"""
This module containts helper functions to load data and get meta deta.
"""
import os
import shutil
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import FunctionTransformer
import dice_ml
[docs]def load_adult_income_dataset(only_train=True):
"""Loads adult income dataset from https://archive.ics.uci.edu/ml/datasets/Adult and prepares
the data for data analysis based on https://rpubs.com/H_Zhu/235617
:return adult_data: returns preprocessed adult income dataset.
"""
raw_data = np.genfromtxt('https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data',
delimiter=', ', dtype=str, invalid_raise=False)
# column names from "https://archive.ics.uci.edu/ml/datasets/Adult"
column_names = ['age', 'workclass', 'fnlwgt', 'education', 'educational-num', 'marital-status', 'occupation',
'relationship', 'race', 'gender', 'capital-gain', 'capital-loss', 'hours-per-week', 'native-country',
'income']
adult_data = pd.DataFrame(raw_data, columns=column_names)
# For more details on how the below transformations are made, please refer to https://rpubs.com/H_Zhu/235617
adult_data = adult_data.astype({"age": np.int64, "educational-num": np.int64, "hours-per-week": np.int64})
adult_data = adult_data.replace({'workclass': {'Without-pay': 'Other/Unknown', 'Never-worked': 'Other/Unknown'}})
adult_data = adult_data.replace({'workclass': {'Federal-gov': 'Government', 'State-gov': 'Government',
'Local-gov': 'Government'}})
adult_data = adult_data.replace({'workclass': {'Self-emp-not-inc': 'Self-Employed', 'Self-emp-inc': 'Self-Employed'}})
adult_data = adult_data.replace({'workclass': {'Never-worked': 'Self-Employed', 'Without-pay': 'Self-Employed'}})
adult_data = adult_data.replace({'workclass': {'?': 'Other/Unknown'}})
adult_data = adult_data.replace(
{
'occupation': {
'Adm-clerical': 'White-Collar', 'Craft-repair': 'Blue-Collar',
'Exec-managerial': 'White-Collar', 'Farming-fishing': 'Blue-Collar',
'Handlers-cleaners': 'Blue-Collar',
'Machine-op-inspct': 'Blue-Collar', 'Other-service': 'Service',
'Priv-house-serv': 'Service',
'Prof-specialty': 'Professional', 'Protective-serv': 'Service',
'Tech-support': 'Service',
'Transport-moving': 'Blue-Collar', 'Unknown': 'Other/Unknown',
'Armed-Forces': 'Other/Unknown', '?': 'Other/Unknown'
}
}
)
adult_data = adult_data.replace({'marital-status': {'Married-civ-spouse': 'Married', 'Married-AF-spouse': 'Married',
'Married-spouse-absent': 'Married', 'Never-married': 'Single'}})
adult_data = adult_data.replace({'race': {'Black': 'Other', 'Asian-Pac-Islander': 'Other',
'Amer-Indian-Eskimo': 'Other'}})
adult_data = adult_data[['age', 'workclass', 'education', 'marital-status', 'occupation',
'race', 'gender', 'hours-per-week', 'income']]
adult_data = adult_data.replace({'income': {'<=50K': 0, '>50K': 1}})
adult_data = adult_data.replace({'education': {'Assoc-voc': 'Assoc', 'Assoc-acdm': 'Assoc',
'11th': 'School', '10th': 'School', '7th-8th': 'School',
'9th': 'School', '12th': 'School', '5th-6th': 'School',
'1st-4th': 'School', 'Preschool': 'School'}})
adult_data = adult_data.rename(columns={'marital-status': 'marital_status', 'hours-per-week': 'hours_per_week'})
if only_train:
train, _ = train_test_split(adult_data, test_size=0.2, random_state=17)
adult_data = train.reset_index(drop=True)
# Remove the downloaded dataset
if os.path.isdir('archive.ics.uci.edu'):
entire_path = os.path.abspath('archive.ics.uci.edu')
shutil.rmtree(entire_path)
return adult_data
[docs]def load_custom_testing_dataset():
data = [['a', 10, 0], ['b', 10000, 0], ['c', 14, 0], ['a', 88, 0], ['c', 14, 0]]
return pd.DataFrame(data, columns=['Categorical', 'Numerical', 'Outcome'])
[docs]def load_min_max_equal_dataset():
data = [['a', 10, 0], ['b', 10, 0], ['c', 10, 0], ['a', 10, 0], ['c', 10, 0]]
return pd.DataFrame(data, columns=['Categorical', 'Numerical', 'Outcome'])
[docs]def load_outcome_not_last_column_dataset():
data = [['a', 0, 10], ['a', 0, 10000], ['a', 0, 14], ['a', 0, 10], ['a', 0, 10]]
return pd.DataFrame(data, columns=['Categorical', 'Outcome', 'Numerical'])
[docs]def load_custom_testing_dataset_binary():
data = [['a', 1, 0], ['b', 5, 1], ['c', 2, 0], ['a', 3, 0], ['c', 4, 1]]
return pd.DataFrame(data, columns=['Categorical', 'Numerical', 'Outcome'])
[docs]def load_custom_testing_dataset_multiclass():
data = [['a', 10, 1], ['b', 20, 2], ['c', 14, 1], ['a', 23, 2], ['c', 7, 0]]
return pd.DataFrame(data, columns=['Categorical', 'Numerical', 'Outcome'])
[docs]def load_custom_testing_dataset_regression():
