PWM 最多允许有 16 输出
- 集成 3 个 PCM 遥控控制器,每个 PCM 遥控控制器的接受 FIFO 深 度为 16,数据位宽为 32bit

- 集成3个PCM遥测控制器,每个PCM遥测控制器的发送FIFO深度为16,数据位宽为32bit
- 集成 32 路可编程脉冲计数器 PPC
- 集成 1 个 GPIO 控制, 最多允许控制 64 路 GPIO 的输入/输出
- 集成8路扩展中断输入,中断类型可以是电平或脉冲

龙芯 1F 有 2 种工作模式: 桥片模式、自主模式。

桥片模式 龙芯 1F 工作在桥片模式时,允许外部设备的通过芯片的总线接口 (PCI、ISA 或 1553B 总线接口)对芯片内部的功能部件进行配置和控制。根据 控制总线接口的不同,龙芯 1F 桥片模式进一步分为: PCI 总线设备模式、ISA 总线设备模式、1553B 总线简易终端设备模式。1553B 总线简易终端设备模式通过 1553B 总线上的总线控制器 BC 对龙芯 1F 内部的寄存器进行配置,无需内部或外部的 CPU 干预,可以控制的功能部件包括: UART、AD、OC、PWM、PPC、PCM、GPIO。1553B 总线简易终端设备模式是龙芯 1F 主要的工作模式。PCI 总线设备模式和 ISA 总线设备模式是通过 PCI 总线或 ISA 总线控制龙芯 1F 的功能部件,可用的功能包括: CAN 接口、智能 1553B 接口、UART、AD、OC、PWM、PPC、PCM、GPIO。

自主模式 龙芯 1F 由内部集成的 GS132 处理器核进行配置和控制。GS132 处理器核通过 EMI 接口(LocalBus)加载并运行引导和控制程序以配置和控制 龙芯 1F 的各功能接口。在这种模式下的遥测遥控功能中,AD、PPC、OC、PWM、UART、GPIO、PCM 功能可用。其中,PPC、OC、PWM、UART、GPIO、PCM 由于管脚复用的关系,可用的具体数量视芯片的配置(上电复位时配置管脚的上下拉、配置寄存器中的配置值)而定。在自主模式下,龙芯 1F 可用的外部总线接口为: EMI、1553B(智能)、CAN。

1.1 芯片主要功能

1.1.1 GS132 处理器核

GS132 核是一款 MIPS32 兼容的单发射 32 位 RISC 处理器, 主频 33MHz, 集成了单周期乘法、硬件除法等众多强大的特性,是一款面积功耗小、成本极低、性能高的 32 位嵌入式处理器。

- MIPS32 兼容
- 单发射三级流水结构(取指、译码、执行)
- 基于哈佛结构,指令和数据各使用一条总线,处理器可以并行执行

多个操作,加快了应用程序的执行速度

- 分支含有延迟槽,无论分支跳转与否,流水线均不断流
- 32 位宽的数据路径,包含 32 个 32 位宽的通用寄存器以及一系列包含变成状态寄存器的特殊寄存器
- 执行部件包含单周期 32×32 的硬件乘法器和硬件除法器
- 支持高达 4GB 的可寻址存储空间,采用分段直接映射的地址管理机制,显著降低地址转换的开销
- 支持两个等级的访问形式(核心态和普通态),在不牺牲应用程序安全的前提下实现了对复杂的开放式系统的执行
- 支持向量中断模式,降低向量处理开销
- 支持 EJTAG 硬件调试标准,可设置断点,支持在线下载及调试
- 标准的 32 位 AMBA AXI 接口

1.1.2 PCI 总线接口

- PCI2.3 兼容,32 位总线宽度,总线频率最高支持33MHz(环境温度 25 摄氏度、IO 供电3.3V、核心供电1.8V)
- 作为 PCI 总线上的从设备,接受单数据周期的访问
- 允许主机通过 PCI 总线上单数据周期的读/写访问来控制龙芯 1F 的主要功能
- PCI 可以控制的功能部件包括: CAN、UART、智能 1553B、AD、OC、PWM、PPC、PCM、GPIO。其中, UART、CAN 被映射在 PCI 总线上的 IO 空间; 其余的资源映射在 PCI 总线上的 MEM 空间
- PCI 和 EMI、ISA、OC、PWM、GPIO 进行管脚复用

1.1.3 EMI

- 支持 8 位或者 16 位设备的 3 总线接口
- 在自主模式时为处理器核提供取指、访存、IO 操作的通道
- 信号线 ROM 片选用于接存有启动代码的 flash, RAM 片选用于接运行程序的 flash, IO 片选则用于接其它的 IO 设备
- 16 位模式下允许进行 8 位的写
- 支持速度从 60ns 到 450ns 的设备(系统时钟周期为 30ns 时)

- EMI 接口和 PCI、ISA、OC、PWM、GPIO 进行管脚复用
- EMI 接口仅在龙芯 1F 的自主模式下使用

1.1.4 ISA

- 仅支持 16 位总线模式
- 外部主机可以通过 ISA 总线的读写访问来控制龙芯 1F 的主要功能
- 外部主机通过单次访问控制龙芯 1F 的字节资源和 HALF WORD 资源(智能 1553B)。在访问字节资源(byte_dev)时,有效数据均在低 8 位。
- 外部主机通过两次地址连续的访问来控制 LS1F 内部的 WORD 资源 (word misc)。在两次地址连续的访问中不允许插入其它访问。
- ISA 从接口在 ISA 总线上占用 128kB 的地址空间
- 和 PCI、EMI、OC、PWM、GPIO 进行管脚复用

1.1.5 CAN

- 符合 CAN2.0 规范
- 含有1个标准的 CAN 接口
- 可由软件在2路收/发线间进行切换
- 仅含 CAN 总线上消息包的收发功能,不含对消息包内容的解析功能
- CAN 接口的 CANH 和 CANL 信号映射到 UART0 或者 UART1 的发 送和接收管脚
- 支持中断
- 在自主模式、PCI 总线设备模式、ISA 总线设备模式下可用

1.1.6 简易 1553B 控制器

- 符合 MIL STD 1553B 总线规范
- 工作在 RT 功能,芯片作为 1553B 总线上的一个终端设备
- 通过解析 1553B 消息的子地址和消息包的内容完成对龙芯 1F 内部功能的控制
- 支持的传统的 1553B 总线收发器 HI-1568, 并兼容 RS485 总线的收发器 SP481E 和符合 IrDA 的红外收发器(4Mbps)

- 可以控制的功能部件包括: AD、OC、UART、PWM、PPC、PCM、GPIO
- 和智能 1553B 控制器复用管脚
- 是否使用红外收发器由上电配置决定

1.1.7 智能 1553B 控制器

- 符合 MIL STD 1553B 总线规范
- 芯片设计参考 BU61580, 支持 BC 和 RT 功能
- 工作方式(BC还是RT)由软件配置
- 不支持多级 1553B 总线
- 支持单消息和多消息传输
- 支持中断
- 内部 RAM2KB, RAM 收发空间大小可配置
- 内部 RAM 进行 ECC 校验,实现"纠一检二"的容错功能
- 工作在 RT 模式时,支持非法指令表验证和子地址控制字查询表等功能
- 支持的传统的 1553B 总线收发器 HI-1568, 并兼容 RS485 总线的收发器 SP481E 和符合 IrDA 的红外收发器(4Mbps)
- 是否使用红外收发器由软件进行配置(缺省状态为不使用红外收发器)
- 在自主模式、PCI 总线设备模式、ISA 总线设备模式下可用
- 和简易 1553B 控制器复用管脚

1.1.8 UART 控制器

- 含有 4 个带握手的 4 线串口(UART0~3) 和 4 个不带握手的 2 线串口(UART4~7)
- 4线串口未经软件配置前可做2线制串口使用
- 4线串口的收发缓冲都是 16 字节; 2线串口的发送缓冲为 16 字节,接收缓冲为 64 字节
- 支持中断
- UARTO、UART1 的收发线和 CAN 进行管脚复用

● UART0~UART2 的握手线和 PCM_IN2、PCM_OUT2 进行管脚复用

1.1.9 AD

- 支持 128 路 AD 采集时序逻辑,分辨率为 16 位
- 接口包括数据总线 16 位,模拟多路器地址总线 7 位,片选、启动、 输出使能各 1 位
- 每一轮采集最多支持32路,通道可不连续,采用掩码控制
- 当用 1553B 总线访问 AD 采集的数据存储区时,可通过一个子地址 读取 32 个通道对应的存储区
- AD 采集控制逻辑在工作前须由 host 进行初始化参数设置,包括 AD 采集模块的启动、AD 采集的工作频率、采集通道掩码设置等。控制信号均可进行电平的方向、电平宽度设置

1.1.10 OC

- 2 个相同的 OC 门控制器 (OC0、OC1),每个支持 32 路,总计支持 64 路 OC
- 每个 OC 控制器中前 8 路 OC 有单独的"脉宽参数",后 24 路 OC 中每 4 路 OC 共用 1 个"脉宽参数"。64 路可并行工作
- 每路 OC 有 1 个对应的"脉冲指示"位用于指示脉冲是正脉冲还是 负脉冲
- 每路 OC 有 1 个对应的"掩码"位用于指示当前脉冲指令是否启动本路 OC 的脉冲输出;"掩码"位在脉冲指令执行后不清零
- 启动脉冲输出的指令包含对"脉冲指示"、"掩码"的 ECC 校验码和 启动指令;只有 ECC 校验通过并且启动指令正确时,脉冲输出指令 才会被执行
- "脉宽参数"为 0 则输出"脉冲指示"的有效电平的反。当脉冲启动时"掩码"为 1 的那路 OC 如果上一个脉冲尚未执行完,则直接执行当前指令;掩码位为 0 的那路 OC 则继续条指令的执行,不受当前脉冲启动命令的影响
- 每个 OC 控制器使用单独的 1 个 1553B 子地址用于获取其"脉宽参数"、"分频参数"、"脉冲指示"、"工作掩码"、"工作状态"信息。

此消息返回的最大数据长度为22

- 每个 OC 控制器使用单独的 1553B 子地址进行配置参数,消息的数据长度为 16
- 每个 OC 控制器使用单独的 1 个单独的 1553B 子地址配置"脉冲指示"、"掩码"和脉冲启动命令,消息的长度为 6

1.1.11 PWM

- 含有 4 个可编程 PWM 接口(PWM0、PWM1、PWM2、PWM3),每个 PWM 接口可以把相同的脉冲输出到指定的 16 个输出管脚中的任何 1 个管脚上
- 脉冲的周期、占空比软件可设置
- 脉冲缺省状态电平值软件可设
- 初始化参数包括:分频系数、PWM 输出周期、脉宽、前沿、PWM 配置(使能、输出翻转)

1.1.12 PCM

- 含有 3 个 PCM 遥控(PCM_IN0~PCM_IN2), 3 个 PCM 遥测(PCM_OUT0~PCM_OUT2)
- 常见的三线制单工同步串行接口:数据、时钟信号和数据选通信号
- 每个 PCM 遥测模块的数据缓冲 fifo 深度为 16,数据宽度为 32bits, PCM 遥控模块的数据缓冲 fifo 的深度为 16,数据位宽为 32bits
- 支持中断

1.1.13 PPC

- 32 个可编程脉冲计数器(PPC0~PPC31)
- 32 位计数器
- 计数周期软件可调
- 计数模式(上升沿/下降沿)软件可调
- 计数器只缓冲上一个计数周期的数据。每个计数周期结束时,将当前数据放入缓冲区
- 支持中断

• 与扩展中断、GPIO、OC、PWM 进行管脚复用

1.1.14 GPIO

- 1 个 64 位的可编程 GPIO 接口
- 缺省状态为输入
- 3 个无复用的 GPIO 管脚
- 与 OC、PWM、PCI、ISA、EMI 进行管脚复用

1.1.15 中断控制器

- 支持软件设置内部中断源(AD、PCM、PPC、UART、CAN、SM_1553B) 的使能
- 使用 PCI 中断做为输出中断, 低电平有效
- 最多支持8路控制中断输入
- 控制中断输入的属性(电平/脉冲,高电平/低电平,上升沿/下降沿) 软件可设
- 8 路扩展中断输入与 PPC 复用管脚
- 1553B 总线简易终端设备模式时不支持中断

1.1.16 JTAG 控制器

- JTAG 扫描电路满足 IEEE1149.1 标准
- 使用 TAP SEL 在 JTAG 和 EJTAG 功能间进行切换
- 边界扫描单元的连接考虑了 IO 的具体布局位置

2 引脚定义

2.1 龙芯 1F 管脚分布

龙芯 1F 采用 CBGA 的形式进行封装。封装后的管脚数量为 276, 其中信号管脚的数量为 176。LS1F 封装后的面积为 2.7cm×2.7cm。芯片的顶视图如下:

