
HuggingGPT: Solving AI Tasks with ChatGPT and its
Friends in Hugging Face

Yongliang Shen1,2∗, Kaitao Song2∗, Xu Tan2, Dongsheng Li2, Weiming Lu1, Yueting Zhuang1
Zhejiang University1, Microsoft Research Asia2

{syl, luwm, yzhuang}@zju.edu.cn, {kaitaosong, xuta, dongsli}@microsoft.com

Abstract

Solving complicated AI tasks with different domains and modalities is a key step
toward artificial general intelligence. While there are abundant AI models available
for different domains and modalities, they cannot handle complicated AI tasks.
Considering large language models (LLMs) have exhibited exceptional ability in
language understanding, generation, interaction, and reasoning, we advocate that
LLMs could act as a controller to manage existing AI models to solve complicated
AI tasks and language could be a generic interface to empower this. Based on
this philosophy, we present HuggingGPT, a framework that leverages LLMs (e.g.,
ChatGPT) to connect various AI models in machine learning communities (e.g.,
Hugging Face) to solve AI tasks. Specifically, we use ChatGPT to conduct task
planning when receiving a user request, select models according to their function
descriptions available in Hugging Face, execute each subtask with the selected
AI model, and summarize the response according to the execution results. By
leveraging the strong language capability of ChatGPT and abundant AI models
in Hugging Face, HuggingGPT is able to cover numerous sophisticated AI tasks
in different modalities and domains and achieve impressive results in language,
vision, speech, and other challenging tasks, which paves a new way towards
artificial general intelligence 2.

1 Introduction

Large language models (LLMs) [1, 2, 3, 4, 5, 6], such as ChatGPT, have attracted enormous attentions
from both academia and industry, due to their remarkable performance on various natural language
processing (NLP) tasks. Based on large-scale pre-training on massive text corpora and reinforcement
learning from human feedback (RLHF) [2], LLMs can produce superior capability in language
understanding, generation, interaction, and reasoning. The powerful capability of LLMs also drives
many emergent research topics (e.g., in-context learning [1, 7, 8], instruction learning [9, 10, 11, 12,
13, 14], and chain-of-thought prompting [15, 16, 17, 18]) to further investigate the huge potential of
LLMs, and brings unlimited possibilities for us to build advanced artificial intelligence systems.

Despite these great successes, current LLM technologies are still imperfect and confront some urgent
challenges on the way to building an advanced AI system. We discuss them from these aspects: 1)
Limited to the input and output forms of text generation, current LLMs lack the ability to process
complex information such as vision and speech, regardless of their significant achievements in NLP
tasks; 2) In real-world scenarios, some complex tasks are usually composed of multiple sub-tasks, and
thus require the scheduling and cooperation of multiple models, which are also beyond the capability
of language models; 3) For some challenging tasks, LLMs demonstrate excellent results in zero-shot

∗ The first two authors have equal contributions. This work was done when the first author was an intern at
Microsoft Research Asia.

2https://github.com/microsoft/JARVIS

ar
X

iv
:2

30
3.

17
58

0v
3

 [
cs

.C
L

]
 2

5
M

ay
 2

02
3

https://github.com/microsoft/JARVIS

lllyasviel/

ControlNet

facebook/
detr-resnet-101

nlpconnet/
vit-gpt2-image-captioning

HuggingGPT

A text can describe the given image: a herd of
giraffes and zebras grazing in a fields. In
addition, there are five detected objects as
giraffe with score 99.9%, zebra with score 99.7%, zebra
with 99.9%, giraffe with score 97.1% and zebra with
score 99.8%. The bounding boxes are shown in the
above image. I performed image classification, object
detection and image caption on this image. Combining
the predictions of nlpconnet/vit-gpt2-image-
captioning, facebook/detr-resnet-101 and
google/vit models, I get the results for you.

 Response
Generation

 Task
Planing
Ⅰ

Ⅳ

Task ExecutionⅢ

Prediction

Prediction

 Model
Selection
Ⅱ

LLM as Controller HuggingFace

Can you describe this picture and count how
many objects in the picture?

Figure 1: Language serves as an interface for LLMs (e.g., ChatGPT) to connect numerous AI models
(e.g., those in Hugging Face) for solving complicated AI tasks. In this concept, an LLM acts as a
controller, managing and organizing the cooperation of expert models. The LLM first plans a list of
tasks based on the user request and then assigns expert models to each task. After the experts execute
the tasks, the LLM collects the results and responds to the user.

or few-shot settings, but they are still weaker than some experts (e.g., fine-tuned models). How to
address these issues could be the critical step for LLMs toward artificial general intelligence.

In this paper, we point out that in order to handle complicated AI tasks, LLMs should be able to
coordinate with external models to utilize their powers. Hence, the key point is how to choose suitable
middleware to bridge the connections between LLMs and AI models. To address this problem, we
notice that each AI model can be described in the form of language by summarizing its function.
Therefore, we introduce a concept: “Language is a generic interface for LLMs to connect AI models”.
In other words, by incorporating these model descriptions into prompts, LLMs can be considered
as the brain to manage AI models such as planning, scheduling, and cooperation. As a result, this
strategy enables LLMs to invoke external models for solving AI tasks. However, when it comes to
integrating multiple AI models into LLMs, another challenge emerges: solving numerous AI tasks
needs collecting a large number of high-quality model descriptions, which in turn requires heavy
prompt engineering. Coincidentally, we notice that some public ML communities usually offer a
wide variety of applicable models with well-defined model descriptions for solving specific AI tasks
such as language, vision, and speech. These observations bring us some inspiration: Can we link
LLMs (e.g., ChatGPT) with public ML communities (e.g., GitHub, Hugging Face 3, etc) for solving
complex AI tasks via a language-based interface?

Therefore, in this paper, we propose a system called HuggingGPT to connect LLMs (i.e., ChatGPT)
and ML community (i.e., Hugging Face), which can process inputs from different modalities and
solve numerous complex AI tasks autonomously. More specifically, for each AI model in Hugging
Face, we use its corresponding model description from the library and fuse it into the prompt to
establish the connection with ChatGPT. Afterward, in our system, LLMs (i.e., ChatGPT) will act as
the brain to determine the answers to the questions of users. Just as shown in Figure 1, the whole
process of HuggingGPT can be divided into four stages:

• Task Planning: Using ChatGPT to analyze the requests of users to understand their intention, and
disassemble them into possible solvable tasks via prompts.

• Model Selection: To solve the planned tasks, ChatGPT selects expert models that are hosted on
Hugging Face based on model descriptions.

• Task Execution: Invoke and execute each selected model, and return the results to ChatGPT.

• Response Generation: Finally, ChatGPT is utilized to integrate the predictions from all models
and generate responses for users.

3https://huggingface.co/models

2

https://huggingface.co/models

Please generate an image where a girl is reading a book, and her pose is the same as the boy in the image
example.jpg, then please describe the new image with your voice.

Stage #1: Task Planning Stage #2: Model Selection

Stage #3: Task Execution Stage #4: Response Generation

[Image-1] = example.jpg [Image-2] = <resource-1> [Image-3] = <resource-2> [Image-4] [Audio-1]

task: image-to-text
args:
 image: <resource-2>

task: text-to-speech
args:
 text: <resource-5>

task: image-class.
args:
 image: <resource-2>

task: object-det.
args:
 image: <resource-2>

task: pose-to-image
args:
 text: a reading girl
 image: <resource-1>

task: pose-det.
args:
 image: example.jpg

[Text-1] = <resource-5>

a girl sitting on a bed

reading a book

Response

Request

hustvl/yolos-tiny

facebook/detr-resnet-101
TahaDouaji/detr-doc-table-detection

task: pose-det.

task: image-class.

task: object-det.
args:
 image: <resource-2>

Query

Model Cards in HuggingFace

In-context task-model assignment:

task, args, model

task, args, model

obj-det. <resource-2>

facebook/detr-resnet-101

Bounding boxes
with probabilitiesHuggingFace Endpoint

(facebook/detr-resnet-101)

Local Endpoint
(facebook/detr-resnet-101)

Predictions

The image you gave me is of "boy". The first thing I did was use OpenCV's openpose model to analyze the pose of the boy in the image. I
fed that image, specifically located at [Image-1], into the model to get an output image of the pose, located at [Image-2]. Then I take that

pose and generate a new image, located at [Image-3], using lllyasviel/sd-controlnet-openpose and the instruction "a girl is reading". Next, I
ran object detection on the image generated in the previous step, to get predictions of the objects present in the image, including the box

location. These predictions were run through the facebook/detr-resnet-101 model. The box was drawn on the image, which is located at
[Image-4]. Then, I used the predictions of a image classification model google/vit-base-patch16-224 and a image caption model a

nlpconnect/vit-gpt2-image-captionin model to generate the caption for newly generated image. It generated text: "a girl sitting on a bed
reading a book". Lastly, I ran the facebook/fastspeech2-en-ljspeech model to convert the generated text into audio, located at [Audio-1].

Su
m

m
ary

[T4] object-det.
 facebook/detr-resnet

 [bounding box]

[T5] image-to-text
 nlpconnect/vit-gpt2

 “a girl sitting on ...”

[T6] text-to-speech
 facebook/fastspeech

 [audio-1]

[T1] pose-det.
 openpose

 [image-2]

[T2] pose-to-image
 lym/sd-ctl-pose

 [image-3]

[T3] image-class.
 google/vit

 [classes with prob]

task dependency

Hybrid Endpoints

[T1] [T3] [T5]

[T2]
[T4] [T6]

Figure 2: Overview of HuggingGPT. With an LLM (e.g., ChatGPT) as the core controller and
the expert models as the executors, the workflow of HuggingGPT consists of four stages: 1) Task
planning: LLM parses the user request into a task list and determines the execution order and
resource dependencies among tasks; 2) Model selection: LLM assigns appropriate models to tasks
based on the description of expert models on Hugging Face; 3) Task execution: Expert models on
hybrid endpoints execute the assigned tasks; 4) Response generation: LLM integrates the inference
results of experts and generates a summary of workflow logs to respond to the user.

