Structured SVM solver for the n-slack QP with l1 slack penalty.
Implements margin rescaled structural SVM using the n-slack formulation and cutting plane method, solved using CVXOPT. The optimization is restarted in each iteration.
Parameters : | model : StructuredModel
|
---|
Attributes
w | nd-array, shape=(model.psi,) |
|
loss_curve_ | list of float | List of loss values if show_loss_every > 0. |
objective_curve_ | list of float | Primal objective after each pass through the dataset. |
Methods
fit(X, Y[, constraints, warm_start]) | Learn parameters using cutting plane method. |
get_params([deep]) | Get parameters for the estimator |
predict(X) | Predict output on examples in X. |
prune_constraints(constraints, a) | |
score(X, Y) | Compute score as 1 - loss over whole data set. |
set_params(**params) | Set the parameters of the estimator. |
Learn parameters using cutting plane method.
Parameters : | X : iterable
Y : iterable
contraints : iterable
|
---|
Get parameters for the estimator
Parameters : | deep: boolean, optional :
|
---|---|
Returns : | params : mapping of string to any
|
Predict output on examples in X. Parameters ———- X : iterable
Traing instances. Contains the structured input objects.
Returns : | Y_pred : list
|
---|
Compute score as 1 - loss over whole data set.
Returns the average accuracy (in terms of model.loss) over X and Y.
Parameters : | X : iterable
Y : iterable
|
---|---|
Returns : | score : float
|
Set the parameters of the estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Returns : | self : |
---|