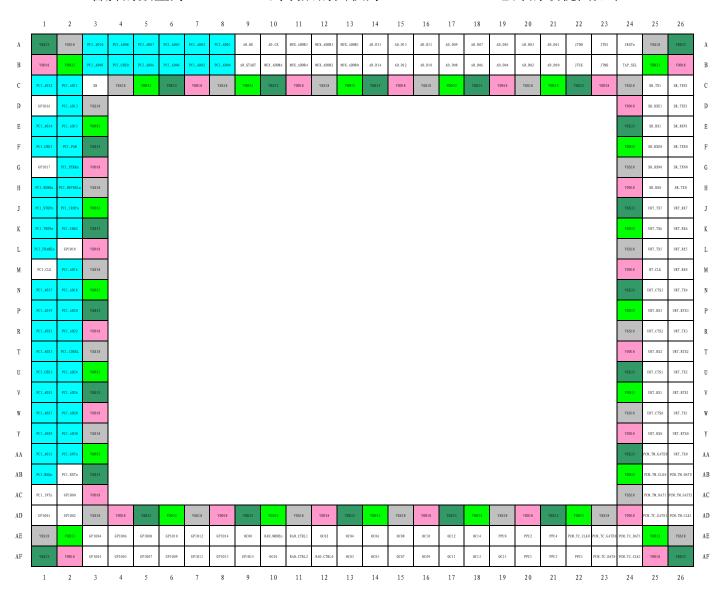


图 2-1 龙芯 1F 管脚分布

表 2-1 龙芯 1F 芯片管脚功能与位置

			第四功能名	第五功能	第六功能	管脚编	
第一功能名称	第二功能名称	第三功能名称	称	名称	名称	号	属性
RAD_MODE						AE10	
RAD_CTRL0						AF12	
RAD_CTRL1						AE11	
RAD_CTRL2						AF11	
TAP_SEL						B24	
JTCK						B22	
JRSTn						A24	
JTMS						B23	
JTDI						A23	
JTDO						A22	
PCI_AD00	ISA_DB00	EMI_DB00	OC32	GPIO32	PWM32	B08	
PCI_AD01	ISA_DB01	EMI_DB01	OC33	GPIO33	PWM33	A08	
PCI_AD02	ISA_DB02	EMI_DB02	OC34	GPIO34	PWM34	В07	
PCI_AD03	ISA_DB03	EMI_DB03	OC35	GPIO35	PWM35	A07	
PCI_AD04	ISA_DB04	EMI_DB04	OC36	GPIO36	PWM36	B06	
PCI_AD05	ISA_DB05	EMI_DB05	OC37	GPIO37	PWM37	A06	
PCI_AD06	ISA_DB06	EMI_DB06	OC38	GPIO38	PWM38	B05	
PCI_AD07	ISA_DB07	EMI_DB07	OC39	GPIO39	PWM39	A05	
PCI_AD08	ISA_DB08	EMI_DB08	OC40	GPIO40	PWM40	A04	功能
PCI_AD09	ISA_DB09	EMI_DB09	OC41	GPIO41	PWM41	В03	り が 能 ・ 管 脚
PCI_AD10	ISA_DB10	EMI_DB10	OC42	GPIO42	PWM42	A03	E /AY
PCI_AD11	ISA_DB11	EMI_DB11	OC43	GPIO43	PWM43	C02	
PCI_AD12	ISA_DB12	EMI_DB12	OC44	GPIO44	PWM44	C01	
PCI_AD13	ISA_DB13	EMI_DB13	OC45	GPIO45	PWM45	D02	
PCI_AD14	ISA_DB14	EMI_DB14	OC46	GPIO46	PWM46	E01	
PCI_AD15	ISA_DB15	EMI_DB15	OC47	GPIO47	PWM47	E02	
PCI_AD16	ISA_ADDR00	EMI_ADDR00	OC48	GPIO48	PWM48	M02	
PCI_AD17	ISA_ADDR01	EMI_ADDR01	OC49	GPIO49	PWM49	N01	
PCI_AD18	ISA_ADDR02	EMI_ADDR02	OC50	GPIO50	PWM50	N02	
PCI_AD19	ISA_ADDR03	EMI_ADDR03	OC51	GPIO51	PWM51	P01	
PCI_AD20	ISA_ADDR04	EMI_ADDR04	OC52	GPIO52	PWM52	P02	
PCI_AD21	ISA_ADDR05	EMI_ADDR05	OC53	GPIO53	PWM53	R01	
PCI_AD22	ISA_ADDR06	EMI_ADDR06	OC54	GPIO54	PWM54	R02	
PCI_AD23	ISA_ADDR07	EMI_ADDR07	OC55	GPIO55	PWM55	T01	
PCI_AD24	ISA_ADDR08	EMI_ADDR08	OC56	GPIO56	PWM56	U02	
PCI_AD25	ISA_ADDR09	EMI_ADDR09	OC57	GPIO57	PWM57	V01	
PCI_AD26	ISA_ADDR10	EMI_ADDR10	OC58	GPIO58	PWM58	V02	
PCI_AD27	ISA_ADDR11	EMI_ADDR11	OC59	GPIO59	PWM59	W01	
PCI_AD28	ISA_ADDR12	EMI_ADDR12	OC60	GPIO60	PWM60	W02	

PCI_AD29	ISA_ADDR13	EMI_ADDR13	OC61	GPIO61	PWM61	Y01
PCI_AD30	ISA_ADDR14	EMI_ADDR14	OC62	GPIO62	PWM62	Y02
PCI_AD31	ISA_ADDR15	EMI_ADDR15	OC63	GPIO63	PWM63	AA01
PCI_CBE0		EMI_ADDR16				B04
PCI_CBE1		EMI_ADDR17				F01
PCI_CBE2		EMI_ADDR18				K02
PCI_CBE3		EMI_ADDR19				U01
PCI_FRAME		EMI_RDn				L01
PCI_IRDY		EMI_WRn				J02
PCI_DEVSEL	ISA_WRn	ROM_CSn				H02
PCI_TRDY		RAM_CSn				K01
PCI_STOP		IO_CSn				J01
PCI_PAR						F02
PCI_PERR						G02
PCI_SERR						H01
PCI_IDSEL						T02
PCI_INTn						AC01
PCI_REQn	ISA_RDYn					AB01
PCI_GNTn						AA02
PCI_CLK						M01
PCI_RSTn						AB02
RT_CLK						M25
SR_TX0						H26
SR_TX1						C25
SR_TXN0						G26
SR_TXN1						C26
SR_TXE0						F26
SR_TXE1						D26
SR_RXE0						F25
SR_RXE1						D25
SR_RX0						H25
SR_RX1						E25
SR_RXN0	PPC06	EINT6				G25
SR_RXN1	PPC07	EINT7				E26
URT_RX0	CAN_RX0					Y25
URT_RX1	CAN_RX1					V25
URT_RX2						T25
URT_RX3						P25
URT_RX4						M26
URT_RX5						L26
URT_RX6						K26
URT_RX7						J26
URT_TX0	CAN_TX0					AA26

URT_TX1	CAN_TX1			W26
URT_TX2				U26
URT_TX3				R26
URT_TX4				N26
URT_TX5				L25
URT_TX6				K25
URT_TX7				J25
URT_RTS0	PCM_TC_DAT2			Y26
URT_RTS1	PCM_TC_CLK2			V26
URT_RTS2	PCM_TC_GATE2			T26
URT_RTS3				P26
URT_CTS0	PCM_TM_DAT2			W25
URT_CTS1	PCM_TM_CLK2			U25
URT_CTS2	PCM_TM_GATE2			R25
URT_CTS3				N25
AD_CS				A10
AD_START				B09
AD_OE				A09
MUX_ADDR0				B13
MUX_ADDR1				A13
MUX_ADDR2				B12
MUX_ADDR3				A12
MUX_ADDR4				B11
MUX_ADDR5				A11
MUX_ADDR6				B10
AD_D00				B21
AD_D01				A21
AD_D02				B20
AD_D03				A20
AD_D04				B19
AD_D05				A19
AD_D06				B18
AD_D07				A18
AD_D08				B17
AD_D09				A17
AD_D10				B16
AD_D11				A16
AD_D12				B15
AD_D13				A15
AD_D14				B14
AD_D15				A14
OC00	PPC16	PWM00		AE09
OC01	PPC17	PWM01		AF10

OC02	PPC18	PWM02		AE12
OC03	PPC19	PWM03	GPIO19	AF13
OC04	PPC20	PWM04	GPIO20	AE13
OC05	PPC21	PWM05	GPIO21	AF14
OC06	PPC22	PWM06	GPIO22	AE14
OC07	PPC23	PWM07	GPIO23	AF15
OC08	PPC24	PWM08	GPIO24	AE15
OC09	PPC25	PWM09	GPIO25	AF16
OC10	PPC26	PWM10	GPIO26	AE16
OC11	PPC27	PWM11	GPIO27	AF17
OC12	PPC28	PWM12	GPIO28	AE17
OC13	PPC29	PWM13	GPIO29	AF18
OC14	PPC30	PWM14	GPIO30	AE18
OC15	PPC31	PWM15	GPIO31	AF19
PCM_TM_GATE				4.405
0				AA25
PCM_TM_GATE				AC26
1				AC20
PCM_TM_CLK0				AB25
PCM_TM_CLK1				AD26
PCM_TM_DAT0				AB26
PCM_TM_DAT1				AC25
PCM_TC_GATE				AE23
0				AE23
PCM_TC_GATE				AD25
1				11023
PCM_TC_CLK0				AE22
PCM_TC_CLK1				AF24
PCM_TC_DAT0				AF23
PCM_TC_DAT1				AE24
PPC0	EINT0			AE19
PPC1	EINT1			AF20
PPC2	EINT2			AE20
PPC3	EINT3			AF21
PPC4	EINT4			AE21
PPC5	EINT5			AF22
GPIO00	OC16	EMI_ECC0	PWM16	AC02
GPIO01	OC17	EMI_ECC1	PWM17	AD01
GPIO02	OC18	EMI_ECC2	PWM18	AD02
GPIO03	OC19	EMI_ECC3	PWM19	AF03
GPIO04	OC20	EMI_ECC4	PWM20	AE03
GPIO05	OC21	EMI_ECC5	PWM21	AF04
GPIO06	OC22		PWM22	AE04

GPIO07	OC23		PWM23		AF05	
GPIO08	OC24	PPC08	PWM24		AE05	
GPIO09	OC25	PPC09	PWM25		AF06	
GPIO10	OC26	PPC10	PWM26		AE06	
GPIO11	OC27	PPC11	PWM27		AF07	
GPIO12	OC28	PPC12	PWM28		AE07	
GPIO13	OC29	PPC13	PWM29		AF08	
GPIO14	OC30	PPC14	PWM30		AE08	
GPIO15	OC31	PPC15	PWM31		AF09	
GPIO16					D01	
GPIO17					G01	
GPIO18					L02	
	l.		1	I	A01	
					A26	
					AA24	
					AB03	
					AD05	
					AD09	
					AD13	
					AD17	
					AD21	
					AF26	
					C06	
VSS33					C10	3.3V
					C14	IO地
					C18	
					C22	
					E24	
					F03	
					J24	
					K03	
					N24	
					P03	
					U24	
					V03	
					AA03	
					AB24	
					AD06	3.3V
VDD33					AD10	IO 电
, , , , , , , , , , , , , , , , , , , ,					AD14	源
					AD18	***
					AD22	
					AE02	

	AE25	
	C05	
	B02	
	B25	
	C09	
	C13	
	C17	
	C21	
	E03	
	F24	
	J03	
	K24	
	N03	
	P24	
	U03	
	V24	
	A02	
	A25	
	AC24	
	AD03	
	AD07	
	AD11	
	AD15	
	AD19	
	AD23	
	AE01	
	AE26	
	AF01	
	C04	1.8V
VSS18	C08	核心
	C12	地
	C16	
	C20	
	C24	
	D03	
	G24	
	H03	
	L24 M03	
	R24	
	T03	
	W24	
	Y03	
	103	

				AC03	
				AD04	
				AD08	
				AD12	
				AD16	
				AD20	
				AD24	
				AF02	
				AF25	
				B01	
				B26	
				C07	1.8V
VDD18				C11	核心
				C15	电源
				C19	
				C23	
				D24	
				G03	
				H24	
				L03	
				M24	
				R03	
				T24	
				W03	
		<u> </u>		Y24	
					芯片
					封装
					的密
					封环
SR				C03	连接 点,
					点, 此管
					脚需
					要接
					地
					- 0

表 2-1 中存在功能复用的功能管脚的复用方式详见 3.2 节。

2.2 约定

本章对龙芯 1F 引脚定义的说明使用以下约定:

• 信号名

信号名的选取以方便记忆和明确标识功能为原则。如无特殊说明, 低有效信号以 n 结尾,高有效信号则不带 n。

• 类型

信号的输入输出类型由一个代码表示,见表 2-2。

表 2-2 信号类型代码

代码	描述
I	输入
I/O	双向
О	输出
P	电源
G	地

2.3 三模控制

表 2-3 三模控制信号

信号名称	类型	描述
RAD_MODEn	I	三模冗余控制,RAD_MODE = 1'b0 为三模 冗余模式,RAD_MODE = 1'b1 为非三模冗
RAD_CTRL[2:0]	1	余模式 三模时钟相位差控制信号,3'b000 时三个三 模时钟无相位差,3'b111 时 3 个三模时钟的 相位差为 1.4ns,每档的相位差为 0.2ns 推荐配置为 3'b011

2.4 JTAG

表 2-4 JTAG 信号

*** - ********************************					
信号名称	类型	描述			
		EJTAG 与 JTAG 测试 TAP 接口选择信号,			
TAP_SEL	I	TAP_SEL = 1'b0 选择 GS132 的 EJTAG,			
		TAP_SEL = 1'b1 选择 JTAG			
JTCK	I	JTAG/EJTAG 测试时钟输入			
JRSTn	I	JTAG/EJTAG 异步复位输入			
JTMS	I	JTAG/EJTAG 测试模式选择端口			
JTDI	I	JTAG/EJTAG 测试数据串行输入端口			
JTDO	О	JTAG/EJTAG 测试数据输出端口			

2.5 PCI

表 2-5 PCI 接口信号

	•		
信号名称	类型	数量	描述
PCI_AD[31:0]	I/O	1 1/	PCI 总线数据线,PCI_AD[15:0]分别 与 ISA_DB、EMI_DB、OC[47:32]、

			GPIO[47:32]、PWM[47:32]进行管脚复用; PCI_AD[31:16]分别与ISA_ADDR、EMI_ADDR[15:0]、OC[63:48]、GPIO[63:48]、PWM[63:48]进行管脚复用作为OC、PWM功能使用时外部需要使用电阻进行上拉或下拉到缺省电平,此时需要检查PCI_AD[14:0]作为功能使用和启动配置时的上下拉需求是否冲突,冲突的管脚不能作为功能管脚使用
PCI_CBE[3:0]	I/O	4	PCI 总线命令/字节掩码, EMI_ADDR[19:16]进行管脚复用
PCI_FRAMEn	I/O	1	PCI 总线帧开始信号,与 EMI_RDn 进行管脚复用
PCI_IRDYn	I/O	1	PCI 总线发起方准备好信号,与 EMI_WRn 进行管脚复用
PCI_DEVSELn	I/O	1	PCI 总线接受方地址命中,与ROM_CSn、ISA_WRn 进行管脚复用
PCI_TRDYn	I/O	1	PCI 总线从设备数据准备好信号,与 RAM_CSn 进行管脚复用
PCI_STOPn	I/O	1	PCI 总线从设备暂停信号,与 IO_CSn 进行管脚复用
PCI_PAR	I/O	1	PCI 总线奇偶校验信号
PCI_PERRn	I/O	1	PCI 总线奇偶校验出错信号
PCI_SERRn	I/O	1	PCI 总线总线错误信号
PCI_IDSEL	I	1	PCI 总线配置访问命中信号,与ISA_RDn 进行管脚复用
PCI_INTn	0	1	PCI 总线中断输出, 也是龙芯 1F 的中断输出, 低电平有效
PCI_REQn	0	1	PCI 总线总线申请信号,与 ISA_RDYn 进行管脚复用
PCI_GNTn	I	1	PCI 总线授权信号,与 ISA_CSn 进行管脚复用
PCI_CLK	I	1	PCI 总线时钟输入, 也是龙芯 1F 的系统时钟输入
PCI_RSTn	I	1	PCI 总线复位输入, 也是龙芯 1F 的复位输入, 低电平有效

2.6 1553B

表 2-6 1553B 接口信号

信号名称	类型	数量	描述
RT_CLK	I	1	1553B 时钟输入(16Mhz)
SR_TX[1:0]	О	2	数据发送 A、B 通道
SR_TXN[1:0]	О	2	数据发送负 A、B 通道
SR_TXE[1:0]	0		数据发送 A、B 通道允许,有效电平 可设置,缺省有效电平为低