Benefiting from such a design, HuggingGPT can automatically generate plans from user requests and
use external models, and thus can integrate multimodal perceptual capabilities and handle multiple
complex AI tasks. More noteworthy, this pipeline also allows HuggingGPT to continue absorbing
the powers from task-specific experts, enabling growable and scalable AI capabilities. Furthermore,
we also point out that task planning plays a very important role in HuggingGPT, which directly
determines the success of the subsequent workflow. Therefore, how to conduct planning is also a
good perspective to reflect the capability of LLMs, which also opens a new door for LLM evaluation.

Overall, our contributions can be summarized as follows:

1. To complement the advantages of large language models and expert models, we propose Hug-
gingGPT with an inter-model cooperation protocol. HuggingGPT applies LLMs as the brain for
planning and decision, and automatically invokes and executes expert models for each specific
task, providing a new way for designing general AI solutions.

3

2. By integrating the Hugging Face hub with numerous task-specific models around ChatGPT,
HuggingGPT is able to tackle generalized AI tasks covering multiple modalities and domains.
Through the open collaboration of models, HuggingGPT can provide users with multimodal and
reliable conversation services.

3. We point out the importance of task planning in HuggingGPT (and autonomous agents), and
formulate some experimental evaluations for measuring the capability of LLMs in planning.

4. Extensive experiments on multiple challenging AI tasks across language, vision, speech, and
cross-modality demonstrate the capability and huge potential of HuggingGPT in understanding
and solving complex tasks from multiple modalities and domains.

2 Related Works

In recent years, the field of natural language processing (NLP) has been revolutionized by the
emergence of large language models (LLMs) [1, 2, 3, 4, 5, 19, 6], exemplified by models such as
GPT-3 [1], GPT-4 [20], PaLM [3], and LLaMa [6]. LLMs have demonstrated impressive capabilities
in zero-shot and few-shot tasks, as well as more complex tasks such as mathematical problems and
commonsense reasoning, due to their massive corpus and intensive training computation. To extend
the scope of large language models (LLMs) beyond text generation, contemporary research can be
divided into two branches: 1) Some works have devised unified multimodal language models for
solving various AI tasks [21, 22, 23]. For example, Flamingo [21] combines frozen pre-trained vision
and language models for perception and reasoning. BLIP-2 [22] utilizes a Q-former to harmonize
linguistic and visual semantics, and Kosmos-1 [23] incorporates visual input into text sequences
to amalgamate linguistic and visual inputs. 2) Recently, some researchers started to investigate the
integration of using tools or models in LLMs [24, 25, 26, 27, 28]. Toolformer [24] is the pioneering
work to introduce external API tags within text sequences, facilitating the ability of LLMs to access
external tools. Consequently, numerous works have expanded LLMs to encompass the visual modality.
Visual ChatGPT [26] fuses visual foundation models, such as BLIP [29] and ControlNet [30], with
LLMs. Visual Programming [31] and ViperGPT [25] apply LLMs to visual objects by employing
programming languages, parsing visual queries into interpretable steps expressed as Python code.
We also include more discussions about related works in Appendix B.

Distinct from these approaches, our proposed HuggingGPT advances towards more general AI
capabilities in the following aspects: 1) HuggingGPT uses the LLM as an interface to route user
requests to expert models, effectively combining the language comprehension capabilities of the LLM
with the expertise of other expert models; 2) HuggingGPT is not limited to visual perception tasks but
can address tasks in any modality or any domain by organizing cooperation among models through the
LLM. Benefiting from the design of task planning in HuggingGPT, our system can automatically and
effectively generate task procedures and solve more complex problems; 3) HuggingGPT offers a more
open approach for model selection, which assigns and organizes tasks based on model descriptions.
By providing only the model descriptions, HuggingGPT can continuously and conveniently integrate
diverse expert models from AI communities, without altering any structure or prompt settings. This
open and continuous manner brings us one step closer to realizing artificial general intelligence.

3 HuggingGPT

HuggingGPT is a collaborative system for solving AI tasks, which is composed of a large language
model (LLM) and numerous expert models from ML communities. Its workflow includes four stages:
task planning, model selection, task execution, and response generation, just as shown in Figure 2.
Given a user request, our HuggingGPT, which adopts an LLM as the controller, will automatically
deploy the whole workflow, thereby coordinating and executing the expert models to fulfill the target.
Table 1 presents the detailed prompt design in our HuggingGPT. We will introduce the design of each
stage in the following subsections.

3.1 Task Planning

Generally, in real-world scenarios, many user requests will include some complex intents, and thus
need to orchestrate multiple sub-tasks to fulfill the target. Therefore, we formulate task planning as
the first stage of HuggingGPT, which aims to use LLM to analyze user request and then decompose it

4

Ta
sk

Pl
an

ni
ng

Prompt

#1 Task Planning Stage - The AI assistant performs task parsing on user input, generating a list
of tasks with the following format: [{"task": task, "id", task_id, "dep": dependency_task_ids,
"args": {"text": text, "image": URL, "audio": URL, "video": URL}}]. The "dep" field
denotes the id of the previous task which generates a new resource upon which the current task
relies. The tag "<resource>-task_id" represents the generated text, image, audio, or video from
the dependency task with the corresponding task_id. The task must be selected from the following
options: {{ Available Task List }}. Please note that there exists a logical connections and order
between the tasks. In case the user input cannot be parsed, an empty JSON response should be
provided. Here are several cases for your reference: {{ Demonstrations }}. To assist with task
planning, the chat history is available as {{ Chat Logs }}, where you can trace the user-mentioned
resources and incorporate them into the task planning stage.

Demonstrations
Can you tell me how many
objects in e1.jpg?

[{"task": "object-detection", "id": 0, "dep": [-1], "args": {"im
age": "e1.jpg" }}]

In e2.jpg, what’s the animal
and what’s it doing?

[{"task": "image-to-text", "id": 0, "dep":[-1], "args": {"im
age": "e2.jpg" }}, {"task":"image-cls", "id": 1, "dep": [-1],
"args": {"image": "e2.jpg" }}, {"task":"object-detection", "id":
2, "dep": [-1], "args": {"image": "e2.jpg" }}, {"task": "vi-
sual-quesrion-answering", "id": 3, "dep":[-1], "args": {"text":
"what’s the animal doing?", "image": "e2.jpg" }}]

First generate a HED image
of e3.jpg, then based on the
HED image and a text “a
girl reading a book”, create
a new image as a response.

[{"task": "pose-detection", "id": 0, "dep": [-1], "args": {"im
age": "e3.jpg" }}, {"task": "pose-text-to-image", "id": 1, "dep":
[0], "args": {"text": "a girl reading a book", "image": "<re-
source>-0" }}]

M
od

el
Se

le
ct

io
n

Prompt

#2 Model Selection Stage - Given the user request and the call command, the AI assistant helps the
user to select a suitable model from a list of models to process the user request. The AI assistant
merely outputs the model id of the most appropriate model. The output must be in a strict JSON
format: {"id": "id", "reason": "your detail reason for the choice"}. We have a list of models for
you to choose from {{ Candidate Models }}. Please select one model from the list.

Candidate Models
{"model_id": model id #1, "metadata": meta-info #1, "description": description of model #1}
{"model_id": model id #2, "metadata": meta-info #2, "description": description of model #2}

· · · · · · · · ·
{"model_id": model id #K, "metadata": meta-info #K, "description": description of model #K}

R
es

po
ns

e
G

en
er

at
io

n Prompt

#4 Response Generation Stage - With the input and the inference results, the AI assistant needs to
describe the process and results. The previous stages can be formed as - User Input: {{ User Input
}}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, Task Execution: {{
Predictions }}. You must first answer the user’s request in a straightforward manner. Then describe
the task process and show your analysis and model inference results to the user in the first person.
If inference results contain a file path, must tell the user the complete file path. If there is nothing in
the results, please tell me you can’t make it.

Table 1: The details of the prompt design in HuggingGPT. In the prompts, we set some injectable
slots such as {{ Demonstrations }} and {{ Candidate Models }}. These slots are uniformly replaced
with the corresponding text before being fed into the LLM.

into a collection of structured tasks. Moreover, we also require the LLM to determine dependencies
and execution orders for these decomposed tasks, to build their connections. To better prompt
the LLM for effective task planning, HuggingGPT employs a prompt design, which consists of
specification-based instruction and demonstration-based parsing. We introduce these details in the
following paragraphs.

Specification-based Instruction To better represent the expected tasks of user requests and use
them in the subsequent stages, we expect that the LLM can parse tasks by following some spec-
ifications (e.g., JSON format). Therefore, we provide a uniform template for tasks and instruct

5

the LLM to conduct task parsing through slot filing. As shown in Table 1, the template for task
parsing includes four slots ("task", "id", "dep", and "args") to represent the task’s information,
unique identifier, dependencies and arguments. Further details regarding each slot can be found in the
template description (see the Appendix A.1.1). By adhering to these task specifications, HuggingGPT
can automatically employ the LLM to analyze user requests and parse tasks accordingly.

Demonstration-based Parsing To better understand the intention and criteria for task planning,
HuggingGPT incorporates multiple demonstrations in the prompt. Each demonstration consists of a
user request and its corresponding output, which represents the expected sequence of parsed tasks.
By incorporating dependencies among tasks, these demonstrations aid HuggingGPT in understanding
the logical connections between tasks, facilitating accurate determination of execution order and
identification of resource dependencies. The design of our demonstrations is presented in Table 1.

