
Zoom into the future

nhf_reader: An Overview

06.01.2025, Nanosurf Library v 1.11 and above

Studio Software save measurements in files with extension NHF. They are based

on the HDF-File Standard (Hierarchical Data Format).

The Python library has a module nhf_reader which can read such files.

Starting with Studio Fluorine the NHF files have a new structure, but the new

nhf_reader tries to hide this restructuring as much as possible.

nhf_reader: Processing data of Studio files

Studio saves data in ‘Measurement’ groups: (e.g Spectroscopy, Image,…)

Each measurement have ‘Segment’ groups inside (e.g Forward Scan”, “Advanced to Setpoint”,…).

A Segment then contains the data in dataset called ‘Channels’: (e.g “Topography”, “Deflection”, …)

NHF-File Structure Overview

Version 1 of Data files Version 2 of Data files

nhf_reader class reads files of version 1 and 2 and keep the naming convention with ‘measurement’

and ‘segment’.

Named measurements, segments, and data channels can be accessed by their name.

Unnamed groups, subgroups or dataset are provided as such unprocessed.

Here is an example of how to open a data file and print its structure

Open File and print structure

from nanosurf.lib.util import nhf_reader

source_file =r"Q:\User\DBR\Python\nhf_reader\nhf_v2_data\SpecGrid_0.nhf"

open the file and show the data structure
try:

with nhf_reader.NHFFileReader(source_file) as nhf_file:
print(f"File version: {nhf_file.version()}")
nhf_file.print_file_structure()

except Exception as e:
print(f"Could not read file: {source_file}.\nReason: {e}")

nhf_reader.print_file_structure() shows the

structure of the file in a hierarchical text form:

Looking inside the file structure
File version: (2, 0)
Measurement 'Spec Grid 1' of type 'Spectroscopy':

Segment 'Advance to Setpoint 1':
Channel 'Topography’:K
Channel 'Z-Controller In':
Channel 'Deflection':
Channel 'Position Z':
Channel 'Position X':
Channel 'Position Y':
Channel 'X-Controller Out':
Channel 'Y-Controller Out':
Channel 'Sampler Meta Channel':
Channel 'Sampler Timestamp':
Channel 'Time':
Dataset 'dataset_0001':

Segment 'Retract 1':
Channel 'Topography':
Channel 'Z-Controller In':
Channel 'Deflection':
Channel 'Position Z':
Channel 'Position X':
Channel 'Position Y':
Channel 'X-Controller Out':
Channel 'Y-Controller Out':
Channel 'Sampler Meta Channel':
Channel 'Sampler Timestamp':
Channel 'Time':
Dataset 'dataset_0001':

Channel 'coordinates_x':
Channel 'coordinates_y':

Group 'group_0001':

First level: Measurment with ‘name’ and type

Second level: Segment with ‘name’

Channel: Dataset with ‘name’

Dataset: Unknown Dataset

Group: Unknown Group

Nhf_reader’s internal file model

Highest level is the NHFFileReader class:

It contains access to top level groups of measurements and attributes. (e.g., e.g., Image measurement, file version attribute)

Each measurement is stored by a NHFMeasurement class:

It contains access to multiple segments and attributes (e.g. A Backward Image segment, attribute containing x/y range information)

Each segment is stored by a NHFSegement class:

It contains access to multiple data channels and attributes (e.g., Topography channel, x/y data points information)

Each data channel is stored by a NHFDataset class.

It contains access to the channel data array (or matrix), name, unit and other attributes.

Each level has a member ‘attribute’ which stores a dictionary of each attribute by key=‘attribute name’ and value=‘attribute value’.

NHFData channels are read from file by the segment’s member function read_channel().

Unknown groups or dataset can be at each level of the file hierarchy. Such data is stored as member ‘groups or ‘datasets’ in they original
unmodified form. (e.g., spectroscopy point information grid)

In case a hierarchy level has an attribute called “property”, its content is provided as individual attribute and as a SciVal class member in the
member variable ‘property’ of a NHFSegment or NHFMeasurement class.

Reading data channels

measurement = nhf_file.measurement['Spec Grid 1']
if measurement.measurement_type == nhf_reader.NHFMeasurementType.Spectroscopy:

first_segment = measurement.segment['Advance to Setpoint 1']
ch_topo = first_segment.read_channel("Topography")

Accessing a data channel by index or in a loop:

Accessing a known named data channel :

Reading imaging data as matrix:

measurement = nhf_file.measurements[0]
first_segment = measurement.segments[0]

for ch in fwd_ segment.channels:

print(f"{ch.name=}, {ch.signals()=}, {ch.units()=}")

Data channels are part of a segment and can be read by the function read_channel()

ch_topo = fwd_segment.read_channel("Topography", as_matrix=True)
print(f“X/Y-Shape of dataset={ch_topo.dataset.shape}")

Reading imaging data with NaN-Values and make sure its unit it ‘m’:

ch_topo = fwd_segment.read_channel("Topography", as_matrix=True, with_unit="m")

if ch_topo.has_nan_values():

ch_masked_topo = ch_topo.get_masked_dataset()

read_channel() function

NHFSegemnt.read_channel class.

def read_channel(self, ch:typing.Union[str, int], as_matrix:bool=False, with_signal:str=None, with_unit:str=None) -> NHFDataset:
""" Loads a specified data channel by name or index.

The data provided by physical units as specified in the Otherwise, calibration information.

For file version 2.0 and newer multiple calibrations per channel are possible.
The default calibration and unit is defined by the selected signal at the time of file storage.

Returns:

NHFDataset:
A class holding the channel data itself and supplementary information (e.g. unit)
If the channels has invalid numbers (e.g., not measured data points) these numbers are converted to NHFDataset.get_nan_value().
One can check if such numbers are in the data set by NHFDataset.has_nan_values().
if there are NaN values a masked data array can be provided by NHFDataSet.get_masked_dataset() to process only valid data points.

Parameters:

ch: str, int

Define the channel to load by its name or its index.

as_matrix: bool, optional
If set to True, the dataset is converted to a 2D numpy array. Otherwise, the data is a 1D array

with_signal: str, optional
If a signal name is provided, the corresponding calibration is used for the channel.
If not defined, the channels default signal is used.
Possible signals can be accessed by self.channel_signals()

with_unit: str
If a unit name is provided, the corresponding calibration is used for the channel.
If not defined, the channels default unit is used.
Possible signals can be accessed by self.channel_units()

"""

Full function description of read_channel()

Reading Attributes

measurement = nhf_file.measurement['Spec Grid 1’]
op_mode = measurement.attribut['measurement_mode']
speed = measurement.attribut[‘scan_line_rate']

Interesting are the attributes of a measurement, because there are important values about the measurement stored:

Each element in the structure (file, measurement, segment, dataset) have its attributes.

These can be accessed by the member self.attribute[“name”], where “name” is the name of an

attribute.

	Slide 1: nhf_reader: An Overview
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