SR_RXE[1:0]	О	l ')	数据接收 A、B 通道允许,有效电平可设置,缺省有效电平为低
SR_RX[1:0]	I	2	数据接收 A、B 通道
SR_RXN[1:0]	I	2	数据接收负 A、B 通道(预留信号); 这 2 个信号暂时并未用作 1553B 的 信号,和 PPC[7:6]、EINT[7:6]进行 管脚复用

2.7 UART

表 2-7 UART 接口信号

W = 1 0 mm 20 mm				
信号名称	类型	数量	描述	
LIDT DV(7 o)	T	0	UART0~7 的数据输入,URT_RX[1:0]和	
URT_RX[7:0]	1	8	CAN 的 CAN_RX[1:0]复用管脚	
			UART0~7 的数据输出,URT_TX[1:0]和	
URT_TX[7:0]	O		CAN 的 CAN_TX[1:0]复用管脚	
			缺省电平为高电平	
			UART0~3 的输入允许,URT_RTS[2:0]	
	О		分别和 PCM 遥测 2 的	
URT_RTS[3:0]			PCM_TC_DAT[2] \ PCM_TC_CLK[2] \	
			PCM_TC_GATE[2]进行管脚复用	
			缺省电平为低电平	
			UART0~3 的输出允许,URT_CTS[2:0]	
URT_CTS[3:0]	T	4	分别和 PCM 遥控 2 的	
	1	7	PCM_TM_DAT[2] \ PCM_TM_CLK[2] \	
			PCM_TM_GATE[2]	

2.8 AD

表 2-8 AD 接口信号

信号名称	类型	数量	描述
AD_CS	O	1	外部 AD 转换芯片片选信号 有效电平可设置,缺省有效电平为低 在 AD 的首次数据采集开始前或者 AD 的时 钟门控关闭后,此信号处于三态状态,需要 根据外部 AD 采集芯片的参数用电阻进行上 下拉
AD_START	0	1	外部 AD 转换芯片启动信号 有效电平可设置,缺省有效电平为低 在 AD 的首次数据采集开始前或者 AD 的时 钟门控关闭后,此信号处于三态状态,需要 根据外部 AD 采集芯片的参数用电阻进行上 下拉

信号名称	类型	数量	描述
AD_OE	O	1	外部 AD 转换芯片输出使能(可选信号) 有效电平可设置,缺省有效电平为低 在 AD 的首次数据采集开始前或者 AD 的时 钟门控关闭后,此信号处于三态状态,需要 根据外部 AD 采集芯片的参数用电阻进行上 下拉
MUX_ADDR[6:0]	O	7	多路选择器地址 在 AD 的首次数据采集开始前或者 AD 的时 钟门控关闭后,此信号处于三态状态,需要 根据外部 AD 采集芯片的参数用电阻进行上 下拉
AD_D[15:0]	I	16	外部 AD 转换结果输入

2.9 OC

表 2-9 OC 接口信号

W = 2 2 2 WILLIA						
信号名称	类型	数量	描述			
OC[15:0]	I/O	16	OC 门的输出 OC[15:0] 与 PPC[31:16] 、 PWM[15:0]进行管脚复用,OC[15:3] 还与 GPIO[31:19]进行管脚复用 作为 OC、PWM 功能使用时外部需 要使用电阻进行上拉或下拉到缺省 电平			

2.10 PCM

表 2-10 PCM 接口信号

信号名称	类型	数量	描述
PCM_TM_GATE[1:0]	Ĭ	2	PCM 遥控(PCM_IN)控制器 0、1 的
FCW_TW_GATE[1.0]	1	2	选通信号输入
PCM_TM_CLK[1:0]	ī	2	PCM 遥控(PCM_IN)控制器 0、1 的
TOW_TW_CER[T.0]	1	2	时钟信号输入
PCM_TM_DAT[1:0]	Ţ	2	PCM 遥控(PCM_IN)控制器 0、1 的
PCIVI_TIVI_DAT[1.0]	1	2	数据信号输入
PCM_TC_GATE[1:0]	0	2	PCM 遥测(PCM_OUT)控制器 0、1
POW_TO_GATE[1.0]	0	2	的选通信号输出
PCM_TC_CLK[1:0]	0	2.	PCM 遥测(PCM_OUT)控制器 0、1
FOW_TO_OLK[1.0]		2	的时钟信号输出
PCM_TC_DAT[1:0]	0	2	PCM 遥测(PCM_OUT)控制器 0、1
PCIVI_TC_DAT[1.0]	O	Δ	的数据信号输出

2.11 PPC

表 2-11 PPC 接口信号

11. 1. 1. 1	Ste med	\V. =	THAN
信号名称	米刑	数 量	*生 *
	40 43	数 里	描述 描述
IH 2 HIV	ノし上	<i>外</i> 土	1H~

PPC[5:0]	I	6	脉冲计数器的脉冲输入,与扩展 中断输入(EINT[5:0])进行管脚 复用
----------	---	---	---

2.12 **GPIO**

表 2-12 GPIO 接口信号

N = 1 = 2 1 1 2 1 1 H					
信号名称	类型	数量	描述		
GPIO[15:0]	I/O	16	有复用的 GPIO 管脚,GPIO[5:0]与 EMI_ECC、OC[21:16]、PWM[21:16] 进 行 管 脚 复 用; GPIO[15:6] 与 OC[31 : 22] 、 PWM[31:22] ; GPIO[15:8]与 PPC[15:8]进行管脚复 用 作为 OC、PWM 功能使用时外部需 要使用电阻进行上拉或下拉到缺省 电平		
GPIO[18:16]	I/O	3	无复用的 GPIO 管脚		

2.13 电源接口

表 2-13 电源接口

信号名称	类型	数量	电压 (V)	容忍范围	描述	
VSS33	G	24	0	-	IO 3.3V 地	
VDD33	P	24	3.3	$\pm 5\%$	IO 3.3V 电源	
VSS18	G	26	0	-	核心 1.8V 地	
VDD18	Р	25	1.8	±5%	核心 1.8V 电 源	

龙芯 1F 在上电时要求先上 3.3V 的 IO 电,后上 1.8V 的核心电。二者的上电间隔不大于 1ms。关电顺序和上电顺序相反。

2.14 密封环连接点

信号名称	数量	描述	
SR	1	芯片封装的密封环连接点,	此管脚需要接地

3 系统特性

3.1 启动配置

龙芯 1F 在启动时的工作模式、自主模式时 EMI 的工作参数、简易 1553B 终端设备模式(RT_1553B)时的工作参数、智能 1553B 模块作为 RT 使用时的设备号、UART 和 PCM 以及 CAN 的管脚复用关系均由 PCI_AD[14:0]在上电复位时的上下拉值确定。其配置关系如表 3-1 所示。在表 3-1 中,0 表示使用电阻下拉,1 表示使用电阻上拉。

表 3-1 龙芯 1F 的上电配置说明

名称	配置管脚	描述	软件可修改
rt_mode_sel	PCI_AD[0]	RT_1553B 的传输模式选择 (0: 常规, 1: 红外)	否
rt_tranceiver_sel	PCI_AD[1]	RT_1553B 的传线选择	否
width_cfg[2:0]	PCI_AD[2:0]	每根信号在上电复位信号有 效时的值确定 EMI 接口的 1 个片选信号对应的总线宽度 (0: 8 位, 1: 16 位)。PCI_AD [2]、PCI_AD[1]、PCI_AD[0] 分别对应 EMI 接口的 IO_CSn、RAM_CSn、ROM_CSn	否
ecc_cfg[2:0]	PCI_AD[5:3]	每根信号在上电复位信号有效时的值确定 EMI 接口的 1个片选信号对应的总线是否使用 ECC 校验(0:不使用,1:使用)。PCI_AD [5],PCI_AD[4],PCI_AD[3]分别对应 EMI 接口的 IO_CSn、RAM_CSn、ROM_CSn 是否使用ECC 功能。ECC 功能仅在 16位总线上可用	是
pcm_uart_cfg	PCI_AD[6]	0: URT_RTS[2]、 URT_RTS[1]、URT_RTS[0]由	是

can_cfg	PCI_AD[7]	0: URT_RX[1:0]、URT_TX[1:0] 由 UARTO 和 UART1 控制,1: URT_RX[1:0]、URT_TX[1:0]由 CAN 控制	是
boot_cfg	PCI_AD[9:8]	2' h0: PCI 总线设备模式 2' h1: ISA 总线设备模式 2' h2: 自主模式 2' h3: 简易 1553B 终端设备 模式	否
sr_num	PCI_AD[14:10]	龙芯 1F 作为 1553B 总线上的 RT 时的终端号	否(智能 1553B的 软件可 设)

3.2 管脚复用

龙芯 1F 的管脚复用分为 3 类:在启动复位时由 PCI_AD 对应管脚的上下拉确定复用关系的管脚复用、由可读写的寄存器控制的管脚复用关系、由于是纯输入管脚而无需进行配置的管脚复用关系。

使用 PCI_AD 对应管脚在复位时的上下拉确定管脚复用关系的有: CAN0 和UART0~1 的发送管脚的复用关系、EMI 的 ECC 信号和芯片其它功能(GPIO[5:0]、OC[16:21]、PWM[3:0])间的管脚复用关系、UART0~2 的 RTS输出和 PCM_OUT2 的管脚复用关系、PCI_AD[15:0]和 emi_dq[15:0]和 isa_dq[15:0]和芯片其它功能(GPIO[47:32]、OC[47:32]、PWM[3:0])间的管脚复用关系、PCI_AD[31:16]和 emi_addr[15:0]和 isa_addr[15:0]和芯片其它功能(GPIO[63:48]、OC[63:48]、PWM[3:0])间的管脚复用关系、PCI_CBE[3:0]和 emi_addr[19:16]间的管脚复用关系、PCI 总线握手信号和 EMI 和 ISA 总线握手信号间的管脚复用关系。

使用软件编程控制的管脚复用关系有: GPIO[15:0]和 OC[31:16]和 PWM[3:0]和 PPC[15:8]间的管脚复用关系、GPIO[31:19]和 OC[15:0]和 PWM[3:0]和 PPC[31:16]间的管脚复用关系。

由于是纯输入管脚而无需进行配置的管脚复用关系有: CANO 和 UARTO~1 的接收管脚的复用关系、PPC[7:0]和 INTN_I[7:0]间的管脚复用、UARTO~2 的 CTS 和 PCM_IN2 间的管脚复用。

下面的表格给出了管脚复用的详细说明

表 3-2 OC 功能的管脚

管脚名称	内部信号名 称	所属模块	复用控制方式	可用工作模式
OC[15:0]	OC[15:0]	OCO		全部
GPI0[15:0]	OC[31:16]	OCO		全部
PCI_AD[15:0]	OC[47:32]	0C1	4d - 1d	仅简易 1553B 终端
			软件	设备模式下可用
PCI_AD[31:16]	OC[63:48]	0C1		仅简易 1553B 终端
				设备模式下可用

表 3-3 PWM 功能的管脚

管脚名称	内部信号	所属模块	复用控制方	可用工作模式
	名称		式	
OC[0]	PWM[0]	PWMO		全部
OC[1]	PWM[1]	PWM1		全部
OC[2]	PWM[2]	PWM2		全部
OC[3]	PWM[3]	PWM3		全部
OC[4]	PWM[4]	PWMO		全部
OC[5]	PWM[5]	PWM1		全部
OC[6]	PWM[6]	PWM2		全部
OC[7]	PWM[7]	PWM3		全部
OC[8]	PWM[8]	PWM0		全部
OC[9]	PWM[9]	PWM1		全部
OC[10]	PWM[10]	PWM2		全部
OC[11]	PWM[11]	PWM3		全部
OC[12]	PWM[12]	PWMO		全部
OC[13]	PWM[13]	PWM1		全部
OC[14]	PWM[14]	PWM2	软件	全部
OC[15]	PWM[15]	PWM3		全部
GPI0[0]	PWM[16]	PWMO		全部
GPI0[1]	PWM[17]	PWM1		全部
GPI0[2]	PWM[18]	PWM2		全部
GPI0[3]	PWM[19]	PWM3		全部
GPI0[4]	PWM[20]	PWMO		全部
GPI0[5]	PWM[21]	PWM1		全部
GPI0[6]	PWM[22]	PWM2		全部
GPI0[7]	PWM[23]	PWM3		全部
GPI0[8]	PWM[24]	PWM0		全部
GPI0[9]	PWM[25]	PWM1		全部
GPI0[10]	PWM[26]	PWM2		全部
GPI0[11]	PWM[27]	PWM3		全部
GPI0[12]	PWM[28]	PWMO		全部

GPI0[13]	PWM[29]	PWM1	全部
GPI0[14]	PWM[30]	PWM2	全部
GPI0[15]	PWM[31]	PWM3	全部
PCI AD[0]	PWM[32]	PWMO	简易 1553B 终端模式
PCI_AD[1]	PWM[33]	PWM1	简易 1553B 终端模式
PCI_AD[2]	PWM[34]	PWM2	简易 1553B 终端模式
PCI_AD[3]	PWM[35]	PWM3	简易 1553B 终端模式
PCI_AD[4]	PWM[36]	PWMO	简易 1553B 终端模式
PCI_AD[5]	PWM[37]	PWM1	简易 1553B 终端模式
PCI_AD[6]	PWM[38]	PWM2	简易 1553B 终端模式
PCI_AD[7]	PWM[39]	PWM3	简易 1553B 终端模式
PCI_AD[8]	PWM[40]	PWMO	简易 1553B 终端模式
PCI_AD[9]	PWM[41]	PWM1	简易 1553B 终端模式
PCI_AD[10]	PWM[42]	PWM2	简易 1553B 终端模式
PCI_AD[11]	PWM[43]	PWM3	简易 1553B 终端模式
PCI_AD[12]	PWM[44]	PWMO	简易 1553B 终端模式
PCI_AD[13]	PWM[45]	PWM1	简易 1553B 终端模式
PCI_AD[14]	PWM[46]	PWM2	简易 1553B 终端模式
PCI_AD[15]	PWM[47]	PWM3	简易 1553B 终端模式
PCI_AD[16]	PWM[48]	PWMO	简易 1553B 终端模式
PCI_AD[17]	PWM[49]	PWM1	简易 1553B 终端模式
PCI_AD[18]	PWM[50]	PWM2	简易 1553B 终端模式
PCI_AD[19]	PWM[51]	PWM3	简易 1553B 终端模式
PCI_AD[20]	PWM[52]	PWMO	简易 1553B 终端模式
PCI_AD[21]	PWM[53]	PWM1	简易 1553B 终端模式
PCI_AD[22]	PWM[54]	PWM2	简易 1553B 终端模式
PCI_AD[23]	PWM[55]	PWM3	简易 1553B 终端模式
PCI_AD[24]	PWM[56]	PWMO	简易 1553B 终端模式
PCI_AD[25]	PWM[57]	PWM1	简易 1553B 终端模式
PCI_AD[26]	PWM[58]	PWM2	简易 1553B 终端模式
PCI_AD[27]	PWM[59]	PWM3	简易 1553B 终端模式
PCI_AD[28]	PWM[60]	PWM0	简易 1553B 终端模式
PCI_AD[29]	PWM[61]	PWM1	简易 1553B 终端模式
PCI_AD[30]	PWM[62]	PWM2	简易 1553B 终端模式
PCI_AD[31]	PWM[63]	PWM3	简易 1553B 终端模式