Furthermore, to support more comprehensive user requests (e.g., multi-turn dialogue), we incorporate
chat logs into the prompt by appending this instruction: To assist with task planning, the chat history
is available as {{ Chat Logs }}, where you can trace the user-mentioned resources and incorporate
them into the task planning., where {{ Chat Logs }} represents the previous chat logs. Such a design
allows HuggingGPT to better manage context and answer user requests in multi-turn dialogue.

3.2 Model Selection

After task planning, HuggingGPT next needs to match the tasks and models, i.e., select the most
appropriate model for each task in the parsed task list. To this end, we use model descriptions as the
language interface to connect each model. More specifically, we first obtain the descriptions of expert
models from the ML community (e.g., Hugging Face) and then dynamically select models for the
tasks through an in-context task-model assignment mechanism. This strategy enables incremental
model access (simply providing the description of the expert models) and can be more open and
flexible to use ML communities. More details are introduced in the next paragraph.

In-context Task-model Assignment We formulate the task-model assignment as a single-choice
problem, where potential models are presented as options within a given context. Generally, Hug-
gingGPT is able to select the most appropriate model for each parsed task based on the providing
user query and task information in the prompt. However, due to the constraints regarding maximum
context length, it is impossible for a prompt to include all relevant model information. To address this
issue, we first filter out models based on their task type and only retain those that match the current
task type. For these selected models, we will rank them based on the number of their downloads on
Hugging Face (we think the downloads can reflect the quality of the model to some extents) and then
select the top-K models as the candidate models for HuggingGPT. This strategy can substantially
reduce the token usage in the prompt and effectively select the appropriate models for each task.

3.3 Task Execution

Once a specific model is assigned to a parsed task, the next step is to execute the task, i.e., to perform
model inference. Therefore, in this stage, HuggingGPT will automatically input these task arguments
into the models, execute these models to obtain the inference results, and then send them back to the
LLM. It is necessary to emphasize the issue of resource dependencies at this stage. Since the outputs
of the prerequisite tasks are dynamically produced, HuggingGPT also needs to dynamically specify
the dependent resources for the task before it is launched. Therefore, it is challenging to build the
connections between the tasks with resource dependency at this stage.

Resource Dependency To address this issue, we use a unique symbol, “<resource>”, to maintain
resource dependencies. Specifically, HuggingGPT identifies the resources generated by the prerequi-
site task as <resource>-task_id, where task_id is the task id of the prerequisite task. During
the task planning stage, if there are tasks that depend on the resource generated by the task with
task_id, HuggingGPT sets this symbol to the corresponding resource subfield in the task arguments.
Then in the task execution stage, HuggingGPT dynamically substitutes this symbol with the resource
generated by the prerequisite task. As a result, this simple strategy empowers HuggingGPT to
efficiently handle resource dependencies during task execution.

6

Task Type Diagram Example Metrics

Single Task Task 1
Show me a funny image of

a cat
Precision, Recall, F1,

Accuracy

Sequential Task Task 1 Task 2 Task 3
Replace the cat with a dog

in example.jpg
Precision, Recall, F1

Edit Distance

Graph Task

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

Given a collection of image
A: a.jpg, B: b.jpg, C: c.jpg,
please tell me which image

is more like image B in
terms of semantic, A or C?

Precision, Recall, F1
GPT-4 Score

Table 2: Evaluation for task planning in different task types.

Furthermore, after obtaining the tasks which do not have any resource dependencies, we will execute
these tasks in parallel to further improve inference efficiency. This means that multiple tasks that
have satisfied the prerequisite dependencies can be started simultaneously. Besides, for speedup and
computational stability, we also provide a hybrid inference endpoint to deploy these models. More
details can refer to Appendix A.1.3.

3.4 Response Generation

After all task executions are completed, HuggingGPT needs to generate the final responses. Just as
shown in Table 1, HuggingGPT integrates all the information from the previous three stages (task
planning, model selection, and task execution) into a concise summary in this stage, including the list
of planned tasks, the selected models for the tasks, and the inference results of the models.

Most important among them are the inference results, which are the key points for HuggingGPT
to make the final decisions. These inference results are presented in a structured format, such as
bounding boxes with detection probabilities in the object detection model, answer distributions in
the question-answering model, etc. HuggingGPT allows LLM to receive these structured inference
results as input and generate responses in the form of friendly human language. Moreover, instead
of simply aggregating the results, LLM generates responses that actively respond to user requests,
providing a reliable decision with a confidence level.

4 Experiments

4.1 Settings

In our experiments, we employed the gpt-3.5-turbo, text-davinci-003 and gpt-4 variants of
the GPT models as the main LLMs, which are publicly accessible through the OpenAI API 4. To
enable more stable outputs of LLM, we set the decoding temperature to 0. In addition, to regulate
the LLM output to satisfy the expected format (e.g., JSON format), we set the logit_bias to 0.2
on the format constraints (e.g., “{” and “}”). We provide detailed prompts designed for the task
planning, model selection, and response generation stages in Table 1, where {{variable}} indicates
the slot which needs to be populated with the corresponding text before being fed into the LLM.

4.2 Qualitative Results

Figure 1 and Figure 2 have shown two demonstrations of HuggingGPT. In Figure 1, the user re-
quest consists of two sub-tasks: describing the image and object counting. In response to the
request, HuggingGPT planned three tasks: image classification, image captioning, and object de-
tection, and launched the google/vit [32], nlpconnet/vit-gpt2-image-captioning [33], and
facebook/detr-resnet-101 [34] models, respectively. Finally, HuggingGPT integrated the re-
sults of the model inference and generated responses (description of the image and the number of the
contained objects) to the user.

4https://platform.openai.com/

7

https://platform.openai.com/

A more detailed example is shown in Figure 2. The user requested to first detect the pose of the
person in the example image, then generate a new image based on that pose and the specified text, and
finally generate a speech describing the image. HuggingGPT first parsed 6 tasks based on the request,
including pose detection, text-to-image conditional on pose, object detection, image classification,
image captioning, and text-to-speech. We observed that HuggingGPT can correctly orchestrate the
execution order and resource dependencies of tasks, e.g., pose conditional text-to-image task need
to be executed after pose detection and use its output as input. After that, HuggingGPT selects the
appropriate model for each task and finally summarizes the results of the model execution into a final
response. For more demonstrations, please refer to the Appendix A.3.

4.3 Quantitative Evaluation

LLM Acc ↑ Pre ↑ Recall ↑ F1 ↑

Alpaca-7b 6.48 35.60 6.64 4.88
Vicuna-7b 23.86 45.51 26.51 29.44
GPT-3.5 52.62 54.45 32.26 39.05

Table 3: Evaluation for the single task. “Acc”
and “Pre” represents Accuracy and Precision.

In HuggingGPT, task planning is the first but also
the most important step in the whole workflow,
since it directly determines the result of the sub-
sequent pipeline. Therefore, we deem that the
quality of task planning also reflects the capabil-
ity of LLMs in some aspects (e.g., reasoning and
decision). In other words, assessing task planning
provides a reliable metric for evaluating the ability
of LLMs. We simplified the evaluation by only
considering the task type without its arguments. To better conduct evaluations on task planning, we
group tasks into three distinct categories (see Table 2) and formulate different metrics for them:

• Single Task refers to a request that involves only one task. We consider the planning to be correct
when and only when the task name (i.e., "task") and the predicted label are identically equal. F1
and accuracy are chosen as evaluation metrics for single-task scenarios.

• Sequential Task represents that the intent of the user request can be decomposed as a sequence of
multiple sub-tasks. Here, we use F1 and normalized Edit Distance [35] as the metrics.

• Graph Task indicates that user requests can be decomposed into directed acyclic graphs. Con-
sidering the possibility of multiple planning topologies within graph tasks, only using F1-score is
not enough to reflect the LLM capability in planning. To address this, following Vicuna [36], we
employed GPT-4 as a critic to evaluate whether the planning is correct. The accuracy is obtained
by evaluating the judgment of GPT-4, referred to as the GPT-4 Score. Detailed information about
the GPT-4 Score can be found in Appendix A.1.5.

LLM ED ↓ Pre ↑ Recall ↑ F1 ↑

Alpaca-7b 0.83 22.27 23.35 22.80
Vicuna-7b 0.80 19.15 28.45 22.89
GPT-3.5 0.54 61.09 45.15 51.92

Table 4: Evaluation for the sequential task. “ED”
means Edit Distance.

Dataset To conduct our evaluation, we invite
some annotators to submit some requests. We
collect these data as the evaluation dataset. We
use GPT-4 to generate task planning as the pseudo
labels, which cover single, sequential, and graph
tasks. Furthermore, we also invite some expert
annotators to label task planning for some complex
requests (46 examples) as a high-quality human-
annotated dataset. We also plan to further improve
the quality and quantity of this dataset to better
help us to evaluate the LLM capability in planning, which leaves as future work. More details about
this dataset are in Appendix A.2. Based on this dataset, we deploy some experimental evaluations on
different LLMs (Alpaca-7b [37], Vicuna-7b [36], and GPT models) for task planning.

LLM GPT-4 Score ↑ Pre ↑ Recall ↑ F1 ↑

Alpaca-7b 13.14 16.18 28.33 20.59
Vicuna-7b 19.17 18.66 13.97 28.08
GPT-3.5 50.48 54.90 49.23 51.91

Table 5: Evaluation for the graph task.

Tables 3, 4 and 5 show the planning ca-
pabilities of HuggingGPT on the three
categories of GPT-4 annotated datasets,
respectively. We observed that GPT-
3.5 exhibits more prominent planning
capabilities, outperforming the open-
source LLMs Alpaca-7b and Vicuna-7b
in terms of all types of user requests.
Specifically, in more complex tasks

8

(e.g., sequential and graph tasks), GPT-3.5 has shown absolute predominance over other LLMs.
These results also demonstrate the evaluation of task planning can reflect the LLM capability to some
degree. Therefore, we think that how to develop technologies to improve the ability of LLMs in task
planning is very important, and we leave it as a future research direction.