data = [['a', 10, 1], ['b', 21, 2.1], ['c', 14, 1.4], ['a', 23, 2.3], ['c', 7, 0.7]]
return pd.DataFrame(data, columns=['Categorical', 'Numerical', 'Outcome'])
[docs]def get_adult_income_modelpath(backend='TF1'):
pkg_path = dice_ml.__path__[0]
model_ext = '.h5' if 'TF' in backend else '.pth'
modelpath = os.path.join(pkg_path, 'utils', 'sample_trained_models', 'adult'+model_ext)
return modelpath
[docs]def get_custom_dataset_modelpath_pipeline():
pkg_path = dice_ml.__path__[0]
model_ext = '.sav'
modelpath = os.path.join(pkg_path, 'utils', 'sample_trained_models', 'custom'+model_ext)
return modelpath
[docs]def get_custom_vars_dataset_modelpath_pipeline():
pkg_path = dice_ml.__path__[0]
model_ext = '.sav'
modelpath = os.path.join(pkg_path, 'utils', 'sample_trained_models', 'custom_vars'+model_ext)
return modelpath
[docs]def get_custom_dataset_modelpath_pipeline_binary():
pkg_path = dice_ml.__path__[0]
model_ext = '.sav'
modelpath = os.path.join(pkg_path, 'utils', 'sample_trained_models', 'custom_binary'+model_ext)
return modelpath
[docs]def get_custom_dataset_modelpath_pipeline_multiclass():
pkg_path = dice_ml.__path__[0]
model_ext = '.sav'
modelpath = os.path.join(pkg_path, 'utils', 'sample_trained_models', 'custom_multiclass'+model_ext)
return modelpath
[docs]def get_custom_dataset_modelpath_pipeline_regression():
pkg_path = dice_ml.__path__[0]
model_ext = '.sav'
modelpath = os.path.join(pkg_path, 'utils', 'sample_trained_models', 'custom_regression'+model_ext)
return modelpath
[docs]def get_adult_data_info():
feature_description = {
'age': 'age',
'workclass': 'type of industry (Government, Other/Unknown, Private, Self-Employed)',
'education': 'education level (Assoc, Bachelors, Doctorate, HS-grad, Masters, Prof-school, School, Some-college)',
'marital_status': 'marital status (Divorced, Married, Separated, Single, Widowed)',
'occupation': 'occupation (Blue-Collar, Other/Unknown, Professional, Sales, Service, White-Collar)',
'race': 'white or other race?',
'gender': 'male or female?',
'hours_per_week': 'total work hours per week',
'income': '0 (<=50K) vs 1 (>50K)'}
return feature_description
[docs]def get_base_gen_cf_initialization(data_interface, encoded_size, cont_minx, cont_maxx, margin, validity_reg, epochs,
wm1, wm2, wm3, learning_rate):
# Dice Imports - TODO: keep this method for VAE as a spearate module or move it to feasible_base_vae.py.
# Check dependencies.
from torch import optim
from dice_ml.utils.sample_architecture.vae_model import CF_VAE
# Dataset for training Variational Encoder Decoder model for CF Generation
df = data_interface.normalize_data(data_interface.one_hot_encoded_data)
encoded_data = df[data_interface.ohe_encoded_feature_names + [data_interface.outcome_name]]
dataset = encoded_data.to_numpy()
print('Dataset Shape:', encoded_data.shape)
print('Datasets Columns:', encoded_data.columns)
# Normalise_Weights
normalise_weights = {}
for idx in range(len(cont_minx)):
_max = cont_maxx[idx]
_min = cont_minx[idx]
normalise_weights[idx] = [_min, _max]
# Train, Val, Test Splits
np.random.shuffle(dataset)
test_fraction = 0.2
# TODO: create an input parameter for data interface
test_size = int(test_fraction*len(data_interface.data_df))
vae_test_dataset = dataset[:test_size]
dataset = dataset[test_size:]
vae_val_dataset = dataset[:test_size]
vae_train_dataset = dataset[test_size:]
# BaseGenCF Model
cf_vae = CF_VAE(data_interface, encoded_size)
# Optimizer
cf_vae_optimizer = optim.Adam([
{'params': filter(lambda p: p.requires_grad, cf_vae.encoder_mean.parameters()), 'weight_decay': wm1},
{'params': filter(lambda p: p.requires_grad, cf_vae.encoder_var.parameters()), 'weight_decay': wm2},
{'params': filter(lambda p: p.requires_grad, cf_vae.decoder_mean.parameters()), 'weight_decay': wm3},
], lr=learning_rate
)
# Check: If base_obj was passsed via reference and it mutable; might not need to have a return value at all
return vae_train_dataset, vae_val_dataset, vae_test_dataset, normalise_weights, cf_vae, cf_vae_optimizer
[docs]class DataTransfomer:
"""A class to transform data based on user-defined function to get predicted outcomes.
This class calls FunctionTransformer of scikit-learn internally
(https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.FunctionTransformer.html)."""
def __init__(self, func=None, kw_args=None):
self.func = func
self.kw_args = kw_args
[docs] def feed_data_params(self, data_interface):
if self.kw_args is not None:
self.kw_args['data_interface'] = data_interface
else:
self.kw_args = {'data_interface': data_interface}