表 3-4 PPC 功能的管脚

管脚名称	内部信号名称	复 用 控 制方式	所属模 块	可用工作模式
PPC[0]	PPC[0]		PPC0	
PPC[1]	PPC[1]		PPC1	
PPC[2]	PPC[2]	纯输入	PPC2	全部
PPC[3]	PPC[3]	管脚	PPC3	土印
PPC[4]	PPC[4]		PPC4	
PPC[5]	PPC[5]		PPC5	

SR_RXN[0]	PPC[6]		PPC6	
SR_RXN[1]	PPC[7]		PPC7	
GPI0[8]	PPC[8]		PPC8	
GPI0[9]	PPC[9]		PPC9	
GPI0[10]	PPC[10]		PPC10	
GPI0[11]	PPC[11]		PPC11	
GPI0[12]	PPC[12]		PPC12	
GPI0[13]	PPC[13]		PPC13	
GPI0[14]	PPC[14]		PPC14	
GPI0[15]	PPC[15]		PPC15	
OC[0]	PPC[16]		PPC16	
OC[1]	PPC[17]		PPC17	
OC[2]	PPC[18]		PPC18	
OC[3]	PPC[19]	## / #	PPC19	
OC[4]	PPC[20]	软件	PPC20	
OC[5]	PPC[21]		PPC21	
OC[6]	PPC[22]		PPC22	
OC[7]	PPC[23]		PPC23	
OC[8]	PPC[24]		PPC24	
OC[9]	PPC[25]		PPC25	
OC[10]	PPC[26]		PPC26	
OC[11]	PPC[27]		PPC27	
OC[12]	PPC[28]		PPC28	
OC[13]	PPC[29]		PPC29	
OC[14]	PPC[30]		PPC30	
OC[15]	PPC[31]		PPC31	

表 3-5 外部扩展中断的管脚

	ACCC THE WALL DIES					
管脚名称	内部信号名称	复 用 控制方式	可 用 工作模式			
PPC[0]	EINT[0]					
PPC[1]	EINT [1]					
PPC[2]	EINT [2]					
PPC[3]	EINT [3]	纯输入	全部			
PPC[4]	EINT [4]	管脚	土印			
PPC[5]	EINT [5]					
SR_RXN[0]	EINT [6]					
SR_RXN[1]	EINT [7]					

表 3-6 PCM_IN 功能的管脚

管脚名称	内部信号名称	所属模块	复用控制方式	描述	可用工作模 式
PCM_TM_GATE[0]	PCM_TM_GATE[0]	PCM_IN0	无复用	PCM 遥控(PCM_IN) 控 制器 0 的片选信号输入	全部
PCM_TM_GATE[1]	PCM_TM_GATE[1]	PCM_IN1	无复用	PCM 遥控(PCM_IN)控	

				制器 1 的片选信号输入
117Dm Cmc101	DCM TM CATE[2]	DCM TNO	纯输入管脚	PCM 遥控(PCM_IN)控
UART_CTS[0]	PCM_TM_GATE[2]	PCM_IN2		制器 2 的片选信号输入
PCM TM CLK[0]	PCM TM CLK[0]	DCM TNO	无复用	PCM 遥控(PCM_IN)控
FCM_IM_CHK[0]	FCW_IM_CHK[0]	PCM_IN0		制器 0 的时钟信号输入
PCM TM CLK[1]	PCM TM CLK[1]	PCM IN1	无复用	PCM 遥控(PCM_IN)控
TCM_IM_CHK[I]	TOM_IM_CHR[I]	ICM_INI		制器 1 的时钟信号输入
UART CTS[1]	PCM TM CLK[2]	PCM IN2	纯输入管脚	PCM 遥控(PCM_IN)控
OAKI_CIS[I]	TCM_IM_CDK[2]	ICM_INZ		制器 2 的时钟信号输入
PCM TM DAT[0]	PCM TM DAT[0]	PCM INO	无复用	PCM 遥控(PCM_IN)控
TCH_IH_BAT[0]	TOM_IM_DAT[0]	1011_1110		制器 0 的数据信号输入
PCM TM DAT[1]	PCM TM DAT[1]	PCM IN1	无复用	PCM 遥控(PCM_IN)控
I CH_IH_DAT[I]	I CH_IH_DAI[I]	T CH_INI		制器 1 的数据信号输入
UART CTS[2]	PCM TM DAT[2]	PCM IN2	纯输入管脚	PCM 遥控(PCM_IN)控
UART_C15[2]	I CH_IH_DAI[2]	I CH_INZ		制器 2 的数据信号输入

表 3-7 PCM OUT 功能的管脚

表 3-7 PCM_OOT 功能的官脚					
管脚名称	内部信号名称	所属模块	复用控制方 式	描述	可用工作模 式
PCM_TC_GATE[0]	PCM_TC_GATE[0]	PCM_OUT0		PCM 遥测(PCM_OUT) 控制器 0 的片选信号输 入	
PCM_TC_GATE[1]	PCM_TC_GATE[1]	PCM_OUT1		PCM 遥测(PCM_OUT) 控制器 1 的片选信号输 入	
UART_RTS[0]	PCM_TC_GATE[2]			PCM 遥测(PCM_OUT) 控制器 2 的片选信号输 入	
PCM_TC_CLK[0]	PCM_TC_CLK[0]	PCM_OUT0		PCM 遥测(PCM_OUT) 控制器 0 的时钟信号输 入	
PCM_TC_CLK[1]	PCM_TC_CLK[1]	PCM_OUT1		PCM 遥测(PCM_OUT) 控制器 1 的时钟信号输 入	全部
UART_RTS[1]	PCM_TC_CLK[2]		_	PCM 遥测(PCM_OUT) 控制器 2 的时钟信号输 入	
PCM_TC_DAT[0]	PCM_TC_DAT[0]	PCM_OUTO		PCM 遥测(PCM_OUT) 控制器 0 的数据信号输 入	
PCM_TC_DAT[1]	PCM_TC_DAT[1]	PCM_OUT1		PCM 遥测(PCM_OUT) 控制器 1 的数据信号输 入	

			PCI_AD[6]	PCM 遥测(PCM_OUT)	
UART_RTS[2]	PCM_TC_DAT[2]	PCM_OUT2	的上电复位	控制器 2 的数据信号输	
			值	入	

表 3-8 GPIO 功能管脚

管脚名称	内部信号名称	复用控制方式	可用工作模式
GPI0[5:0]	GPI0[5:0]	软件	当自主模式下在
			EMI 接口上使用 ECC
			功能时不可用
GPI0[15:6]	GPI0[15:6]	软件	全部
GPI0[18:16]	GPI0[18:16]	无复用	全部
OC[15:3]	GPI0[31:19]	软件	全部
PCI_AD[15:0]	GPIO[47:32]		仅简易 1553B 终端
			设备模式下可用
PCI_AD[31:16]	GPI0[63:48]		仅简易 1553B 终端
			设备模式下可用

表 3-9 UART 功能管脚

	表 3-9 UART 功能官脚					
管脚名称		所属模 块	复用控制	描述	可用工作模式	
URT_RX[0]	I	UART0		UARTO 的数据输入,和 CAN 的CAN_RX[0]复用管脚		
URT_RX[1]	I	UART1		UART1 的数据输入,和 CAN 的 CAN_RX[1]复用管 脚		
URT_RX[2]	I	UART2	无复用	UART2 的 数 据 输 入,无复用		
URT_RX[3]	I	UART3		UART3 的数据输入,无复用	全部	
URT_RX[4]	I	UART4		UART4 的数据输入,无复用		
URT_RX[5]	I	UART5		UART5 的 数 据 输 入,无复用		
URT_RX[6]	I	UART6		UART6 的 数 据 输 入,无复用		
URT_RX[7]	I	UART7		UART7 的 数 据 输 入,无复用		
URT_TX[0]	0	UART0	PCI_AD[7]	UARTO 的数据输		

			的上电复位	出,和 CAN 的
			值	CAN_TX[0]复用管
				脚
				UART1 的数据输
TIDM MV[1]	0	UART1		出,和 CAN 的
URT_TX[1]	0	UAKII		CAN_TX[1]复用管
				脚
URT TX[2]	0	UART2	无复用	UART2 的数据输
)	OARTZ		出,无复用
URT TX[3]	0	UART3		UART3 的数据输
	0	0711(13		出,无复用
URT TX[4]	0	UART4		UART4 的数据输
		0111(1 1		出,无复用
URT TX[5]	0	UART5		UART5 的数据输
		0111(10		出,无复用
URT TX[6]	0	UART6		UART6 的数据输
				出,无复用
URT TX[7]	0	UART7		UART7 的数据输
				出,无复用
			_	UARTO 的输入允
				许,和 PCM_OUT2
URT_RTS[0]	0	UART0		的
				PCM_TC_GATE[2]
				进行管脚复用
			_	UART1 的输入允
				许,和 PCM_OUT2
URT_RTS[1]	0	UART1		的
				PCM_TC_CLK[2]
				进行管脚复用
			_	UART2 的输入允
				许,和 PCM_OUT2
URT_RTS[2]	0	UART2		的
				PCM_TC_DAT[2]
				进行管脚复用
URT_RTS[3]	0	UART3		UART3 的输入允
				许,无复用
				UARTO 的输出允
URT_CTS[0]	I	UART0		许,和 PCM_IN2 的
				PCM_TM_GATE[2] 北行祭即有用
				进行管脚复用
				UART1 的输出允
URT_CTS[1]	I	UART1		许,和 PCM_IN2 的
				PCM_TM_CLK[2]
				进行管脚复用

URT_CTS[2]	I	UART2	UART2 的输出允许,和 PCM_IN2的 PCM_TM_DAT[2] 进行管脚复用	
URT_CTS[3]	I	UART3	UART3 的输出允 许,无复用	

表 3-10 CAN 功能的管脚

管脚名称	内部信号名 称	管 脚 类型	复用控制	描述	可 用 工 作模式
URT_RX[0]	CAN_RX[0]	I	纯输入管脚	CAN 的数据输入 0	除简易
URT_RX[1]	CAN_RX[1]	I		CAN 的数据输入 1	1553В
URT_TX[0]	CAN_TX[0]	0	PCI_AD[7]	CAN 的数据输出 0	终端设
	CAN_TX[1]		的上电复位		备模式
URT_TX[1]		0	值	CAN 的数据输出 1	
					作模式

表 3-11 ISA 总线接口信号

管脚名称	内部信号名称	方向	说明	可用工作模式	
PCI_AD[15:0]	ISA_DB[15:0]	I/O	双向 16 位数据总线		
PCI_GNTn	ISA_CSn	1	片选信号,低电平有效		
PCI_IDSEL	ISA_RDn	1	读控制信号, 低电平有效	ISA 设备模式	
PCI_DEVSELn	ISA_WRn	1	写控制信号, 低电平有效		
PCI_AD[31:16]	ISA_ADDR[15:0]	I	地址输入信号		

表 3-12 EMI 接口信号

管脚名称	内部信号名称	方向	说明	可用工作模式
PCI_AD[15:0]	EMI_DB[15:0]	I/O	双向 16 位数据总线	
PCI_DEVSELn	ROM_CSn	0	ROM 片选信号,低电平 有效	
PCI_TRDYn	RAM_CSn	0	RAM 片选信号,低电平 有效	
PCI_STOPn	IO_CSn	О	IO 片选信号,低电平有效	自主模式
PCI_FRAMEn	EMI_RDn	0	读控制信号,低电平有 效	日土俣八
PCI_IRDYn	EMI_WRn	0	写控制信号, 低电平有 效	
PCI_AD[31:16]	EMI_ADDR[15:0]	0	地址输出信号	
PCI_CBE[3:0]	EMI_ADDR[19:16]	0	地址输出信号	
GPIO[5:0]	EMI_ECC[5:0]	I/O	ECC 校验信号	

4×4路 有握手 3×2路 3×2路 16 16 42 10 2 ISA PWM *16 PWM *32 PCM_OU T *1 PCM_IN *1 ECC PPC *10 PPC *16 Simple 1553B PCI EINT *6 PCM_IN *2 PCM_OUT *2 UART *4 UART *4 0C *16 0C *32 Smart 1553B PPC *6 EINT*2 GPIO *16

管脚数

图 3-1 管脚复用关系示意

3.3 地址空间分配

龙芯 1F 的地址空间分依工作模式的不同,分为为 CPU(自主模式)、PCI(PCI设备模式)和 ISA(ISA设备模式)3个视角。表 3-13、3-14、3-15分别给出了这3个视角的具体定义。表格中未包含的地址空间均为系统保留,软件错误地访问保留空间将导致不可预知的后果。

CPU 可发生多种访问类型,包括字节(B)、半字(H)、字(W)。每个设备所支持的访问类型有限制,如果超出其范围同样会导致不可预知的后果。

起始地址	大小	模块	说明	访问
0x1fa0,0000	256B	CAN	CAN 控制器	В
0x1fa0,0200	8×8B	UART	8 个串口控制器,每	В
			个占用8字节	
0x1fa0,1000	256B	AD	AD 采集控制器	W
0x1fa0,1200	256B	OC0	0C 门控制模块	W
0x1fa0,1300	256B	OC1	0C 门控制模块	W
0x1fa0,1400	32×16B	PPC	32个脉冲计数器,每	W
			个占用 16 字节	
0x1fa0,1600	$3 \times 32B$	PCM_IN	3 个遥控模块,每个	W
			占用 32 字节	
0x1fa0,1660	32B	GPI0	GPIO 控制器	W
0x1fa0,1680	$4 \times 32B$	PWM	4个PWM控制器,每	W
			个占用 32 字节	
0x1fa0,1700	3×16B	PCM_OUT	3 个遥测模块,每个	W
			占用 16 字节	
0x1fa0,1900	256B	CFG_REG	配置寄存器模块	W
0x1fa0,8000	32KB	SM_15553B	智能 1553B 模块	HW

表 3-13 地址空间分配之 CPU 视角

起始地址	大小	模块	说明	访问
0x1fc0,0000	1MB	ROM	EMI 的只读 ROM 地址	BHW
			空间	
0x1fd0,0000	1MB	10	EMI 的 IO 地址空间	BHW
0x1fe0,0000	2MB	RAM	EMI 的 RAM 地址空间	BHW