LLM Sequential Task Graph Task

Acc ↑ ED ↓ Acc ↑ F1 ↑

Alpaca-7b 0 0.96 4.17 4.17
Vicuna-7b 7.45 0.89 10.12 7.84
GPT-3.5 18.18 0.76 20.83 16.45
GPT-4 41.36 0.61 58.33 49.28

Table 6: Evaluation on the human-annotated dataset.

Furthermore, we also conduct experiments
on the high-quality human-annotated dataset
to obtain a more precise evaluation. Ta-
ble 6 reports the comparisons on the human-
annotated dataset. We find that these results
are consistent with the above conclusion, that
the more powerful LLM will exhibit more bet-
ter performance in task planning. Moreover,
we also compare the results between human
annotations and GPT-4 annotations. We find
that even though GPT-4 outperforms other
LLMs, it still remains a substantial gap when

compared with human annotations. These phenomena also validate the necessity for continued
advancements in enhancing the planning capabilities of LLMs.

Due to computational resource limitations, we have not yet conducted evaluations on larger and
more diverse LLMs. Our current experiments are primarily focused on assessing the task planning
capabilities of LLMs and emphasizing their importance in our HuggingGPT framework. In the future,
we will deploy more experiments to evaluate the capability of various LLMs in conducting task
planning and explore how to standardize the metrics for evaluating task planning. We expect further
research and development efforts can facilitate the community to understand and improve LLMs
from different aspects, such as planning.

5 Limitations

HuggingGPT has presented a new paradigm for designing AI solutions, but we want to highlight
that it still remains some limitations or improvement spaces: 1) Planning in HuggingGPT heavily
relies on the capability of LLM. Consequently, we cannot ensure that the generated plan will always
be feasible and optimal. Therefore, it is crucial to explore ways to optimize the LLM in order
to enhance its planning abilities; 2) Efficiency poses a common challenge in our framework. To
build such a collaborative system (i.e., HuggingGPT) with task automation, it heavily relies on a
powerful controller (e.g., ChatGPT). However, HuggingGPT requires multiple interactions with
LLMs throughout the whole workflow and thus brings increasing time costs for generating the
response; 3) Token Lengths is another common problem when using LLM, since the maximum
token length is always limited. Although some works have extended the maximum length to 32K,
it is still insatiable for us if we want to connect numerous models. Therefore, how to briefly and
effectively summarize model descriptions is also worthy of exploration; 4) Instability is mainly
caused because LLMs are usually uncontrollable. Although LLM is skilled in generation, it still
possibly fails to conform to instructions or give incorrect answers during the prediction, leading to
exceptions in the program workflow. How to reduce these uncertainties during inference should be
considered in designing systems.

6 Conclusion

In this paper, we propose a system named HuggingGPT to solve AI tasks, with language as the
interface to connect LLMs with AI models. The principle of our system is that an LLM can be viewed
as a controller to manage AI models, and can utilize models from ML communities like Hugging
Face to automatically solve different requests of users. By exploiting the advantages of LLMs in
understanding and reasoning, HuggingGPT can dissect the intent of users and decompose it into
multiple sub-tasks. And then, based on expert model descriptions, HuggingGPT is able to assign
the most suitable models for each task and integrate results from different models to generate the
final response. By utilizing the ability of numerous AI models from machine learning communities,
HuggingGPT demonstrates immense potential in solving challenging AI tasks, thereby paving a new
pathway towards achieving artificial general intelligence.

9

7 Acknowledgement

We appreciate the support of the Hugging Face team to help us in improving our GitHub project and
web demo. Besides, we also appreciate the contributions of Bei Li, Kai Shen, Meiqi Chen, Qingyao
Guo, Yichong Leng, Yuancheng Wang, Dingyao Yu for the data labeling and Wenqi Zhang, Wen Wang,
Zeqi Tan for paper revision.

References
[1] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot Learners. In
NeurIPS, 2020.

[2] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano,
Jan Leike, and Ryan Lowe. Training language models to follow instructions with human
feedback. CoRR, abs/2203.02155, 2022.

[3] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, and others.
Palm: Scaling language modeling with pathways. ArXiv, abs/2204.02311, 2022.

[4] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam
Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke
Zettlemoyer. Opt: Open Pre-trained Transformer Language Models. ArXiv, abs/2205.01068,
2022.

[5] Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan
Xu, Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma, Yufei Xue, Jidong Zhai, Wenguang
Chen, Zhiyuan Liu, Peng Zhang, Yuxiao Dong, and Jie Tang. Glm-130b: An Open Bilingual
Pre-trained Model. ICLR 2023 poster, 2023.

[6] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aur’elien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and Efficient Foundation
Language Models. ArXiv, abs/2302.13971, 2023.

[7] Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An Explanation of
In-context Learning as Implicit Bayesian Inference. ICLR 2022 Poster, 2022.

[8] Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. Rethinking the Role of Demonstrations: What Makes In-Context Learning
Work? In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational Linguistics, 2022.

[9] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In
International Conference on Learning Representations, 2022.

[10] Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap, Eshaan
Pathak, Giannis Karamanolakis, Haizhi Gary Lai, Ishan Virendrabhai Purohit, Ishani Mondal,
Jacob William Anderson, Kirby C. Kuznia, Krima Doshi, Kuntal Kumar Pal, Maitreya Patel,
Mehrad Moradshahi, Mihir Parmar, Mirali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit
Verma, Ravsehaj Singh Puri, rushang karia, Savan Doshi, Shailaja Keyur Sampat, Siddhartha

10

Mishra, Sujan Reddy A, Sumanta Patro, Tanay Dixit, Xudong Shen, Chitta Baral, Yejin
Choi, Noah A. Smith, Hannaneh Hajishirzi, and Daniel Khashabi. Super-NaturalInstructions:
Generalization via Declarative Instructions on 1600+ NLP Tasks. In Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for
Computational Linguistics, 2022.

[11] S. Iyer, Xiaojuan Lin, Ramakanth Pasunuru, Todor Mihaylov, Daniel Simig, Ping Yu, Kurt
Shuster, Tianlu Wang, Qing Liu, Punit Singh Koura, Xian Li, Brian O’Horo, Gabriel Pereyra,
Jeff Wang, Christopher Dewan, Asli Celikyilmaz, Luke Zettlemoyer, and Veselin Stoyanov. Opt-
IML: Scaling Language Model Instruction Meta Learning through the Lens of Generalization.
ArXiv, abs/2212.12017, 2022.

[12] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu,
Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav
Mishra, Adams Yu, Vincent Y. Zhao, Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason
Wei. Scaling instruction-finetuned language models. CoRR, abs/2210.11416, 2022.

[13] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi,
and Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instruc-
tions, 2022.

[14] Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou,
Quoc V. Le, Barret Zoph, Jason Wei, and Adam Roberts. The flan collection: Designing data
and methods for effective instruction tuning. CoRR, abs/2301.13688, 2023.

[15] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi,
Quoc V Le, and Denny Zhou. Chain of Thought Prompting Elicits Reasoning in Large Language
Models. In Conference on Neural Information Processing Systems (NeurIPS), 2022.

[16] Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa.
Large Language Models are Zero-Shot Reasoners. In Conference on Neural Information
Processing Systems (NeurIPS), 2022.

[17] Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan,
and Graham Neubig. Pal: Program-aided Language Models. ArXiv, abs/2211.10435, 2022.

[18] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-Consistency Improves Chain of Thought Reasoning in
Language Models. ICLR 2023 poster, abs/2203.11171, 2023.

[19] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto,
Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language
models. CoRR, abs/2206.07682, 2022.

[20] OpenAI. Gpt-4 technical report, 2023.

[21] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson,
Karel Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, Roman Ring, Eliza Ruther-
ford, Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob
Menick, Sebastian Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand Sharifzadeh, Miko-
laj Binkowski, Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karen Simonyan.
Flamingo: a visual language model for few-shot learning, 2022.

[22] Junnan Li, Dongxu Li, S. Savarese, and Steven Hoi. Blip-2: Bootstrapping Language-Image
Pre-training with Frozen Image Encoders and Large Language Models. ArXiv, abs/2301.12597,
2023.

[23] Shaohan Huang, Li Dong, Wenhui Wang, Y. Hao, Saksham Singhal, Shuming Ma, Tengchao
Lv, Lei Cui, O. Mohammed, Qiang Liu, Kriti Aggarwal, Zewen Chi, Johan Bjorck, Vishrav
Chaudhary, Subhojit Som, Xia Song, and Furu Wei. Language Is Not All You Need: Aligning
Perception with Language Models. ArXiv, abs/2302.14045, 2023.

11

[24] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, M. Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language Models Can Teach Themselves
to Use Tools. ArXiv, abs/2302.04761, 2023.

[25] Dídac Surís, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution
for reasoning, 2023.

[26] Chenfei Wu, Sheng-Kai Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan.
Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models. arXiv, 2023.

[27] Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu, Yan Xia, Yu Liu, Yang Ou, Shuai Lu,
Lei Ji, Shaoguang Mao, Yun Wang, Linjun Shou, Ming Gong, and Nan Duan. Taskmatrix.ai:
Completing tasks by connecting foundation models with millions of apis, 2023.

[28] Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Yufei
Huang, Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su, Huadong Wang, Cheng Qian,
Runchu Tian, Kunlun Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen Zhang, Yining Ye,
Bowen Li, Ziwei Tang, Jing Yi, Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong, Yaxi Lu,
Weilin Zhao, Yuxiang Huang, Junxi Yan, Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng
Yang, Tongshuang Wu, Heng Ji, Zhiyuan Liu, and Maosong Sun. Tool learning with foundation
models, 2023.

[29] Junnan Li, Dongxu Li, Caiming Xiong, and Steven C. H. Hoi. Blip: Bootstrapping Language-
Image Pre-training for Unified Vision-Language Understanding and Generation. In International
Conference on Machine Learning (ICML), pages 12888–12900, 2022.

