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1. Introduction
• Despite some known limitations, modularity maximization remains one of the most popular methods of community detection.

• In [1], Newman shows that maximizing modularity Q = 1
2m

∑
i,j

[
Aij − γ

kikj

2m

]
δ(ci, cj) becomes equivalent to the maximum likelihood fit to a planted

partition SBM when γ = ωin−ωout
ln ωin−ln ωout

. When ωin and ωout are empirically estimated, we call this value the “gamma estimate” of a partition.

• By combining Newman’s equivalence, Pamfil et al.’s [2] extension of the equivalence to several multi-layer network models, and the CHAMP partition
post-processing algorithm of Weir et al. [3], we develop a method for pruning sets of network partitions to identify small subsets that are significant
from the perspective of stochastic block model inference.

• This provides a procedure for exploring the resolution parameter space in modularity-based community detection and addresses the chal-
lenges of stochasticity due to pseudorandom computational heuristics. We additionally implemented a Python package, which is available at
https://github.com/ragibson/ModularityPruning.

2. Our Method
• Note that if a partition σ1 has a lower modularity score than σ2 at a

resolution parameter value γ, then σ1 is a worse fit than σ2 to all SBMs
satisfying the gamma estimate relation.

• We propose a pruning scheme that identifies the most “important” par-
titions by isolating those that maximize modularity at their observed
gamma estimates.

(a) Input parti-
tions obtained at
different parame-
ter values

(b) CHAMP: re-
moving the nowhere
dominant partitions

(c) Parameter es-
timation map on
CHAMP domains

(d) Pruning to the
“stable” partitions
(fixed points)

3. Selected Results
• On an SBM with nested community structure (3 large communities,

each composed of 3 smaller communities), our pruning method recovers
stable partitions at both the 3-community and 9-community scales.

• Left: force-directed layout of one realization of the SBM with the 9 block
planted community structure colored.

• Right: results from our pruning method on 10,000 Louvain runs across
γ ∈ [0, 2.5]. We find two stable partitions (one with 3 communities,
one with 9 communities) which are very highly aligned with the planted
SBM community structure.
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Domains of Optimality and γ Estimates

• On a realization of a “hard regime” synthetic multi-layer network as
described in Pamfil et al. [2], our method shows improvement over their
proposed iterative method.

• Left: rough behavior of Pamfil et al.’s iterative estimation scheme. As
in [2], it fails to converge to the ground truth community structure at
(ω, γ) ≈ (0.80, 0.96).

• Right: When input with the results of Louvain runs on a 255 × 255
uniform grid of ω, γ ∈ [0, 2], our method prunes the ∼50K partitions to
3 stable partitions. One of these has a very large domain of optimality
and high alignment with the ground truth community structure. We
find similarly high quality results when reducing the number of Louvain
runs to ∼50, suggesting that our method can be efficient in practice.
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4. Maximum γ estimates
• We use the gamma estimate formula to derive upper bounds on the res-

olution parameter for which modularity maximization can be equivalent
to assortative, degree-corrected SBM inference.

• This provides a priori regions wherein community detection heuristics
“should” be run if a certain number of communities is desired. For
example, above γ ≈ 1.0926, modularity maximization is only equivalent
to planted-partition, degree-corrected stochastic block model inference
of four or more blocks.

• Below: Some of these γmax bounds and the observed γ estimates on 16
social networks from the Stanford Large Network Dataset [4]. Here, box
plots collect γ estimates from 1000 Louvain runs on a uniform γ ∈ [0, 10]
grid on each network, grouped by K.

K γmax

2 1.0000
3 1.0926
4 1.2427
5 1.4027
6 1.5640
7 1.7241
8 1.8824
9 2.0388
10 2.1931 2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70

Number of Communities K

0

2

4

6

8

10

γ

Empirical γ Estimates from SNAP Networks as K Varies

γmean

γmax

5. References
[1] M. E. J. Newman. Equivalence between modularity optimization and maximum likelihood methods for community detection. Physical Review E, 94(5):052315, November 2016.
[2] A. Roxana Pamfil, Sam D. Howison, Renaud Lambiotte, and Mason A. Porter. Relating Modularity Maximization and Stochastic Block Models in Multilayer Networks. SIAM

Journal on Mathematics of Data Science, 1(4):667–698, January 2019. Publisher: Society for Industrial and Applied Mathematics.
[3] William H. Weir, Scott Emmons, Ryan Gibson, Dane Taylor, and Peter J. Mucha. Post-Processing Partitions to Identify Domains of Modularity Optimization. Algorithms,

10(3):93, September 2017.
[4] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network Dataset Collection. June 2014.