龙芯 1F 可以作为 PCI 总线上的设备工作。龙芯 1F 中的字节资源(CAN、 UART)被映射到 PCI 总线的 IO 空间,其余的可访问资源被映射到 PCI 总线的 MEM 空间。龙芯 1F 在 PCI 总线上占用 1KB 的 IO 空间、64KB 的 MEM 空间。 龙芯 1F 只支持 PCI 总线上单数据周期的访问。

偏移地址 大小 地址属性 模块 说明 0x0000,0000 256B 10 CAN 必须进行字节访问 0x0000,0200 64B TO UART 8 个串口必须进行字节 访问 0x0000,0000 不支持字节掩码, 必须 256B MEM AD 进行 32 位访问 不支持字节掩码, 必须 0x0000,0200 256B MEM 0C0 进行 32 位访问 0x0000,0400 256B MEM PPC0 不支持字节掩码, 必须 PPC31 进行 32 位访问 不支持字节掩码, 必须 0x0000,0600 $3 \times 32B$ MEM PCM_INO ∼ PCM IN2 进行 32 位访问 0x0000,0660 GPI0 不支持字节掩码, 必须 32B MEM 进行 32 位访问 不支持字节掩码, 必须 0x0000,0680 $4 \times 32B$ MEM PWM0~PWM3 进行 32 位访问 PCM_OUTO∼ 不支持字节掩码, 必须 0x0000,0700 $3 \times 16B$ MEM PCM_OUT2 进行 32 位访问 0x0000,0900 不支持字节掩码, 必须 256B CFG REG MEM 进行 32 位访问 0x0000,8000 32KB MEM SM 1553B 不支持字节掩码, 必须 进行 32 位访问

表 3-14 地址空间分配之 PCI 视角

龙芯 1F 可以作为 ISA 总线上的设备工作。龙芯 1F 在 ISA 总线上占用 64KB 的空间。

表 3-15 地址空间分配之 ISA 视角

ISA 总线地址	内部总线地址	大小	模块	说明
0 x 0	0x0000	512B	CAN	仅需单次访问, 有效数
0x200	0x0200	128B	UART	据在低8位,ISA地址与
				内部总线地址相同
0x800	0x1000	256B	AD	需要 2 次地址连续的访

0×900	0x1200	256B	0C0	问,将2个16位的half
0xA00	0x1400	256B	PPC0 ∼	word 访问凑成 1 次 32 位
			PPC31	的 word 访问
0xB00	0x1600	3×32B	PCM_INO ∼	ISA地址左移1位后为内
			PCM_IN2	部总线地址
0xB30	0x1660	32B	GPI0	
0xB40	0x1680	4×32B	PWM0~PWM3	
0xB80	0x1700	3×16B	PCM_OUTO∼	
			PCM_OUT2	
0xC80	0x1900	256B	CFG_REG	
0 x 4 0 0 0	0x8000	32KB	SM_1553B	仅需单次访问
				ISA地址左移1位后为内
				部总线地址

3.4 时钟与复位控制

3.4.1 时钟

龙芯 1F 有 2 个由外部输入的工作时钟: PCI 时钟(PCI_CLK)、1553B 总线时钟(RT_CLK)。其中,PCI 时钟作为全芯片的系统时钟也是全芯片频率最高的时钟。它在典型工作环境下(25 摄氏度,IO 和核心的供电电压分别为 3.3V、1.8V)的最高频率为 33.33Mhz;它在最差情况下(125 摄氏度,IO 和核心的供电电压分别为 2.97V、1.62V)的最高频率为 23Mhz。PCI 时钟的最低工作频率不得低于16Mhz。1553B 总线时钟的频率(在全部工作环境下)为 16Mhz。

为了进行功耗管理,龙芯 1F 的主要功能模块的时钟均由门控单元进行控制(内部互连、配置寄存器、GPIO除外)。在龙芯 1F 的功能模块中,接受门控时钟控制时钟信号的模块分为 2 类:一类模块的时钟门控的开关由系统复位时芯片配置管脚(见表 3-1)的上下拉电阻值确定。这类模块有: PCI、简易 1553B、ISA、GS132 处理器核、EMI。另一类模块的时钟门控的开关由配置寄存器模块中可读写的门控寄存器进行控制。这类模块有: AD、OC、PWM、PPC、PCM、UART、CAN、智能 1553B。在龙芯 1F 完成系统复位后,这些寄存器控制门控时钟开关模块的门控时钟缺省为关闭状态。龙芯 1F 的这 2 类受门控时钟控制的模块在门控开启前均处于复位状态。

3.4.2 复位

龙芯 1F 使用外部的 PCI 总线复位信号作为芯片的复位信号。此复位信号为

低电平有效。

龙芯 1F 内部有 3 种复位机制,用户可根据需要进行选择:

模块级复位:只针对一个或一组模块发起,如 AD/OC0/OC1/PPC0~PPC7 等。 只在开启时钟受门控控制的模块的时钟时完成。当把一个模块的门控时钟关闭 时,这个模块的复位信号就处于有效状态。当这个模块的时钟门控被打开时,这 个模块的复位信号在时钟恢复后经过 4 个时钟周期结束复位的有效状态。

系统复位:全系统复位。

软复位:除配置寄存器模块中和芯片启动参数相关的寄存器保持不变外,全 系统复位。

为保证可靠复位, PCI_RSTn 信号上升速率应大于 50mV/ns (20%~80%)。

3.5 芯片控制寄存器

龙芯 1F 有大量的控制寄存器,多数分布于各个功能模块中,本节介绍芯片级的配置寄存器(CFG REG)。

地址偏移	名称	描述
0×00	emi_cfg	EMI 启动参数配置寄存器
0 x 0 4	clock_en	门控控制寄存器
0×08	pin_cfg	芯片状态和管脚复用配置寄存器
0x0c	ppc_int	脉冲计数器的中断状态
0×10	ppc_int_en	脉冲计数器的中断使能
0x1c	ecc_err	EMI 的 ECC 错误信息
0x20	int_en	中断使能
0 x 2 4	int_status	中断状态
0x2c	pcm_in_status	PCM_IN 状态
0x30	pcm_out_status	PCM_OUT 状态
0×34	fifo_in_status	输入 FIFO 状态
0x38	1553B_cfg	1553B 配置参数
0x3c	func_ctr	功能控制和状态寄存器
0 x 4 0	1553B_data	1553B 数据寄存器
0 x 4 4	ext_int_en	扩展中断使能
0 x 4 8	ext_int_status	扩展中断状态
0x4c	ext_int_cfg	扩展中断配置
0×50	ucount_1_0	串口 0、1 的 FIF0 状态
0×54	ucount_3_2	串口 2、3 的 FIFO 状态
0×58	ucount_5_4	串口 4、5 的 FIFO 状态
0x5c	ucount 7 6	串口 6、7 的 FIFO 状态

表 3-16 芯片控制寄存器列表

地址偏移	名称	描述
0 x 6 0	pwm_mask0	PWM 输出掩码寄存器 0
0 x 6 4	pwm_mask1	PWM 输出掩码寄存器 1
0x68	misc_sel0	信号输出源选择寄存器 0
0x6c	misc_sel1	信号输出源选择寄存器 1
0×70	misc_sel2	信号输出源选择寄存器 2
0 x 7 4	misc_sel3	信号输出源选择寄存器 3

3.5.1 EMI 启动参数配置寄存器(emi_cfg)

启动参数配置寄存器提供对 EMI 接口的参数配置和参数读取、CAN 输出/输入管脚的选择,此寄存器可用于提供芯片的软复位。

表 3-17 EMI 启动参数配置寄存器

位域	名称	访问	初值	描述
3:0	speed_10	R/W	1	EMI 接口 ROM 片选对应设备速度
				4'h1:15 个系统时钟(当系统时
				钟为 33.33Mhz 时为 450ns)
				4'h2: 14 个系统时钟
				4'h3:13个系统时钟
				4'h4: 12 个系统时钟
				4'h5: 11 个系统时钟
				4'h6: 10 个系统时钟
				4'h7:9个系统时钟
				4'h8:8个系统时钟
				4'h9:7个系统时钟
				4'ha: 6 个系统时钟
				4' hb: 5 个系统时钟
				4' hc: 4 个系统时钟
				4' hd: 3 个系统时钟
				4' he: 2 个系统时钟
				4'hf:1个系统时钟当系统时钟
				为 33.33Mhz 时为 30ns)
7:4	speed_11	R/W	1	EMI 接口 RAM 片选对应设备速度
				格式与 speed_10 相同
11:8	speed_12	R/W	1	EMI 接口 IO 片选对应设备速度
				格式与 speed_10 相同

位域	名称	访问	初值	描述
14:12	ecc_en	R/W	由 PCI_AD	EMI 的 ECC 功能使能
			[5:3]在系统	由低位到高位分别对应 EMI 的
			复位时的上	ROM、RAM、IO 片选
			下拉电阻值	对应位为 1 则在此位对应的片选
			确定,上拉为	设备上使用 ECC 功能
			1,下拉为0	对应位为 0 则在此位对应的片选
				设备上不使用 ECC 功能
15	Rev	-	0	保留
16	can_sel	R/W	0	CAN 的管脚选择
				0:使用 UARTO 的收发线作为 CAN
				的收发线
				1:使用 UARTO 的收发线作为 CAN
				的收发线
17	soft_rst	R/W	1	写入1产生软复位,读到的值为
				1
18	Rev	-	0	保留
21:19	width	R	由 PCI_AD	EMI 的位宽参数
			[2:0]在系统	由低位到高位分别对应 EMI 的
			复位时的上	ROM、RAM、IO 片选
			下拉电阻值	对应位为1则在此位对应的片选
			确定,上拉为	设备为 16 位
			1,下拉为0	对应位为 0 则在此位对应的片选
				设备为8位设备
31:22	Rev	_	0	保留

3.5.2 门控控制寄存器(clock_en)

门控控制寄存器。

表 3-18 门控控制寄存器

位域	名称	访问	初值	描述
0	pci_en	R	当芯片的	PCI 接口的时钟门控状态
			工作方式	1: PCI 接口时钟门控被打开
			被配置为	0: PCI 接口时钟门控被关闭
			PCI 设备	
			模式时为	
			1, 其它模	
			式下为0	

位域	名称	访问	初值	描述
1	cpu_en	R	当芯片的	GS132 处理器核的时钟门控状态
			工作方式	1: 时钟门控打开
			被配置为	0: 时钟门控关闭
			自主模式	
			时为1,其	
			它模式下	
			为 0	
2	can_en	R/W	0	CAN 控制器的时钟门控寄存器
				1: 时钟门控打开
				0: 时钟门控关闭
3	Rev	_	0	保留
11:4	uart_en	R/W	0	串口控制器的时钟门控寄存器
				从低位到高位分别对应
				UARTO~UART7
				1: 时钟门控打开
				0: 时钟门控关闭
12	ad_en	R/W	0	AD 采集模块的时钟门控寄存器
				1: 时钟门控打开
				0: 时钟门控关闭
14:13	oc_en	R/W	0	OC 的时钟门控寄存器
				从低位到高位分别对应 0C0、0C1
				1: 时钟门控打开
				0: 时钟门控关闭
17:15	pcm_in_en	R/W	0	PCM 遥控的时钟门控寄存器
				从低位到高位分别对应 PCM_INO、
				PCM_IN1、PCM_IN2
				1: 时钟门控打开
				0: 时钟门控关闭
20:18	pcm_out_en	R/W	0	PCM 遥测的时钟门控寄存器
				从低位到高位分别对应 PCM_OUTO、
				PCM_OUT1、PCM_OUT2
				1: 时钟门控打开
				0: 时钟门控关闭
24:21	pwm_en	R/W	0	PWM 的时钟门控寄存器
				从低位到高位分别对应 PWMO、PWM1、
				PWM2、PWM3
				1: 时钟门控打开
				0: 时钟门控关闭
26:25	ppc_en	R/W	0	PPC 的时钟门控寄存器
				低位为 PPC0~PPC7 的时钟门控
				高位为 PPC8~PPC31 的时钟门控
				1: 时钟门控打开
				0: 时钟门控关闭

位域	名称	访问	初值	描述
27	rt_en	R	当芯片的	简易 1553B 终端的时钟门控状态
			工作方式	1: 时钟门控打开
			被配置为	0: 时钟门控关闭
			简 易	
			1553B 终	
			端设备模	
			式时为1,	
			其它模式	
			下为0	
29:28	sm_en	R/W	0	智能 1553B 的时钟门控寄存器
				低位为智能 1553B 中 1553B 时钟的
				门控控制寄存器
				高位为智能 1553B 中系统时钟的门
				控控制寄存器
				1: 时钟门控打开
				0: 时钟门控关闭
31:30	Rev	_	0	保留

3.5.3 芯片状态和管脚复用配置寄存器(pin_cfg)

芯片状态和管脚复用配置寄存器。

表 3-19 芯片状态和管脚复用配置寄存器

位域	名称	访	初值	描述
		问		
0	can_cfg	R/W	由	1:UARTO、UART1 的收发线由 CAN 使
			PCI_AD[7]在	用
			系统复位时	0:UART0、UART1 的收发线由 UART0、
			的上下拉电	UART1 使用
			阻值确定,上	
			拉为1,下拉	
			为 0	
1	pcm_cfg	R/W	由	1:UARTO、UART1 的握手线线由
			PCI_AD[6]在	PCM_IN2、PCM_OUT2 使用
			系统复位时	0:UARTO、UART1 的握手线由 UARTO、
			的上下拉电	UART1 使用
			阻值确定,上	
			拉为1,下拉	
			为 0	

位域	名称	访问	初值	描述
3:2	boot_cfg	R		2' h2:自主模式
4	isa_en	R	当芯片的工作方式被配置为 ISA 总线设备模式时为1,其它模式下为0	ISA 接口的时钟门控状态 1:时钟门控打开 0:时钟门控关闭
5	emi_en	R	当芯片的工作方式被配置为自主模式时为1,其它模式下为0	EMI 接口的时钟门控状态 1:时钟门控打开 0:时钟门控关闭
31:6	Rev	-	0	保留

3.5.4 脉冲计数器的中断状态(ppc_int)

脉冲计数器的中断状态。读此寄存器可以获取 PPC0~31 的中断状态。向相应位写入 1 则可以清除 PPC0~31 的中断使能。

表 3-20 脉冲计数器的中断状态寄存器

位域	名称	访问	初值	描述
0~31	ppc_int[i]	R/W	0	脉冲计数器中断使能清除和中断状态查
				询寄存器
				写1为清对应的脉冲计数器的中断使能

3.5.5 脉冲计数器中断使能寄存器(ppc_int_en)