[30] Lvmin Zhang and Maneesh Agrawala. Adding Conditional Control to Text-to-Image Diffusion
Models. ArXiv, abs/2302.05543, 2023.

[31] Tanmay Gupta and Aniruddha Kembhavi. Visual Programming: Compositional visual reasoning
without training. arXiv, abs/2211.11559, 2022.

[32] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale, 2021.

[33] Ankur Kumar. The illustrated image captioning using transformers. ankur3107.github.io, 2022.

[34] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers, 2020.

[35] A. Marzal and E. Vidal. Computation of normalized edit distance and applications. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 15(9):926–932, 1993.

[36] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023.

[37] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

12

https://github.com/tatsu-lab/stanford_alpaca

A Appendix

A.1 More details

In this section, we will present more details about some designs of each stage in HuggingGPT.

A.1.1 Template for Task Planning

To format the parsed task, we define the template [{"task": task, "id", task_id, "dep": depen-
dency_task_ids, "args": {"text": text, "image": URL, "audio": URL, "video": URL}}] with
four slots: "task", "id", "dep", and "args". Table 7 presents the definitions of each slot.

Name Definitions

"task" It represents the type of the parsed task. It covers different tasks in language, visual, video,
audio, etc. The currently supported task list of HuggingGPT is shown in Table 11.

"id" The unique identifier for task planning, which is used for references to dependent tasks and
their generated resources.

"dep" It defines the pre-requisite tasks required for execution. The task will be launched only when all
the pre-requisite dependent tasks are finished.

"args" It contains the list of required arguments for task execution. It contains three subfields populated
with text, image, and audio resources according to the task type. They are resolved from
either the user’s request or the generated resources of the dependent tasks. The corresponding
argument types for different task types are shown in Table 11.

Table 7: Definitions for each slot for parsed tasks in the task planning.

A.1.2 Model Descriptions

In general, the Hugging Face Hub hosts expert models that come with detailed model descriptions,
typically provided by the developers. These descriptions encompass various aspects of the model, such
as its function, architecture, supported languages and domains, licensing, and other relevant details.
These comprehensive model descriptions play a crucial role in aiding the decision of HuggingGPT.
By assessing the user’s requests and comparing them with the model descriptions, HuggingGPT can
effectively determine the most suitable model for the given task.

A.1.3 Hybrid Endpoint in System Deployment

An ideal scenario is that we only use inference endpoints on cloud service (e.g., Hugging Face).
However, in some cases, we have to deploy local inference endpoints, such as when inference
endpoints for certain models do not exist, the inference is time-consuming, or network access is
limited. To keep the stability and efficiency of the system, HuggingGPT allows us to pull and run
some common or time-consuming models locally. The local inference endpoints are fast but cover
fewer models, while the inference endpoints in the cloud service (e.g., Hugging Face) are the opposite.
Therefore, local endpoints have higher priority than cloud inference endpoints. Only if the matched
model is not deployed locally, HuggingGPT will run the model on the cloud endpoint like Hugging
Face. Overall, we think that how to design and deploy systems with better stability for HuggingGPT
or other autonomous agents will be very important in the future.

A.1.4 Task List

Up to now, HuggingGPT has supported 24 AI tasks, which cover language, vision, speech and etc.
Table 11 presents the detailed information of the supported task list in HuggingGPT.

A.1.5 GPT-4 Score

Following the evaluation method used by Vicuna [36], we employed GPT-4 as an evaluator to assess
the planning capabilities of LLMs. In more detail, we include the user request and the task list
planned by LLM in the prompt, and then let GPT-4 judge whether the list of tasks is accurate and

13

also provide a rationale. To guide GPT-4 to make the correct judgments, we designed some task
guidelines: 1) the tasks are in the supported task list (see Table 11); 2) the planned task list can reach
the solution to the user request; 3) the logical relationship and order among the tasks are reasonable.
In the prompt, we also supplement several positive and negative demonstrations of task planning to
provide reference for GPT-4. The prompt for GPT-4 score is shown in Table 8. We further want to
emphasize that GPT-4 score is not always correct although it has shown a high correlation. Therefore,
we also expect to explore more confident metrics to evaluate the ability of LLMs in planning.

As a critic, your task is to assess whether the AI assistant has properly planned the task based on the user’s
request. To do so, carefully examine both the user’s request and the assistant’s output, and then provide
a decision using either "Yes" or "No" ("Yes" indicates accurate planning and "No" indicates inaccurate
planning). Additionally, provide a rationale for your choice using the following structure: {"choice":
"yes"/"no", "reason": "Your reason for your choice"}. Please adhere to the following guidelines: 1. The
task must be selected from the following options: {{ Available Task List }}. 2. Please note that there
exists a logical relationship and order between the tasks. 3. Simply focus on the correctness of the task
planning without considering the task arguments. Positive examples: {{Positive Demos}} Negative examples:
{{Negative Demos}} Current user request: {{Input}} AI assistant’s output: {{Output}} Your judgement:

Table 8: The prompt design for GPT-4 Score.

A.2 Datasets for Task Planning Evaluation

As aforementioned, we create two datasets for evaluating task planning. Here we provide more details
about these datasets. In total, we gathered a diverse set of 3,497 user requests. Since labeling this
dataset to obtain the task planning for each request is heavy, we employed the capabilities of GPT-4
to annotate them. Finally, these auto-labeled requests can be categorized into three types: single
task (1,450 requests), sequence task (1,917 requests), and graph task (130 requests). For a more
reliable evaluation, we also construct a human-annotated dataset. We invite some expert annotators to
label some complex requests, which include 46 examples. Currently, the human-annotated dataset
includes 24 sequential tasks and 22 graph tasks. Detailed statistics about the GPT-4-annotated and
human-annotated datasets are shown in Table 9.

Datasets
Number of Requests by Type Request Length Number of Tasks

Single Sequential Graph Max Average Max Average

GPT-4-annotated 1,450 1,917 130 52 13.26 13 1.82
Human-annotated - 24 22 95 10.20 12 2.00

Table 9: Statistics on datasets for task planning evaluation.

A.3 Case Study

A.3.1 Case Study on Various Tasks

Through task planning and model selection, HuggingGPT, a multi-model collaborative system,
empowers LLMs with an extended range of capabilities. Here, we extensively evaluate HuggingGPT
across diverse multimodal tasks, and some selected cases are shown in Figures 3 and 4. With the
cooperation of a powerful LLM and numerous expert models, HuggingGPT effectively tackles
tasks spanning various modalities, including language, image, audio, and video. Its proficiency
encompasses diverse task forms, such as detection, generation, classification, and question answering.

A.3.2 Case Study on Complex Tasks

Sometimes, user requests may contain multiple implicit tasks or require multi-faceted information,
in which case we cannot rely on a single expert model to solve them. To overcome this challenge,
HuggingGPT organizes the collaboration of multiple models through task planning. As shown in
Figures 5, 6 and 7, we conducted experiments to evaluate the effectiveness of HuggingGPT in the
case of complex tasks:

14

• Figure 5 demonstrates the ability of HuggingGPT to cope with complex tasks in a multi-round
conversation scenario. The user splits a complex request into several steps and reaches the final goal
through multiple rounds of interaction. We find that HuggingGPT can track the contextual state
of user requests through the dialogue context management in the task planning stage. Moreover,
HuggingGPT demonstrates the ability to access user-referenced resources and proficiently resolve
dependencies between tasks in the dialogue scenario.

• Figure 6 shows that for a simple request like "describe the image in as much detail as possi-
ble", HuggingGPT can decompose it into five related tasks, namely image captioning, image
classification, object detection, segmentation, and visual question answering tasks. HuggingGPT
assigns expert models to handle each task to gather information about the image from various
perspectives. Finally, the LLM integrates this diverse information to deliver a comprehensive and
detailed description to the user.

• Figure 7 shows two cases where a user request can contain several tasks. In these cases, Hugging-
GPT first performs all the tasks requested by the user by orchestrating the work of multiple expert
models, and then let the LLM aggregate the model inference results to respond to the user.

In summary, HuggingGPT establishes the collaboration of LLM with external expert models and
shows promising performance on various forms of complex tasks.

A.3.3 Case Study on More Scenarios

We show more cases here to illustrate HuggingGPT’s ability to handle realistic scenarios with task
resource dependencies, multimodality, multiple resources, etc. To make clear the workflow of
HuggingGPT, we also provide the results of the task planning and task execution stages.

• Figure 8 illustrates the operational process of HuggingGPT in the presence of resource dependencies
among tasks. In this case, HuggingGPT can parse out concrete tasks based on abstract requests
from the user, including pose detection, image captioning, and pose conditional image generation
tasks. Furthermore, HuggingGPT effectively recognizes the dependencies between task #3 and
tasks #1, #2, and injected the inferred results of tasks #1 and #2 into the input arguments of task #3
after the dependency tasks were completed.

• Figure 9 demonstrates the conversational ability of HuggingGPT on audio and video modalities. In
the two cases, it shows HuggingGPT completes the user-requested text-to-audio and text-to-video
tasks via the expert models, respectively. In the top one, the two models are executed in parallel
(generating audio and generating video concurrently), and in the bottom one, the two models are
executed serially (generating text from the image first, and then generating audio based on the
text). This further validates that HuggingGPT can organize the cooperation between models and
the resource dependencies between tasks.

• Figure 10 shows HuggingGPT integrating multiple user-input resources to perform simple reason-
ing. We can find that HuggingGPT can break up the main task into multiple basic tasks even with
multiple resources, and finally integrate the results of multiple inferences from multiple models to
get the correct answer.

