
Solutions 2
Jumping Rivers

Question 1

Consider the following simple function

v = 5
def Fun1():

v = 0
return v

Fun1()

0

1. Why does the final line return 0 and not 5.

print('Fun1 uses the local variable v')

Fun1 uses the local variable v

2. Delete line 3 in the above piece of code. Now change Fun1() to
allow v to be passed as an argument, i.e. we can write Fun1(5).
Call this function to make sure it works.

def Fun1(v):
return v

Fun1(10)

10

Question 2

Consider the two functions defined below:

def Fun2(x = 10):
return x

def Fun3(x):
return x

1. Why does

Fun2()

10

solutions 2 2

work, but this raises an error

Fun3()

print("Fun3 expects an argument x, but \
we haven't given one and there is \
no default.")

Fun3 expects an argument x, but we haven't given one and there is no default.

2. Change Fun2 so that it returns x*x.

def Fun2(x = 10):
return x*x

Question 3

a = 2
total = 0
for blob in range(a, 5):

total = total + blob
total

9

1. In the code above, delete line 1. Now put the above code in a func-
tion called Fun5, where a is passed as an argument, i.e. we can call
Fun5(1)

def Fun5(a):
total = 0
for blob in range(a, 6):

total = total + blob
return total

Fun5(1)

15

2. Alter the code so that the for loop goes from a to b, rather than
a to 5. Allow b to be passed as an argument, i.e. we can call
Fun5(1,6).

def Fun5(a, b):
total = 0
for blob in range(a, b):

total = total + blob
return total

solutions 2 3

3. Change Fun5 so that it has default arguments of a = 1 and b =
10.

def Fun5(a = 1, b = 10):
total = 0
for blob in range(a, b):

total = total + blob
return total

4. The range() function also has a step argument, so to create the
sequence 1, 3, 5 we would write range(1, 6, 2). Alter the code
such that Fun5() can now go up in steps of c. Allow c to be passed
as an argument.

def Fun5(a = 1, b = 10, c = 1):
total = 0
for blob in range(a, b, c):

total = total + blob
return total