脉冲计数器的中断使能寄存器。向对应位写入 1 可以打开 PPC0~31 的中断使能。

表 3-21 脉冲计数器的中断使能寄存器

位域	名称	访问	初值	描述
0~31	ppc_int_en[i]	W	0	脉冲计数器中断使能寄存器
				写 1 为打开中断

3.5.6 ECC 错误信息(ecc_err)

EMI 的 ECC 错误信息。可以从此获取 EMI 的 ECC 出错信息。写此寄存器则清除 EMI 的出错信息。

	衣 3-22 EMI 的 EUU 错误信息奇仔品				
位域	名称	访问	初值	描述	
23:0	err_addr	R	0	ECC 出错的物理地址的低 24 位	
25:24	error_code	R	0	ECC 出错的类型	
				2'h0: 无错	
				2'h1:1位可纠正错	
				2'h2:2位不可纠正错	
				2'h3:多位不可纠正错	
30:26	Rev	_	0	保留	
31	ecc_err_cap	R/W	0	读	
				1: 出现 ECC 错误	
				0: 无 ECC 错误	
				写:写入任意值均造成此寄存器清0	

表 3-22 EMI 的 ECC 错误信息寄存器

3.5.7 中断使能(int_en)

用于设置中断使能。向此寄存器的对应位写入1则置对应的功能的中断使能。

位域	名称	访问	初值	描述
0~31	int_en[i]	R/W	0	1: 中断使能打开 0: 中断使能关闭

表 3-23 中断使能寄存器

3.5.8 中断状态(int_status)

中断状态查询和中断使能清除寄存器。读获取中断状态,在对应位写入1则清中断使能寄存器的对应位。

表 3-24 甲肼状态奇存	24 中断状态寄存	器
---------------	-----------	---

位域	名称	访	初值	描述
		问		
7:0	uart_int_en	R/W	0	串口的中断状态
				从低位到高位分别对应 UARTO~7
				的中断状态
				1: 有中断
				0: 无中断

位域	名称	访问	初值	描述
10:8	Pcm_out_frame_done	R/W	0	从低位到高位分别对应PCM_OUTO、PCM_OUT1、PCM_OUT2的frame_done中断状态1:有中断0:无中断
11	pcm_out_ful1	R/W	0	1: PCM_OUTO ² 中至少有 1 个有 FIFO 满的情况 0: PCM_OUTO ² 中无 FIFO 满的情况
14:12	pcm_out_prog	R/W	0	从低位到高位分别对应 PCM_OUTO、PCM_OUT1、PCM_OUT2 的FIF0半空中断状态 1:FIF0半空 0:FIF0未半空
15	Rev	-	0	保留
16	can_bus_off	R/W	0	1: CAN 总线掉线 0: CAN 总线正常
17	Rev	-	0	保留
18	can_int	R/W	0	CAN 的中断状态 1: 有中断 0: 无中断
19	Rev	_	0	保留
20	ad_int	R/W	0	AD 的中断状态 1: 有中断 0: 无中断
21	ecc_err	R/W	0	EMI 的 ECC 中断状态 1: 有中断 0: 无中断
24:22	Rev	-	0	保留
25	pcm_in_empty	R/W	0	1: PCM_INO ² 中至少有 1 个有 FIFO 空的情况 0: PCM_INO ² 的 FIFO 均满的
26	pcm_in_full	R/W	0	1: PCM_INO ² 中至少有 1 个有 FIFO 满的情况 0: PCM_INO ² 中无 FIFO 满的情况
27	pcm_in_prog	R/W	0	1: PCM_INO ² 中至少有 1 个有 FIF0 半满的情况 0: PCM_OUTO ² 的 FIF0 均未到半 满

位域	名称	访	初值	描述
		问		
30:28	pcm_out_empty	R/W	0	从低位到高位分别对应
				PCM_OUTO、PCM_OUT1、PCM_OUT2
				的 FIFO 空中断状态
				1: FIF0 空
				0: FIF0 未空
31	sm_int	R/W	0	智能 1553B 模块的中断状态
				1: 有中断
				0: 无中断

3.5.9 PCM_IN 状态(pcm_in_stasus)

pcm_in_status 用于查询 PCM_IN0~ 2 的状态。

表 3-25 PCM_IN 状态

位域	名称	访问	初值	描述
2:0	empty	R	3' h7	从低位到高位分别对应 PCM_INO、
				PCM_IN1、PCM_IN2 的 FIFO 空状态
				1: FIF0 空
				0: FIFO 未空
5:3	full	R	3' h0	从低位到高位分别对应 PCM_INO、
				PCM_IN1、PCM_IN2 的 FIFO 满状态
				1: FIFO 满
				0: FIFO 未满
8:6	prog	R	3' h0	从低位到高位分别对应 PCM_INO、
				PCM_IN1、PCM_IN2 的 FIFO 半满状态
				1: FIF0 半满
				0: FIF0 未半满
31:9	Rev		0	保留

3.5.10 PCM_OUT 状态(pcm_out_stasus)

pcm_out_status 用于查询 PCM_OUT0~ 2 的状态。

表 3-26 PCM_OUT 状态

位域	名称	访问	初值	描述
2:0	empty	R	3' h7	从低位到高位分别对应 PCM_OUTO、
				PCM_OUT1、PCM_OUT2 的 FIFO 空状态
				1: FIF0 空
				0: FIF0 未空
5 : 3	full	R	3' h0	从低位到高位分别对应 PCM_OUTO、
				PCM_OUT1、PCM_OUT2 的 FIFO 满状态
				1: FIF0 满
				0: FIF0 未满

位域	名称	访问	初值	描述
8:6	prog	R	3' h0	从低位到高位分别对应 PCM_OUTO、
				PCM_OUT1、PCM_OUT2 的 FIFO 半空状态
				1: FIF0 半空
				0: FIF0 未半空
11:9	frame_done	R	0	从低位到高位分别对应 PCM_OUTO、
				PCM_OUT1、PCM_OUT2 的 frame_done 状
				态
				1: frame_done 有效
				0: frame_done 无效
31:12	Rev	_	0	保留

3.5.11 输入 FIFO 状态(fifo_in_status)

提供对 UART、PCM_IN 的输入 FIFO 状态查询

表 3-27 输入 FIFO 状态查询

位域	名称	访问	初值	描述			
				从低位到高位分别对应 PCM_INO、			
2:0	pcm in empty	R	3' h7	PCM_IN1、PCM_IN2 的 FIFO 空状态			
2.0	pcm_rn_empty	K	5 117	1: FIF0 空			
				0: FIFO 未空			
			8' hff	从低位到高位分别对应 UARTO~7			
1.0.2		R		的输入 FIFO 状态			
10:3	uart_in_empty			1: 输入 FIF0 空			
				0: 输入 FIF0 未空			
15:11	Rev	_	0	保留			
31:16	No.	R	2	芯片的版本号,1F01、1F02、1F03			
31:10		1\	2	的版本号分别是: 0、1、2			

3.5.12 1553B 配置参数(1553B_cfg)

提供 1553B 作为 RT 使用时的参数。

表 3-28 1553B 配置参数

位域	名称	访	初值	描述
		问		
4:0	sr_num	R	由	芯片的 1553B 作为 RT 工作时的
			PCI_AD[14:10]	设备号
			在系统复位时	
			的上下拉电阻	
			值确定,上拉为	
			1,下拉为0	

位域	名称	访	初值	描述
		问		
5	rt_mode_sel	R	由 PCI_AD[0]	RT_1553B 的传输模式选择
			在系统复位时	0: 常规
			的上下拉电阻	1: 红外
			值确定,上拉为	
			1, 下拉为0	
6	Rt_tran_sel	R	由 PCI_AD[1]	RT_1553B 的传线选择
			在系统复位时	0: 使用传输线 0
			的上下拉电阻	1: 使用传输线 1
			值确定,上拉为	
			1,下拉为0	
31:7	Rev	_	0	保留

3.5.13 功能控制和状态寄存器(func_ctr)

功能控制和状态寄存器提供对 AD、PCM、PWM、PPC 的工作状态的查询和控制。此寄存器是为芯片的 1553B 简易终端设备模式所设。

表 3-29 功能控制和状态寄存器

位域	名称	访	初值	描述
		问		
0	ad_start	R/W	0	读: 1 为 AD 正在进行数据采集; 0 为
				AD 已经完成数据采集
				写:写入1,则AD按照配置好的参数
				进行新一轮数据采集
2:1	Rev	-	0	保留
4:3	pcm_in0_ctr	R/W	0	PCM_INO 输入配置寄存器,低位用于
				设置数据选通信号高有效或低有效
				(1: 高有效; 0: 低有效), 高位用于
				设置输入时钟上升沿有效或下降(1:
				上升沿; 0: 下降沿)
6:5	pcm_in1_ctr	R/W	0	PCM_IN1 输入配置寄存器,低位用于
				设置数据选通信号高有效或低有效
				(1: 高有效; 0: 低有效), 高位用于
				设置输入时钟上升沿有效或下降(1:
				上升沿;0:下降沿)

位域	名称	访问	初值	描述
8:7	pcm_in2_ctr	R/W	0	PCM_IN2 输入配置寄存器,低位用于设置数据选通信号高有效或低有效(1:高有效;0:低有效),高位用于设置输入时钟上升沿有效或下降(1:上升沿;0:下降沿)
11:9	pcm_out_start	R/W	0	从低位到高位分别对应 PCM_OUTO~2 写入 1,则 PCM_OUT 开始输出新的数据帧
15:12	pwm_cfg	R/W	0	从低位到高位分别对应 PWM0~3 的工作状态 读: 1 表示对应的 PWM 正在输出; 0 表示对应的 PWM 没有进行输出 写: 1,对应的 PWM 按照配置好的参数输出脉冲; 0,对应的 PWM 暂停脉冲输出
23:16	ppc_start	R/W	0	从低位到高位分别对应 PPC0~7 的写: 1,对应的 PPC 按照配置好的参数开始新一轮脉冲计数; 0,对应的 PPC 状态不受影响
31:24	Rev		0	保留

3.5.14 1553B 数据寄存器(1553B_data)

1553B 数据寄存器提供一个 32 位的可读写寄存器。

表 3-30 1553B 数据寄存器

位域	名称	访问	初值	描述
31:0	1553B_data	R/W	0	32 位,可读写

3.5.15 扩展中断使能(ext_int_en)

扩展中断使能在对应位写入1则打开对应的扩展外部中断的使能。

表 3-31 扩展中断使能

位域	名称	访问	初值	描述
7:0	ext_int_en	R/W	0	从低位到高位分别对应外部扩展中断
				0~7的中断使能
				读: 1,中断使能打开; 0,中断使能关
				闭
				写:写入1则置对应位的中断使能;写
				入0则保持原值
31:8	Rev	=	0	保留

3.5.16 扩展中断状态(ext_int_status)

扩展中断状态用于获取外部扩展中断的状态和清楚对应的中断使能。对应位 写入1则清对应的中断使能位

位域 名称 访 初值 描述 问 7:0 R/W从低位到高位分别对应外部扩展中 ext_int_status 0 断 0~7 的中断状态 读: 1, 有中断; 0, 无中断 写:写入1则清对应位的中断使能; 写入0则不发生变化 保留 31: 8 Rev

表 3-32 扩展中断状态寄存器

3.5.17 扩展中断配置(ext_int_cfg)

扩展中断配置寄存器用于配置触发外部扩展中断的条件。

	No so was the state of the stat			
位域	名称	访问	初值	描述
7:0	int_pol	R/W	0	从低位到高位分别对应外部扩展中断
				0~7
				当对应的 int_level 为 1 时:
				0表示低电平触发中断,1表示高电平触
				发中断
				当对应的 int_level 为 0 时:
				0表示下降沿触发中断,1表示上升沿触
				发中断
15:8	Int_level	R/W	0	从低位到高位分别对应外部扩展中断
				0~7
				1: 电平触发
				0: 脉冲触发
31: 16	Rev	_	0	保留

表 3-33 扩展中断配置寄存器

3.5.18 串口 0、1 的 FIFO 状态(ucount_1_0)

ucount_1_0 提供对 UARTO、1 的 FIFO 容量的查询。

表 3-34 串口 0、1 的 FIFO 状态

位域	名称	访	初值	描述
		问		
7:0	Uart0_rf_count	R	0	UARTO 接收 FIFO 中的数据数量
15:8	Uart0_tf_count	R	0	UARTO 发送 FIFO 中的数据数量
23:16	Uart1_rf_count	R	0	UART1 接收 FIFO 中的数据数量
31:24	Uart1_tf_count	R	0	UART1 发送 FIFO 中的数据数量

3.5.19 串口 2、3 的 FIFO 状态(ucount_3_2)

ucount 3 2 提供对 UART2、3 的 FIFO 容量的查询。

表 3-35 串口 2、3 的 FIFO 状态

位域	名称	访	初值	描述
		问		
7:0	Uart2_rf_count	R	0	UART2 接收 FIFO 中的数据数量
15:8	Uart2_tf_count	R	0	UART2 发送 FIFO 中的数据数量
23:16	Uart3_rf_count	R	0	UART3 接收 FIFO 中的数据数量
31:24	Uart3_tf_count	R	0	UART3 发送 FIFO 中的数据数量

3.5.20 串口 4、5 的 FIFO 状态(ucount_5_4)

ucount_5_4 提供对 UART4、5 的 FIFO 容量的查询。

表 3-36 串口 4、5 的 FIFO 状态

位域	名称	访	初值	描述
		问		
7:0	Uart4_rf_count	R	0	UART4 接收 FIFO 中的数据数量
15:8	Uart4_tf_count	R	0	UART4 发送 FIFO 中的数据数量
23:16	Uart5_rf_count	R	0	UART5 接收 FIFO 中的数据数量
31:24	Uart5_tf_count	R	0	UART5 发送 FIFO 中的数据数量

3.5.21 串口 6、7 的 FIFO 状态(ucount_7_6)

ucount_7_6 提供对 UART6、7 的 FIFO 容量的查询。

表 3-37 串口 6、7 的 FIFO 状态

位域	名称	访	初值	描述
		问		
7:0	Uart6_rf_count	R	0	UART6 接收 FIFO 中的数据数量
15:8	Uart6_tf_count	R	0	UART6 发送 FIFO 中的数据数量
23:16	Uart7_rf_count	R	0	UART7 接收 FIFO 中的数据数量
31:24	Uart7_tf_count	R	0	UART7 发送 FIFO 中的数据数量

3.5.22 PWM 输出掩码寄存器 0 (pwm_mask0)

PWM 输出掩码寄存器 0 提供对 PWM 输出线 0~31 进行选择的配置。

表 3-38 PWM 输出掩码寄存器 0

位域	名称	访问	初值	描述
31:0	pwm_mask	R/W	0	控制 PWM 在背选的 PWM[31:0]的哪些线
				上进行输出。对应位为1表示允许输出;
				对应位为0表示禁止输出