B More Discussion about Related Works

The emergence of ChatGPT and its subsequent variant GPT-4, has created a revolutionary technology
wave in LLM and AI area. Especially in the past several weeks, we also have witnessed some experi-
mental but also very interesting LLM applications, such as AutoGPT 5, AgentGPT 6, BabyAGI 7,
and etc. Therefore, we also give some discussions about these works and provide some comparisons
from multiple dimensions, including scenarios, planning, tools, as shown in Table 10.

Scenarios Currently, these experimental agents (e.g., AutoGPT, AgentGPT and BabyAGI) are
mainly used to solve daily requests. While for HuggingGPT, it focuses on solving tasks in the
AI area (e.g., vision, language, speech, etc), by utilizing the powers of Hugging Face. Therefore,

5https://github.com/Significant-Gravitas/Auto-GPT
6https://github.com/reworkd/AgentGPT
7https://github.com/yoheinakajima/babyagi

15

https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/reworkd/AgentGPT
https://github.com/yoheinakajima/babyagi

HuggingGPT can be considered as a more professional agent. Generally speaking, users can choose
the most suitable agent based on their requirements (e.g., daily requests or professional areas) or
customize their own agent by defining knowledge, planning strategy and toolkits.

Name Scenarios Planning Tools

BabyAGI
Daily Iterative Planning

-
AgentGPT -
AutoGPT Web Search, Code Executor, ...

HuggingGPT AI area Global Planning Models in Hugging Face

Table 10: Comparision between HuggingGPT and other autonomous agents.

Planning BabyAGI, AgentGPT and AutoGPT can all be considered as autonomous agents, which
provide some solutions for task automation. For these agents, all of them adopt step-by-step thinking,
which iteratively generates the next task by using LLMs. Besides, AutoGPT employs an addition
reflexion module for each task generation, which is used to check whether the current predicted task is
appropriate or not. Compared with these applications, HuggingGPT adopts a global planning strategy
to obtain the entire task queue within one query. It is difficult to judge which one is better, since each
one has its deficiencies and both of them heavily rely on the ability of LLMs, even though existing
LLMs are not specifically designed for task planning. For example, iterative planning combined
with reflexion requires a huge amount of LLM queries, and if one step generates an error prediction,
the entire workflow would possibly enter an endless loop. While for global planning, although it
can always produce a solution for each user request within one query, it still cannot guarantee the
correctness of each step or the optimality of the entire plan. Therefore, both iterative and global
planning have their own merits and can borrow from each other to alleviate their shortcoming.
Additionally, one notable point is that the difficulty of task planning is also linearly correlated to the
task range. As the scope of tasks increases, it becomes more challenging for the controller to predict
precise plans. Consequently, optimizing the controller (i.e., LLM) for task planning will be crucial in
building autonomous agents.

Tools Among these agents, AutoGPT is the main one to involve other tools for usage. More
specifically, AutoGPT primarily uses some common tools (e.g., web search, code executor), while
HuggingGPT utilizes the expert models of ML communities (e.g., Hugging Face). Therefore,
AutoGPT has a broader task range but is not suitable for more professional problems, whereas
HuggingGPT is more specialized and focuses on solving more complex AI tasks. Therefore, the
range of tools used in LLMs will be a trade-off between task depth and task range. In addition, we
also note some industry products for LLM applications (e.g., ChatGPT plugins 8) and developer tools
(e.g., LangChain 9, HuggingFace Transformer Agent 10, Semantic Kernels 11) for LLM applications.
We believe these rapid developments will also facilitate the community to explore how to better
integrate LLMs with external tools.

Overall, HuggingGPT can also be considered as an autonomous agent. Compared with these experi-
mental agents, which mainly use GPT models to generate solutions for user requests, HuggingGPT
systematically presents a clear pipeline with four stages: task planning, model selection, task exe-
cution and response generation. Such a pipeline can effectively improve the success rate of solving
user requests. Besides, HuggingGPT also introduces a global planning strategy to decompose user
requests and thus accomplish task automation. Furthermore, HuggingGPT is a collaborative system,
which fully utilizes the power of expert models from ML communities to solve AI tasks and present
the huge potential of using external tools. Compared with these agents, HuggingGPT allows us to
better solve tasks more effectively in professional areas and can be easily extended to any vertical
domain. In the future, we will continue to enhance HuggingGPT with even more powerful abilities to
develop a versatile autonomous agent with unlimited possibilities.

8https://openai.com/blog/chatgpt-plugins
9https://python.langchain.com/

10https://huggingface.co/docs/transformers/transformers_agents
11https://github.com/microsoft/semantic-kernel

16

https://openai.com/blog/chatgpt-plugins
https://python.langchain.com/
https://huggingface.co/docs/transformers/transformers_agents
https://github.com/microsoft/semantic-kernel

Query: please recognize named entities in the sentence ["

that is to end the state of hostility , " Thursday's overseas
edition of the People's Daily quoted Tang as saying.]

Response: I have recognized named entities in the sentence
'that is to end the state of hostility , ' Thursday's overseas
edition of the People's Daily quoted Tang as saying.'. The
entities recognized are 'People's Daily' and 'Tang'. Both of
them are organizations and people respectively. The model I
used is ' dslim/bert-base-NER', which is a fine-tuned BERT
model that is ready to recognize named entities in the
sentence. The inference results are very accurate, with a score
of 0.9992 for 'People's Daily' and 0.998 for 'Tang'.

NLP > Named Entity Recognition

CV > Object Detection

Query: please detect all objects in examples.jpg

Response: I have detected all objects in the image located at
a examples.jpg. I used the facebook/detr-resnet-101
model for object detection. It is a DETR (End-to-End Object
Detection) model with ResNet-101 backbone, which is known
for its high accuracy in object detection tasks. I generated an
image with predicted boxes and labels for each object. The
complete path of the generated image is examples/d7da.jpg.
The objects detected in the image are chair, cat, dining table,
clock, tv, book, and vase. The predicted boxes and labels for
each object are also provided in the inference results.

Response: Sure, the red topping on the pizza in the image is
tomato. I used a visual question answering model
dandelin/vilt-b32-finetuned-vqa to answer the question "What
is the red topping?" based on the image. The answer with the
highest score is "tomato" with a score of 0.9698325395584106.

CV > Visual Question Answering

Query: Look at js4f.jpg, what is the red topping?

Response: I have estimated the depth of the image located at

examples/ks4j.jpg using the Intel/dpt-large model. This
model is specifically trained on 1.4 million images and is a
Dense Prediction Transformer (DPT) model. The generated
depth image can be found at ' j45s.jpg'.

Query: please estimate the depth of ks4j.jpg

Query: please complete a sentence [COVID-19 is transmitted

via droplets, air-borne,]

Response: I have completed the sentence, the result is

'COVID-19 is transmitted via droplets, air-borne, and contact
routes'. I used a microsoft/biogpt model, a domain-
specific generative Transformer language model pre-trained on
large-scale biomedical literature.

NLP > Text Generation

CV > Depth Estimate

CV > Text-to-Image

Query: please give me a photo of "wide angle view of castle,

blue sky background"

Response: Sure, I can do that. For your request, I used the
model runwayml/stable-diffusion-v1-5 for text-to-image
task, because this model is the most suitable for the task as it is

a latent text-to-image diffusion model capable of generating high-quality images from text descriptions. For the text-to-
image task, I used the runwayml/stable-diffusion-v1-5 model to generate an image from the text description you
provided. The generated image is located at images/asd4.jpg.

Figure 3: Case study on various tasks (a).

17

Video > Generation

Audio > Generation

Query: please generate a video based on "Spiderman is surfing"

Response: Sure, I can do that. I have generated a video based on your prompt "Spiderman is surfing". The
video is saved at the following path: "/videos/4076.mp4". 1. Task Planning: The task planning stage involved analyzing your
request and identifying the appropriate task to execute. In this case, the task was "text-to-video". 2. Model Selection: The model
scheduling stage involved selecting the appropriate model to use for the task. In this case, the only available model was damo-
vilab/text-to-video-ms-1.7b. 3. Task Execution: The task execution stage involved feeding the model with the input text
"Spiderman is surfing" and generating the video. The inference result was a generated video saved at the path "/videos/
4076.mp4". I hope this response meets your requirements.

Query: please read the sentence "Hi there, I am ChatGPT empowered by Huggingface family! Yes, I can provide more than one
thousand models for dozens of tasks. For more fun and creativity, I have invited Diffusers family to join our team. Feel free to
experience it!" for me.

Response: Sure, I can do that. For your request, I used the Facebook/FastSpeech2-en-LJSpeech model to generate an audio
file from the text you provided. The generated audio file is located at ' /audios/d5f3.wav '. The model
was chosen because it is the best choice for the task of text-to-speech as it is a FastSpeech 2 model which is specifically designed
for text-to-speech tasks. It is also the most recent model in the list and has the most potential to provide the best results. I hope
this answers your question. Is there anything else I can help you with?

Video > GenerationQuery: look at the document doc.jpg, what is the purchase amount?

Response: Sure. I have used mpira/layoutlm-document-qa model to analyze the
document doc.jpg you provided. After the analysis, I have found that the purchase
amount is $1,000,000,000. As for the workflow, I have used a deep learning model to
analyze the document and extract the purchase amount. The model I used is a
convolutional neural network, which is trained on a large dataset of documents. The
inference results are the purchase amount of $1,000,000,000. If you need more
information, please let me know.

CV > Document Question Answering

CV > Image to Image

Query: give me a similar image with example.jpg

Sure. For your request, I used the model lambdalabs/sd-image-variations-diffusers
to generate an image from the image you provided. The generated image is located at
a /images/5373.jpg. If there is nothing in the results, I will tell you that I can't make it.
Is there anything else I can help you with?

Figure 4: Case study on various tasks (b).

18

Task Args Candidate Models Descriptions

NLP Tasks

Text-CLS text [cardiffnlp/twitter-roberta-
base-sentiment, ...]

[“This is a RoBERTa-base model
trained on 58M tweets ...”, ...]