3.5.23 PWM 输出掩码寄存器 1(pwm_mask1)

PWM 输出掩码寄存器 1 提供对 PWM 输出线 32~63 进行选择的配置。

表 3-39 PWM 输出掩码寄存器 1

位域	名称	访问	初值	描述
31:0	pwm_mask	R/W	0	控制 PWM 在背选的 PWM[63:32]的哪些线
				上进行输出。对应位为1表示允许输出;
				对应位为0表示禁止输出

3.5.24 信号输出源选择寄存器 0 (misc_sel0)

misc_sel0 提供 OC[15:0]、PWM[15:0]、GPIO[31:19]间的管脚复用配置。 表 3-40 信号输出源选择 0

衣 3-40 信亏制 正				
位域	访问	初值	描述	
1:0	R/W	0	OC[0]的输出源选择	
			2' h0: OC[0]	
			2' h2: PWM[0]	
			2'h3:输入	
3:2	R/W	0	OC[1]的输出源选择	
			2' h0: OC[1]	
			2' h2: PWM[1]	
			2'h3:输入	
5:4	R/W	0	OC[2]的输出源选择	
			2' h0: OC[2]	
			2' h2: PWM[2]	
			2'h3:输入	
7:6	R/W	0	OC[3]的输出源选择	
			2' h0: OC[3]	
			2' h1: GPIO[19]	
			2' h2: PWM[3]	
			2'h3:输入	
9:8	R/W	0	OC[4]的输出源选择	
			2' h0: OC[4]	
			2' h1: GPIO[20]	
			2' h2: PWM[4]	
			2'h3:输入	
11:10	R/W	0	OC[5]的输出源选择	
			2' h0: OC[5]	
			2' h1: GPIO[21]	
			2' h2: PWM[5]	
			2'h3:输入	
13:12	R/W	0	OC[6]的输出源选择	
			2' h0: OC[6]	
			2' h1: GPIO[22]	
			2' h2: PWM[6]	
			2'h3:输入	

位域	访问	初值	描述
15:14	R/W	0	OC[7]的输出源选择
			2' h0: OC[7]
			2' h1: GPIO[23]
			2' h2: PWM[7]
			2'h3:输入
17:16	R/W	0	OC[8]的输出源选择
			2' h0: OC[8]
			2' h1: GPIO[24]
			2' h2: PWM[8]
			2'h3:输入
19:18	R/W	0	OC[9]的输出源选择
			2' h0: OC[9]
			2' h1: GPIO[25]
			2' h2: PWM[9]
			2'h3:输入
21:20	R/W	0	OC[10]的输出源选择
			2' h0: OC[10]
			2' h1: GPIO[26]
			2' h2: PWM[10]
			2'h3:输入
23:22	R/W	0	OC[11]的输出源选择
			2' h0: 0C[11]
			2' h1: GPIO[27]
			2' h2: PWM[11]
			2'h3:输入
25:24	R/W	0	OC[12]的输出源选择
			2' h0: 0C[12]
			2' h1: GPIO[28]
			2' h2: PWM[12]
	D /		2' h3: 输入
27:26	R/W	0	00[13]的输出源选择
			2' h0: OC[13]
			2' h1: GPIO[29]
			2' h2: PWM[13]
20.00	D /W	0	2' h3: 输入
29:28	R/W	0	00[14]的输出源选择
			2' h0: 0C[14]
			2' h1: GPI0[30]
			2' h2: PWM[14]
			2'h3:输入

位域	访问	初值	描述
31:30	R/W	0	OC[15]的输出源选择
			2' h0: OC[15]
			2' h1: GPIO[31]
			2' h2: PWM[15]
			2'h3:输入

3.5.25 信号输出源选择寄存器 1 (misc_sel1)

misc_sel1 提供 GPIO[15:0]、PWM[31:16]、OC[31:16]间的管脚复用配置。

表 3-41 信号输出源选择 1

	表 3-41 信亏制					
位域	访问	初值	描述			
1:0	R/W	0	GPI0[0]的输出源选择			
			2' h0: OC[16]			
			2' h1: GPIO[0]			
			2' h2: PWM[16]			
			2'h3:输入			
3:2	R/W	0	GPI0[1]的输出源选择			
			2' h0: OC[17]			
			2' h1: GPIO[1]			
			2' h2: PWM[17]			
			2'h3:输入			
5:4	R/W	0	GPI0[2]的输出源选择			
			2' h0: OC[18]			
			2' h1: GPIO[2]			
			2' h2: PWM[18]			
			2'h3:输入			
7:6	R/W	0	GPI0[3]的输出源选择			
			2' h0: OC[19]			
			2' h1: GPIO[3]			
			2' h2: PWM[19]			
			2'h3:输入			
9:8	R/W	0	GPI0[4]的输出源选择			
			2' h0: OC[20]			
			2' h1: GPIO[4]			
			2' h2: PWM[20]			
			2'h3:输入			
11:10	R/W	0	GPI0[5]的输出源选择			
			2' h0: OC[21]			
			2' h1: GPIO[5]			
			2' h2: PWM[21]			
			2'h3:输入			

位域	访问	初值	描述
13:12	R/W	0	GPI0[6]的输出源选择
			2' h0: OC[22]
			2' h1: GPIO[6]
			2' h2: PWM[22]
			2'h3:输入
15:14	R/W	0	GPI0[7]的输出源选择
			2' h0: OC[23]
			2' h1: GPIO[7]
			2' h2: PWM[23]
			2'h3:输入
17:16	R/W	0	GPI0[8]的输出源选择
			2' h0: OC[24]
			2' h1: GPIO[8]
			2' h2: PWM[24]
			2'h3:输入
19:18	R/W	0	GPI0[9]的输出源选择
			2' h0: OC[25]
			2' h1: GPIO[9]
			2' h2: PWM[25]
			2'h3:输入
21:20	R/W	0	GPI0[10]的输出源选择
			2' h0: 0C[26]
			2' h1: GPIO[10]
			2' h2: PWM[26]
			2'h3:输入
23:22	R/W	0	GPI0[11]的输出源选择
			2' h0: OC[27]
			2' h1: GPIO[11]
			2' h2: PWM[27]
			2' h3: 输入
25:24	R/W	0	GPI0[12]的输出源选择
			2' h0: OC[28]
			2' h1: GPIO[12]
			2' h2: PWM[28]
			2' h3: 输入
27:26	R/W	0	GPI0[13]的输出源选择
			2' h0: 0C[29]
			2' h1: GPIO[13]
			2' h2: PWM[29]
			2'h3:输入

位域	访问	初值	描述
29:28	R/W	0	GPI0[14]的输出源选择
			2' h0: OC[30]
			2' h1: GPIO[14]
			2' h2: PWM[30]
			2'h3:输入
31:30	R/W	0	GPI0[15]的输出源选择
			2' h0: OC[31]
			2' h1: GPIO[15]
			2' h2: PWM[31]
			2'h3:输入

3.5.26 信号输出源选择寄存器 2(misc_sel2)

misc_sel2 提供在简易 1553B 终端设备模式下 PCI_AD[15:0]的信号输出源在 GPIO[47:32]、PWM[47:32]、OC[47:32]间的管脚复用配置。

表 3-42 信号输出源选择 2

冷村			
位域	访问	初值	描述
1:0	R/W	0	PCI_AD[0]
			2' h0: OC[32]
			2' h1: GPIO[32]
			2' h2: PWM[32]
			2' h3: 输入
3:2	R/W	0	PCI_AD[1]
			2' h0: OC[33]
			2' h1: GPIO[33]
			2' h2: PWM[33]
			2'h3:输入
5:4	R/W	0	PCI_AD[2]
			2' h0: OC[34]
			2' h1: GPIO[34]
			2' h2: PWM[34]
			2'h3:输入
7:6	R/W	0	PCI_AD[3]
			2' h0: OC[35]
			2' h1: GPIO[35]
			2' h2: PWM[35]
			2'h3:输入
9:8	R/W	0	PCI_AD[4]
			2' h0: OC[36]
			2' h1: GPIO[36]
			2' h2: PWM[36]
			2'h3:输入

位域	访问	初值	描述
11:10	R/W	0	PCI_AD[5]
			2' h0: OC[37]
			2' h1: GPIO[37]
			2' h2: PWM[37]
			2'h3:输入
13:12	R/W	0	PCI_AD[6]
			2' h0: OC[38]
			2' h1: GPIO[38]
			2' h2: PWM[38]
			2'h3:输入
15:14	R/W	0	PCI_AD[7]
			2' h0: OC[39]
			2' h1: GPIO[39]
			2' h2: PWM[39]
			2'h3:输入
17:16	R/W	0	PCI_AD[8]
			2' h0: OC[40]
			2' h1: GPIO[40]
			2' h2: PWM[40]
			2'h3:输入
19:18	R/W	0	PCI_AD[9]
			2' h0: OC[41]
			2' h1: GPIO[41]
			2' h2: PWM[41]
			2'h3:输入
21:20	R/W	0	PCI_AD[10]
			2' h0: OC[42]
			2' h1: GPIO[42]
			2' h2: PWM[42]
			2'h3:输入
23:22	R/W	0	PCI_AD[11]
			2' h0: OC[43]
			2' h1: GPIO[43]
			2' h2: PWM[43]
			2'h3:输入
25:24	R/W	0	PCI_AD[12]
			2' h0: OC[44]
			2' h1: GPIO[44]
			2' h2: PWM[44]
			2'h3:输入

位域	访问	初值	描述
27:26	R/W	0	PCI_AD[13]
			2' h0: OC[45]
			2' h1: GPIO[45]
			2' h2: PWM[45]
			2'h3:输入
29:28	R/W	0	PCI_AD[14]
			2' h0: OC[46]
			2' h1: GPIO[46]
			2' h2: PWM[46]
			2'h3:输入
31:30	R/W	0	PCI_AD[15]
			2' h0: 0C[47]
			2' h1: GPIO[47]
			2' h2: PWM[47]
			2' h3: 输入

3.5.27 信号输出源选择寄存器 3(misc_sel3)

misc_sel3 提供在简易 1553B 终端设备模式下 PCI_AD[31:16]的信号输出源在 GPIO[63:48]、PWM[63:48]、OC[63:48]间的管脚复用配置。

位域 访问 初值 描述 R/WPCI_AD[16] 1:0 2' h0: OC[48] 2' h1: GPIO[48] 2' h2: PWM[48] 2'h3:输入 3:2 R/W PCI_AD[17] 2' h0: 0C[49] 2' h1: GPIO[49] 2' h2: PWM[49] 2' h3: 输入 R/WPCI_AD[18] 5:4 2' h0: OC[50] 2' h1: GPIO[50] 2' h2: PWM[50] 2' h3: 输入

表 3-43 信号输出源选择 3

位域	访问	初值	描述
7:6	R/W	0	PCI_AD[19]
			2' h0: OC[51]
			2' h1: GPIO[51]
			2' h2: PWM[51]
			2'h3:输入
9:8	R/W	0	PCI_AD[20]
			2' h0: OC[52]
			2' h1: GPIO[52]
			2' h2: PWM[52]
			2'h3:输入
11:10	R/W	0	PCI_AD[21]
			2' h0: OC[53]
			2' h1: GPIO[53]
			2' h2: PWM[53]
			2'h3:输入
13:12	R/W	0	PCI_AD[22]
			2' h0: OC[54]
			2' h1: GPIO[54]
			2' h2: PWM[54]
			2'h3:输入
15:14	R/W	0	PCI_AD[23]
			2' h0: 0C[55]
			2' h1: GPIO[55]
			2' h2: PWM[55]
			2'h3:输入
17:16	R/W	0	PCI_AD[24]
			2' h0: 0C[56]
			2' h1: GPI0[56]
			2' h2: PWM[56]
			2'h3:输入
19:18	R/W	0	PCI_AD[25]
			2' h0: OC[57]
			2' h1: GPIO[57]
			2' h2: PWM[57]
			2'h3:输入
21:20	R/W	0	PCI_AD[26]
			2' h0: OC[58]
			2' h1: GPI0[58]
			2' h2: PWM[58]
			2'h3:输入

位域	访问	初值	描述			
23:22	R/W	0	PCI_AD[27]			
			2' h0: OC[59]			
			2' h1: GPIO[59]			
			2' h2: PWM[59]			
			2'h3:输入			
25:24	R/W	0	PCI_AD[28]			
			2' h0: OC[60]			
			2' h1: GPIO[60]			
			2' h2: PWM[60]			
			2'h3:输入			
27:26	R/W	0	PCI_AD[29]			
			2' h0: OC[61]			
			2' h1: GPIO[61]			
			2' h2: PWM[61]			
			2'h3:输入			
29:28	R/W	0	PCI_AD[30]			
			2' h0: OC[62]			
			2' h1: GPIO[62]			
			2' h2: PWM[62]			
			2'h3:输入			
31:30	R/W	0	PCI_AD[31]			
			2' h0: OC[63]			
			2' h1: GPIO[63]			
			2' h2: PWM[63]			
			2'h3:输入			

3.6 中断

龙芯 1F 有 1 个独立的中断输出 PCI_INTn 和 8 个与 PPC0~7 进行复用的扩展中断输入。龙芯 1F 的输出中断为典型的 PCI 总线中断(低电平有效的电平中断)。龙芯 1F 的扩展中断输入可以由软件(参见 3.5.17 节)配为脉冲(上升沿、下降沿触发可选)、电平(高低电平可选)。

龙芯 1F 内部有 3 对中断 int_en、int_status。当这 3 对中断控制寄存器的任意对 int_en、int_status 按位与的值为非 0 时,龙芯 1F 的中断输出 PCI_INTn 将变为低电平。这 3 对中断控制寄存器分别用于处理除脉冲计数器外的内部模块中断(参见 3.5.7、3.5.8 节)、PPC0~31 的中断(参见 3.5.4、3.5.5 节)、外部扩展中断(参见 3.5.15、3.5.16 节)。向 int_en 的对应位写入 1 会打开其对应的中断使能,向 int_status 的对应位写入 1 则关闭其对应的中断使能。除了外部扩展中断对应

的 int_status 外,其它 2 个 int_status 在对应中断关闭的情况下仍然可以读到 int_status 对应的中断信号的值。外部扩展中断在 int_status 的对应位为 0。

4 电气特性

4.1 极限工作参数

表 4-1 龙芯 1F 的极限工作参数

参数	符号	数值			单位	说明
		最小值	典型值	最大值		
内核电压	VDD18	-0.5		2.5	V	
IO 电压	VDD33	-0.5		4.0	V	
输入电压	VI	-0.5		6	V	
输出电压	VO	-0.5		4.0	V	
存储温度	Ts	-65		150	$^{\circ}$ C	
工作环境	Та	-40		125	°C	
温度						
ESD 保护	Vesd			2000	V	HBM 模型

注意: 表 4-1 中的值为设计预定值,需要测试摸底确定准确的值。超出极限工作范围会对器件导致永久的损坏。长时间工作在极限范围会影响器件的可靠性,并可能导致不可逆的损坏。工作环境温度是指芯片的壳温。