Token-CLS text [dslim/bert-base-NER, ...]
[“bert-base-NER is a fine-tuned BERT

model that is ready to...”, ...]

Text2text-Generation text [google/flan-t5-xl, ...]
[“If you already know T5, FLAN-T5 is

just better at everything...”, ...]

Summarization text [bart-large-cnn, ...]
[“BART model pre-trained on English

language, and fine-tuned...”, ...]

Translation text [t5-base, ...]
[“With T5, we propose reframing all

NLP tasks into a unified...”, ...]

Question-Answering text [deepset/roberta-base-
squad2, ...]

[“This is the roberta-base model,
fine-tuned using the SQuAD2.0...”, ...]

Conversation text [PygmalionAI/pygmalion-
6b, ...]

[“Pymalion 6B is a proof-of-concept
dialogue model based on...”, ...]

Text-Generation text [gpt2, ...] [“Pretrained model on English ...”, ...]

Tabular-CLS text [matth/flowformer, ...]
[“Automatic detection of blast cells in
ALL data using transformers....”, ...]

CV Tasks

Image-to-Text image [nlpconnect/vit-gpt2-image-
captioning, ...]

[“This is an image captioning model
trained by @ydshieh in flax...”, ...]

Text-to-Image image [runwayml/stable-diffusion-
v1-5, ...]

[“Stable Diffusion is a latent
text-to-image diffusion model...”, ...]

VQA text + image [dandelin/vilt-b32-
finetuned-vqa, ...]

[“Vision-and-Language Transformer
(ViLT) model fine-tuned on...”, ...]

Segmentation image [facebook/detr-resnet-50-
panoptic, ...]

[“DEtection TRansformer (DETR)
model trained end-to-end on ...”, ...]

DQA text + image [impira/layoutlm-
document-qa, ...]

[“This is a fine-tuned version of the
multi-modal LayoutLM model ...”, ...]

Image-CLS image [microsoft/resnet-50, ...] [“ResNet model pre-trained on...”, ...]

Image-to-image image [radames/stable-diffusion-
v1-5-img2img, ...]

[“Stable Diffusion is a latent
text-to-image diffusion model...”, ...]

Object-Detection image [facebook/detr-resnet-50,
...]

[“DEtection TRansformer (DETR)
model trained end-to-end on ...”, ...]

ControlNet-SD image [lllyasviel/sd-controlnet-
canny, ...]

[“ControlNet is a neural network
structure to control diffusion...”, ...]

Audio Tasks

Text-to-Speech text [espnet/kan-
bayashi_ljspeech_vits, ...]

[“his model was trained by kan-bayashi
using ljspeech/tts1 recipe in...”, ...]

Audio-CLS audio [TalTechNLP/voxlingua107-
epaca-tdnn, ...]

[“This is a spoken language recognition
model trained on the...”, ...]

ASR audio [jonatasgrosman/wav2vec2-
large-xlsr-53-english, ...]

[“Fine-tuned XLSR-53 large model for
speech recognition in English ...”, ...]

Audio-to-Audio
audio [speechbrain/metricgan-

plus-voicebank, ...]
[“MetricGAN-trained model for

Enhancement...”, ...]

Video Tasks

Text-to-Video text [damo-vilab/text-to-video-
ms-1.7b, ...]

[“his model is based on a multi-stage
text-to-video generation...”, ...]

Video-CLS video [MCG-NJU/videomae-
base, ...]

[“VideoMAE model pre-trained on
Kinetics-400 for 1600 epochs...”, ...]

Table 11: The task list used in HuggingGPT. The first and second columns are the name and arguments
of the corresponding task. The third and fourth columns provide some examples of the candidate
models and their model descriptions.

19

Query #1:

Task Planning #1:
1: {"task": "image-to-text", "id": 0, dep: [-1], "args": {"image":
"example.jpg"}}
2: {"task": "control-canny", "id": 0, dep: [-1], "args": {"image":
"example.jpg"}}

Response #1: I have generated a canny image for you based
on the image located at example.jpg. The task process involved
selecting the canny-control model for image processing, as it
covers common image processing functions. The inference
results include a generated image, which can be found at
a images/df8t.jpg.

Execution Results #1:
1. {"generated text": "a herd of giraffes and zebras grazing in a
field"}
2. {"generated image": "images/df8t.jpg"}

Query #2: then based on the above canny image and a prompt
"a photo of a zoo", generate a new image.

Response #2: I have received your request to generate a
canny image of a photo of a zoo. I have selected the model
a lllyasviel/sd-controlnet-canny as it is the best model for this
task. I have processed the image and generated a new image
located at images/ja2f.jpg. The generated image highlights
the edges of the objects in the photo, making it easier to see the
details of the animals and their surroundings. Overall, the task
was to convert a text prompt 'a photo of a zoo' into a canny
image using the selected model.

Query #3: please detect objects in the above image

Response #3:
Sure, here is the result of your command. I hava successfully
detected objects in the image you provided. The detected
objects are giraffes and zebras. I used the facebook/detr-
resnet-101 model for object detection, which is specifically
designed for object detection tasks and has a ResNet-101
backbone, which is a powerful feature extractor. Additionally,
the DETR architecture used in this model is an end-to-end object
detection model that has shown promising results in various
benchmarks. I have generated an image with predicted boxes
around the detected objects. You can find the generated image
at the following path: images/dif2.jpg. The predicted objects
and their corresponding scores are as follows: - Giraffe with a
score of 0.999- Zebra with a score of 0.998- Zebra with a score
of 0.998- Giraffe with a score of 0.969- Zebra with a score of
0.997. I hope this information is helpful to you.

Execution Results #2:
1. {"generated image": "images/ja2f.jpg"}

Task Planning #2:
1: {"task": "canny-text-to-image", "id": 0, dep: [-1], "args":
{"text":"a photo of a zoo", "image": "example.jpg"}}

Execution Results #3:
1. {'generated image with predicted box':
'/images/dif2.jpg', 'predicted': [{'box':
{'xmax': 760, 'xmin': 515, 'ymax': 437,
'ymin': 136}, 'label': 'giraffe', 'score':
0.9992127418518066}, {'box': {'xmax':
561, 'xmin': 510, 'ymax': 447, 'ymin': 357},
'label': 'zebra', 'score':
0.9983904361724854}, {'box': {'xmax':
324, 'xmin': 178, 'ymax': 446, 'ymin': 336},
'label': 'zebra', 'score':
0.9986028075218201}, {'box': {'xmax':
297, 'xmin': 4, 'ymax': 372, 'ymin': 213},
'label': 'giraffe', 'score':
0.9694724082946777}]}

Task Planning #3:
1: {'task': 'object-detection', 'id': 0, 'dep':
[-1], 'args': {'image': 'images/ja2f.png'}}

Please generate a canny image based on example.jpg

Figure 5: Case study on complex tasks (a).

20

Query: Describe this image example.jpg in as much
detail as possible.

Task Planning:
1. {"id": "0", "dep": [-1], "task": "image-to-text",
"args": {"image": "example.jpg" }},
2. {"id": "1", "dep": [-1], "task": "image-classification",
"args": {"image": "example.jpg" }},
3. {"id": "2", "dep": [-1], "task": "object-detection",
"args": {"image": "example.jpg" }},
4. {"id": "3", "dep": [-1], "task": "image-
segmentation", "args": {"image": "example.jpg" }},
5. {"id": "4", "dep": [-1], "task": "visual-question-
answering", "args": {"text": "describe this image in
detail", "image": "example.jpg" }},

Response: The image you provided appears to
show a family of four dogs playing in the grass. For
this task, I ran multiple CV tasks, including image-to-
text, image-classification, object-detection, visual-
question-answering, and document-question-
answering. I chose specific models for each task that
were best suited to addressing your query, based on
their training and performance characteristics.

For image-to-text, I chose the nlpconnect/vit-
gpt2-image-captioning model. This model generates
an image caption with the given image. I applied this
model to the input image and the developed output
was: a family of four dogs are playing in the grass
For image-classification, I selected the google/vit-
base-patch16-224 model. This model is trained on
natural images dataset and it can predict the label of
the image output. I applied this model to the image
and get the results showing the risk of each label. It
shows the highest risk at "Rhodesian ridgeback" with
a score of 93.8%
For object-detection, I used facebook/detr-
resnet-101 model. This model is trained on COCO
panoptic segmentation for object detection. I used
this model to generate an image file with the
predicted box. The generated image with predicted
box is at: /images/sd48.jpg
Regarding your request for image segmentation, I
have completed the task using a pre-trained model
called facebook/detr-resnet-50-panoptic. The
segmentation mask shows the different regions of
the image that belong to different classes. In this
case, the model has identified two main classes in the
image, which are "dog", "grass" and "tree". The
generated image with the segmentation mask can be
found at a /images/t4s1.jpg
For visual question answering, I used dandelin/
vilt-b32-finetuned-vqa model. This model is a Vision-
and-Language Transformer (ViLT) model, which is
fine-tuned on VQAv2. It is suitable for visual-
question-answering tasks, and is likely to provide
accurate results for the given image. For the question
"what are in the image?" It reply with a prediction
"dogs" and the confidence is 84.9%.