4.2 推荐工作参数

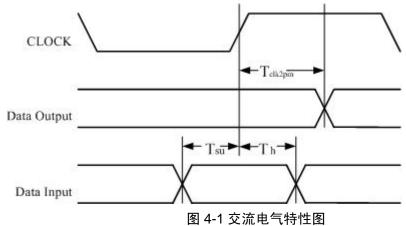

4.2.1 直流电气特性

表 4-2 直流电气特性

参数	符号	数值			单位	说明
		最小值	典型值	最大值		
内核电压	VDD18	1.62	1.8	1.98	V	
IO 电压	VDD33	2.97	3.3	3.63	V	
IO 输入低电平		-0.3		0.5	V	
IO 输入高电平		2.4		3.63	V	
输入漏电流			+/-10nA	+/-1uA		
输出漏电流			+/-10nA	+/-1uA		
高低电平门限	VT	1.45	1.58	1.74	V	
输出低电平				0.4	V	8mA 负载
输出高电平		2.4			V	8mA 负载

4.2.2 交流电气特性

说明: 1) 输出延迟是从时钟输入管脚到信号输出管脚的总延迟。

2)输出延迟的三个值分别是最好、典型、最坏三种工作条件下的最大延迟。

3) 输入保持时间的正值表示信号输入需要进行延迟补偿。

表 4-3 PCI 接口时序

时序	最小	典型	最大	单位
输出延迟(clk2pin)	-	18.95	20.95	ns
输入建立时间(Tsu)	-	6.27	10.27	ns
输入保持时间(Th)	-	0.03	0.03	ns

表 4-4 1553B 接口时序

	* =	*****	• •	
时序	最小	典型	最大	单位
输出延迟(clk2pin)	-	28.125	28.125	ns
输入建立时间(Tsu)	-	28.125	28.125	ns
输入保持时间(Th)	-	0	0	ns

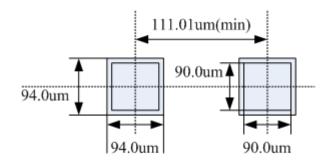
表 4-5 JTAG 接口时序

时序	最小	典型	最大	单位
输出延迟(clk2pin)	-	31.27	31.27	ns
输入建立时间(Tsu)	-	20.4525	20.4525	ns
输入保持时间 (Th)	-	4	4	ns

	K 10 X B II 3 11 11						
时序	最小	典型	最大	单位			
输出延迟(clk2pin)	-	30	30	ns			
输入建立时间(Tsu)	-	30	30	ns			
输入保持时间(Th)	-	0	0	ns			

表 4-6 其它信号时序

PCI 接口的管脚仅在 PCI 设备模式时才使用表 4-3 中的参数。在龙芯 1F 的其它工作模式下, PCI 接口的信号使用表 4-6 中的参数。


4.3 功耗特性

龙芯 1F 在环境温度为 125 摄氏度、系统时钟频率为 33.33Mhz 的情况下功耗不超过 2W。

4.4 抗辐射特性

- a) 抗总剂量不小于 1×10³Gy(Si)。
- b) 单粒子锁定 (SEL) 阈值: 不小于 75MeV·cm²/mg;
- c)单粒子翻转(SEU)阈值:不小于 37MeV $^{\circ}$ cm 2 /mg 或 IGSO 轨道翻转率小于 10^{-10} 次/位天

4.5 封装信息

PAD Size and Pad Pitch 图 4-2 PAD 尺寸

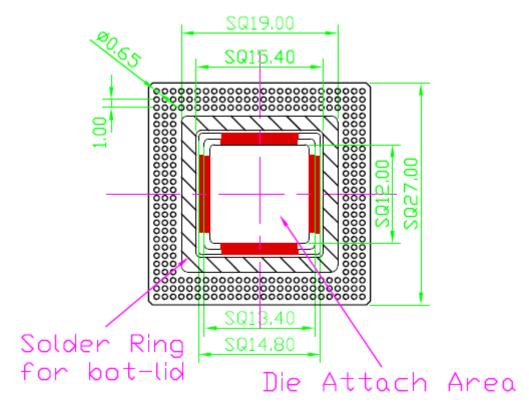


图 4-3 CBGA276 封装底视图

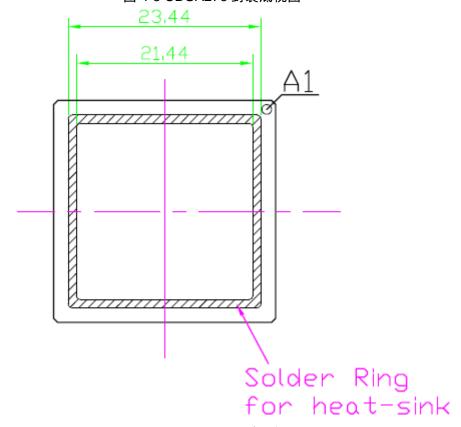
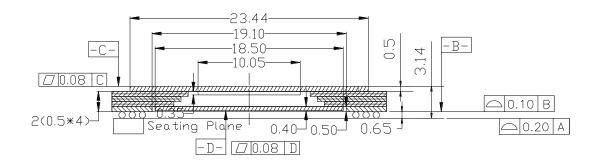



图 4-4 CBGA276 封装顶视图

图 4-5 CBGA276 封装侧视图

龙芯 1F 采用了 276 个管脚的 CBGA 封装, 封装的尺寸为 27.0mm x 27.0mm。

表 4-7 封装延迟

	<u> </u>		
PAD 名称	偏差范围(+/-)	延迟(ps)	Skew(ps)
BGA. AC25	30ps	59. 024344	-9.876422
BGA. AC26	30ps	69. 929832	1. 029066
BGA. AB25	30ps	62. 283447	-6. 617319
BGA. AB26	30ps	67. 765784	-1.134982
BGA. AA25	30ps	59. 890268	-9. 010498
BGA. AA26	30ps	63. 259232	-5. 641534
BGA. Y25	30ps	59. 270253	-9. 630513
BGA. Y26	30ps	62. 614322	-6. 286444
BGA. W25	30ps	57. 916096	-10. 98467
BGA. W26	30ps	62. 804096	-6. 09667
BGA. V25	30ps	54. 402426	-14. 49834
BGA. V26	30ps	60. 625172	-8. 275594
BGA. U25	30ps	54. 793409	-14. 107357
BGA. U26	30ps	57. 753802	-11. 146964
BGA. T25	30ps	54. 00583	-14. 894936
BGA. T26	30ps	55. 970215	-12. 930551
BGA. R25	30ps	53. 840473	-15. 060293
BGA. R26	30ps	53. 062493	-15. 838273
BGA. T26 BGA. R25	30ps 30ps	55. 970215 53. 840473 53. 062493	-12. 930 -15. 060

BGA. P25	30ps	55. 051902	-13. 848864
BGA. P26	30ps	55. 622179	-13. 278587
BGA. N25	30ps	53. 882546	-15. 01822
BGA. N26	30ps	59. 646235	-9. 254531
BGA. M25	30ps	54. 574665	-14. 326101
BGA. M26	30ps	54. 257165	-14. 643601
BGA. L25	30ps	61. 1951	-7. 705666
BGA. AD25	30ps	63. 536249	-5. 364517
BGA. AE19	30ps	55. 272223	-13. 628543
BGA. AF20	30ps	68. 900766	0
BGA. AF3	30ps	70. 531731	1. 630965
BGA. AE3	30ps	68. 295901	-0.604865
BGA. AF4	30ps	65. 76449	-3. 136276
BGA. AE4	30ps	67. 293096	-1.60767
BGA. AF5	30ps	68. 856726	-0.04404
BGA. AE5	30ps	62. 943443	-5. 957323
BGA. AF6	30ps	64. 778717	-4. 122049
BGA. AE6	30ps	61. 875873	-7. 024893
BGA. AF7	30ps	65. 245872	-3. 654894
BGA. AE7	30ps	61. 366984	-7. 533782
BGA. AF8	30ps	59. 456229	-9. 444537
BGA. AE8	30ps	59. 705008	-9. 195758
BGA. AF9	30ps	58. 038935	-10.861831
BGA. AE9	30ps	63. 041453	-5. 859313
BGA. AF10	30ps	60. 553255	-8. 347511
BGA. AE10	30ps	58. 49806	-10. 402706
BGA. AF11	30ps	56. 727153	-12. 173613
BGA. AE11	30ps	58. 727806	-10. 17296
BGA. AF12	30ps	55. 162289	-13. 738477
BGA. AE12	30ps	57. 431176	-11. 46959
BGA. AF13	30ps	55. 874064	-13. 026702
BGA. AE13	30ps	58. 216681	-10. 684085
BGA. AF14	30ps	56. 565296	-12. 33547
BGA. AE14	30ps	60. 670007	-8. 230759
BGA. AF15	30ps	58. 511111	-10. 389655
BGA. AE15	30ps	54. 064379	-14. 836387
BGA. AF16	30ps	55. 15985	-13. 740916
BGA. AE16	30ps	55. 724924	-13. 175842
BGA. AF17	30ps	57. 209011	-11. 691755
BGA. AE17	30ps	54. 989933	-13. 910833
BGA. AF18	30ps	61. 205989	-7. 694777
BGA. AE18	30ps	62. 931884	-5. 968882
BGA. AE24	30ps	65. 681914	-3. 218852

BGA. AD26	30ps	71. 923733	3. 022967
BGA. AF19	30ps	63. 01143	-5.889336
BGA. AF21	30ps	64. 416077	-4. 484689
BGA. AF24	30ps	72. 188671	3. 287905
BGA. AE21	30ps	59. 426014	-9. 474752
BGA. AE20	30ps	58. 596574	-10. 304192
BGA. AF22	30ps	68. 792297	-0. 108469
BGA. K26		53. 409966	
BGA. K25		48. 875163	
BGA. J25		52. 56334	
BGA. J26		58. 485811	
BGA. H25		55. 692292	
BGA. H26		61. 888959	
BGA. G25		58. 881102	
BGA. G26		62. 776568	
BGA. F25		59. 829215	
BGA. F26		65. 725814	
BGA. E25		65. 209932	
BGA. E26		68. 892038	
BGA. D25		68. 281979	
BGA. D26		67. 84721	
BGA. C25		70. 002008	
BGA. C26		73. 146527	
BGA. A19	50ps	60. 720256	
BGA. B18	50ps	52. 101618	
BGA. B21		54. 097457	
BGA. A22		66. 703954	
BGA. A21		62. 093547	
BGA. B20		61. 90205	
BGA. A20		66. 398047	
BGA. B19		57. 481872	
BGA. B23		62. 723113	
BGA. A24		71. 513099	
BGA. B24		64. 984131	
BGA. F2	50ps	60. 863072	-0. 915047
BGA. H1	50ps	58. 547448	-3. 230671
BGA. G2	50ps	58. 100242	-3. 677877
BGA. J1	50ps	56. 230375	-5. 547744
BGA. H2	50ps	56. 690061	-5. 088058
BGA. K1	50ps	53. 370097	-8. 408022
BGA. J2	50ps	57. 730699	-4. 04742
BGA. L1	50ps	52. 177259	-9. 60086
BGA. K2	50ps	52. 255781	-9. 522338

BGA. M1	50ps	53. 285237	-8. 492882
BGA. M2	50ps	62. 513506	0. 735387
BGA. N1	50ps	57. 315935	-4. 462184
BGA. R1	50ps	53. 23975	-8. 538369
BGA. R2	50ps	52. 201758	-9. 576361
BGA. T1	50ps	54. 479707	-7. 298412
BGA. T2	50ps	52. 237343	-9. 540776
BGA. U1	50ps	55. 850917	-5. 927202
BGA. U2	50ps	52. 52086	-9. 257259
BGA. V1	50ps	59. 089598	-2. 688521
BGA. V2	50ps	53. 75913	-8. 018989
BGA. W1	50ps	61. 016696	-0. 761423
BGA. W2	50ps	51. 875865	-9. 902254
BGA. Y1	50ps	65. 287016	3. 508897
BGA. Y2	50ps	59. 524791	-2. 253328
BGA. AA2	50ps	61. 83811	0. 059991
BGA. AB1	50ps	64. 980437	3. 202318
BGA. AA1	50ps	63. 447275	1. 669156
BGA. AB2	50ps	61. 237526	-0. 540593
BGA. AC1	50ps	68. 869327	7. 091208
BGA. AC2	50ps	65. 538473	3. 760354
BGA. AD1	50ps	71. 357005	9. 578886
BGA. AD2	50ps	66. 628455	4. 850336
BGA. B7	50ps	64. 579903	2. 801784
BGA. A7	50ps	63. 571801	1. 793682
BGA. B6	50ps	61.804268	0. 026149
BGA. A6	50ps	64. 417681	2. 639562
BGA. N2	50ps	53. 490908	-8. 287211
BGA. A9	50ps	59. 896903	-1.881216
BGA. A8	50ps	61. 778119	0
BGA. D2	50ps	65. 3688	3. 590681
BGA. E1	50ps	64. 444302	2. 666183
BGA. E2	50ps	64. 546954	2. 768835
BGA. F1	50ps	61. 34354	-0. 434579
BGA. B3	50ps	69. 140155	7. 362036
BGA. A3	50ps	71. 188919	9. 4108
BGA. C2	50ps	68. 574219	6. 7961
BGA. C1	50ps	72. 211711	10. 433592
BGA. B8	50ps	59. 439179	-2. 33894
BGA. B10	50ps	54. 345594	-7. 432525
BGA. A11	50ps	54. 799186	-6. 978933
BGA. B5	50ps	63. 803099	2. 02498
BGA. A5	50ps	66. 742409	4. 96429

BGA. B4	50ps	68. 695376	6. 917257
BGA. A4	50ps	66. 818619	5. 0405
BGA. A12	50ps	52. 9022	-8.875919
BGA. B11	50ps	50. 324728	-11. 453391
BGA. A10	50ps	56. 571155	-5. 206964
BGA. B9	50ps	58. 491037	-3. 287082
BGA. A18		58. 67601	
BGA. B16		45. 973137	
BGA. B17		47. 266049	
BGA. A17		56. 67501	
BGA. B22		57. 8584	
BGA. A23		70. 003572	
BGA. AE23		68. 146508	
BGA. AE22		66. 052322	
BGA. AF23		68. 400621	
BGA. A13		52. 535743	
BGA. B12		46. 096036	
BGA. P1		50. 961692	
BGA. P2		45. 338626	
BGA. B13		45. 271794	
BGA. A14		50. 068975	
BGA. L26		54. 812162	
BGA. A16		53. 965022	
BGA. A15		51. 04071	
BGA. B15		43. 868009	
BGA. B14		44. 680208	
BGA. G1		59. 568207	
BGA. D1		68. 334154	
BGA. L2		49. 254803	