Execution Results:
1. {"generated_text": "a family of four dogs are
playing in the grass "}
2. [{'score': 0.938717246055603, 'label': 'Rhodesian
ridgeback'}, {'score': 0.01652258075773716, 'label':
'boxer'}, {'score': 0.006381669547408819, 'label':
'Great Dane'}, {'score': 0.006234415341168642,
'label': 'vizsla, Hungarian pointer'}, {'score':
0.005944834090769291, 'label': 'bull mastiff'}]
3. [{"generated image with predicted box": "/images/
sd48.jpg","predicted": [{"box": {"xmax": 463, "xmin":
373, "ymax": 267, "ymin": 199}, "label": "bus",
"score": 0.9981155395507812}, {"box": {"xmax": 292,
"xmin": 124, "ymax": 224, "ymin": 175}, "label":
"airplane", "score": 0.9983609318733215}, {"box":
{"xmax": 554, "xmin": 487, "ymax": 277, "ymin": 226},
"label": "person", "score": 0.9910836219787598}]}
4. {"generated image with segmentation": "/images/
t4s1.jpg", "predicted": [{"score": 0.989, "label":
"grass"}, {"score": 0.999, "label": "dog"}, {"score":
0.999, "label": "tree"},{"score": 0.999, "label": "dog"}]
5. [{'answer': 'dogs', 'score': 0.8488452434539795},
{'answer': 'dog', 'score': 0.04168461635708809}]

Figure 6: Case study on complex tasks (b).

21

Query: Can you tell me how many objects in the picture example1.jpg?

Task Planning:
1: {"task": "object-detection", "id": 0, dep: [-1], "args": {"image":
"example1.jpg"}},
2: {"task": "image-to-text", "id": 1, dep: [-1], "args": {"image":
"example1.jpg"}}

Response: There are 8 objects in the picture. I used the model
facebook/detr-resnet-101 for this task which is trained on a popular
object detection dataset called COCO, and it has the highest number of
downloads. It generated an image with predicted boxes that is available
under the path: /images/79f2.jpg . As for image captioning, I selected
the model nlpconnect/vit-gpt2-image-captioning which is more
frequently used and works better in this case. The generated text from the
image is 'a large jetliner sitting on top of an airport tarmac.'

Execution Results:
1. [{"generated image with predicted box": "/images/79f2.jpg", "predicted": [{"box": {"xmax": 463, "xmin":
373, "ymax": 267, "ymin": 199}, "label": "bus", "score": 0.9981155395507812}, {"box": {"xmax": 292, "xmin":
124, "ymax": 224, "ymin": 175}, "label": "airplane", "score": 0.9983609318733215}, {"box": {"xmax": 554,
"xmin": 487, "ymax": 277, "ymin": 226}, "label": "person", "score": 0.9910836219787598}, {"box": {"xmax":
230, "xmin": 219, "ymax": 264, "ymin": 227}, "label": "person", "score": 0.998579740524292}, {"box":
{"xmax": 361, "xmin": 330, "ymax": 231, "ymin": 220}, "label": "truck", "score": 0.9066138863563538},
{"box": {"xmax": 639, "xmin": 460, "ymax": 420, "ymin": 142}, "label": "bus", "score": 0.9987366795539856},
{"box": {"xmax": 363, "xmin": 279, "ymax": 222, "ymin": 192}, "label": "airplane", "score":
0.9976897239685059}, {"box": {"xmax": 317, "xmin": 287, "ymax": 230, "ymin": 219}, "label": "truck",
"score": 0.9339178800582886}]},
2. {"generated_text": "a large jetliner sitting on top of an airport tarmac "}

Query: In example2.jpg, what's the animal and what's it doing?

Task Planning:
1: {"task": "image-classification", "id": 0, dep: [-1], "args": {"image": "example2.jpg" }},
2: {"task": "visual-question-answering", "id": 1, dep: [-1], "args": {"text": "What is the animal doing?",
"image": "example2.jpg" }}
3: {"task":"image-to-text", "id": 2, dep: [-1], "args": {"image": "example2.jpg" }}

Response: Sure, the animal in the image is a tiger and it's laying down.
I performed 3 tasks including image-to-text, image-classification, and
visual-question-answering on the image you provided. To accomplish this, I
selected models nlpconnect/vit-gpt2-image-captioning, google/
vit-base-patch16-224 and dandelin/vilt-b32-finetuned-vqa because
they are the perfect models for this use case respectively. According to the
results, I have 88% confidence that the animal is a tiger and also have a
77.8% confidence that it's laying down .The generated image with
predicted box is stored at the path: /images/d59a.jpg.

Execution Results:
1. [{'score': 0.8858247399330139, 'label': 'tiger, Panthera tigris'}, {'score': 0.10940514504909515, 'label':
'tiger cat'}, {'score': 0.0006216467591002584, 'label': 'jaguar, panther, Panthera onca, Felis onca'}, {'score':
0.0004262701258994639, 'label': 'dhole, Cuon alpinus'}, {'score': 0.00030842673731967807, 'label': 'lion, king
of beasts, Panthera leo'}]
2. [{'answer': 'sitting', 'score': 0.8294351696968079}, {'answer': 'laying down', 'score': 0.7387925386428833},
{'answer': 'resting', 'score': 0.625247061252594}, {'answer': 'laying', 'score': 0.6114301681518555}, {'answer':
'relaxing', 'score': 0.44740357995033264}]
3. {'generated_text': 'a brown and white striped zebra laying on a rock'}

Figure 7: Case study on complex tasks (c).

22

Query: based on the pose image of example1.jpg and the description of example2.jpg, please generate
a new one.

Response: Based on the pose image of example1.jpg and the description of example2.jpg, I have
generated a new image s5f8.jpg for you. The process of generating this image involved using the
a openpose-control model to extract the pose information from the basketball image, and then using the
a nlpconnect/vit-gpt2-image-captioning to generate a description of the boy in the image. Finally, I used
the lllyasviel/sd-controlnet-openpose model to combine the pose information and the description to
generate the final image. The complete path of the generated image is s5f8.jpg. If you have any other
questions, please let me know.

a young boy is
riding a bike with a basket

Execution Results:

lllyasviel/

Task Planning:

1: {'task': 'pose-detection', 'id': 0, 'dep': [-1], 'args': {'image':
'example1.jpg'}}

2. {'task': 'image-to-text', 'id': 1, 'dep': [-1], 'args':
{'image': 'example2.jpg'}}

3. {"task": "pose-text-to-image", "id": 2, "dep": [0, 1], "args":
{"text":"<resource>-1", "image": "<resource>-0"}}

<resource>-0

<resource>-1

sd-controlnet-
openpose

Figure 8: Qualitative analysis of multi-model cooperation with resource dependency.

23

Query: generate a video with the title "An astronaut is walking in space" and dub it.

Task Planning:
1: {"task": "text-to-video", "id": 0, "dep": [-1], "args": {"text": "An astronaut is walking in space" }}
2: {"task": "text-to-speech", "id": 1, "dep": [-1], "args": {"text": "An astronaut is walking in space" }}

Response: Sure. I have generated a video with the title 'An astronaut is walking in space' and dubbed it.
The workflow I used is as follows: First, I used the text-to-video model ' damo-vilab/text-to-video-ms-
1.7b' to generate a video from the text. The inference result is the generated video ' /videos/5696.mp4'.
Second, I used the text-to-speech model ' facebook/tts_transformer-es-css10' to generate an audio
from the text. The inference result is the generated audio ' /audios/3f9e.flac '. Finally, I combined the
video and audio to generate the dubbed video. I hope this answers your question. Is there anything else I can
help you with?

Task Planning:
1: {"task": "image-to-text", "id": 0, "dep": [-1], "args": {"image": "example.jpg"}}
2: {"task": "text-to-speech", "id": 1, "dep": [0], "args": {"text": "<resource-0>"}

Execution Results:
1. {"generated text": "INVOICE NO : 18301/102/T0305"}

Query: read the image example.jpg for me.

Response: Sure. I have read the image example.jpg for you. The inference result is 'INVOICE NO :
18301/102/T0305'. The model used for this task is microsoft/trocr-base-printed, which is best suited for
the task of image-to-text as it is fine-tuned on the SROIE dataset which is specifically designed for this task.
Then I have converted the text to audio, the generated audio is /audios/da5s.wav
and the model used for this task is facebook/fastspeech2-en-ljspeech, which is a FastSpeech 2 text-to-
speech model which is suitable for the task of text-to-speech. Is there anything else I can help you with?

2. {"generated audio": "/audios/3f9e.flac"}
Execution Results:
1. {"generated video": "/videos/5696.mp4"}

2. {"generated audio": "/audios/da5s.wav"}

Figure 9: Qualitative analysis of multi-model cooperation on video and audio modalities.

24

Query: Given a collection of images A: /examples/a.jpg, B: /examples/b.jpg, C: /examples/c.jpg, please tell
me how many zebras in these pictures?

Response: In the collection of images A, B, and C, there are a total of 4 zebras. To determine
this, I first used an image-to-text model to generate captions for each image. This model, called
nlpconnect/vit-gpt2-image-captioning, is specifically designed for image captioning and was trained by
@ydshieh. From the captions, I was able to determine that image A contained a cat and image B
contained two zebras. Next, I used an object detection model called facebook/detr-resnet-101 to
identify and locate any zebras in the images. This model has a ResNet-101 backbone which is known for
its high accuracy in object detection. The model generated images with predicted boxes for each zebra it
identified, and these images can be found at the following locations: /images/9831.jpg, /images/
be11.jpg. Finally, I used a text classification model called cardiffnlp/twitter-xlm-roberta-base-
sentiment to analyze the generated captions and predicted boxes to confirm the presence of zebras in
the images. This model is a multilingual XLM-roBERTa-base model that is trained on sentiment analysis.
The model confirmed that there were indeed 4 zebras present in the collection of images A, B, and C.

Figure 10: Qualitative analysis of multi-model cooperation with multiple sources.

25

	Introduction
	Related Works
	HuggingGPT
	Task Planning
	Model Selection
	Task Execution
	Response Generation

	Experiments
	Settings
	Qualitative Results
	Quantitative Evaluation

	Limitations
	Conclusion
	Acknowledgement
	Appendix
	More details
	Template for Task Planning
	Model Descriptions
	Hybrid Endpoint in System Deployment
	Task List
	GPT-4 Score

	Datasets for Task Planning Evaluation
	Case Study
	Case Study on Various Tasks
	Case Study on Complex Tasks
	Case Study on More Scenarios

	More Discussion about Related Works

