
Teradata Database

SQL Fundamentals

Release 14.0
B035-1141-111A

January 2012

The product or products described in this book are licensed products of Teradata Corporation or its affiliates.

Teradata, Active Enterprise Intelligence, Applications Within, Aprimo, Aprimo Marketing Studio, Aster, BYNET, Claraview, DecisionCast,
Gridscale, Managing the Business of Marketing, MyCommerce, Raising Intelligence, Smarter. Faster. Wins., SQL-MapReduce, Teradata Decision
Experts, Teradata Labs Logo, Teradata Raising Intelligence Logo, Teradata Source Experts, WebAnalyst, and Xkoto are trademarks or registered
trademarks of Teradata Corporation or its affiliates in the United States and other countries.

Adaptec and SCSISelect are trademarks or registered trademarks of Adaptec, Inc.

AMD Opteron and Opteron are trademarks of Advanced Micro Devices, Inc.

EMC, PowerPath, SRDF, and Symmetrix are registered trademarks of EMC Corporation.

GoldenGate is a trademark of Oracle.

Hewlett-Packard and HP are registered trademarks of Hewlett-Packard Company.

Intel, Pentium, and XEON are registered trademarks of Intel Corporation.

IBM, CICS, RACF, Tivoli, and z/OS are registered trademarks of International Business Machines Corporation.

Linux is a registered trademark of Linus Torvalds.

LSI is a registered trademark of LSI Corporation.

Microsoft, Active Directory, Windows, Windows NT, and Windows Server are registered trademarks of Microsoft Corporation in the United
States and other countries.

NetVault is a trademark or registered trademark of Quest Software, Inc. in the United States and/or other countries.

Novell and SUSE are registered trademarks of Novell, Inc., in the United States and other countries.

Oracle, Java, and Solaris are registered trademarks of Oracle and/or its affiliates.

QLogic and SANbox are trademarks or registered trademarks of QLogic Corporation.

SAS and SAS/C are trademarks or registered trademarks of SAS Institute Inc.

SPARC is a registered trademark of SPARC International, Inc.

Symantec, NetBackup, and VERITAS are trademarks or registered trademarks of Symantec Corporation or its affiliates in the United States
and other countries.

Unicode is a registered trademark of Unicode, Inc. in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other product and company names mentioned herein may be the trademarks of their respective owners.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS-IS” BASIS, WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION
MAY NOT APPLY TO YOU. IN NO EVENT WILL TERADATA CORPORATION BE LIABLE FOR ANY INDIRECT, DIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS OR LOST SAVINGS, EVEN IF EXPRESSLY ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

The information contained in this document may contain references or cross-references to features, functions, products, or services that are
not announced or available in your country. Such references do not imply that Teradata Corporation intends to announce such features,
functions, products, or services in your country. Please consult your local Teradata Corporation representative for those features, functions,
products, or services available in your country.

Information contained in this document may contain technical inaccuracies or typographical errors. Information may be changed or updated
without notice. Teradata Corporation may also make improvements or changes in the products or services described in this information at any
time without notice.

To maintain the quality of our products and services, we would like your comments on the accuracy, clarity, organization, and value of this
document. Please email: teradata-books@lists.teradata.com.

Any comments or materials (collectively referred to as “Feedback”) sent to Teradata Corporation will be deemed non-confidential. Teradata
Corporation will have no obligation of any kind with respect to Feedback and will be free to use, reproduce, disclose, exhibit, display, transform,
create derivative works of, and distribute the Feedback and derivative works thereof without limitation on a royalty-free basis. Further, Teradata
Corporation will be free to use any ideas, concepts, know-how, or techniques contained in such Feedback for any purpose whatsoever, including
developing, manufacturing, or marketing products or services incorporating Feedback.

Copyright © 2000 - 2012 by Teradata Corporation. All Rights Reserved.

mailto:teradata-books@lists.teradata.com

SQL Fundamentals 3

Preface

Purpose

SQL Fundamentals describes basic Teradata SQL concepts, including data handling, SQL data
definition, control, and manipulation, and the SQL lexicon.

Use this book with the other books in the SQL book set.

Audience

System administrators, database administrators, security administrators, application
programmers, Teradata field engineers, end users, and other technical personnel responsible
for designing, maintaining, and using Teradata Database will find this book useful.

Experienced SQL users can also see simplified statement, data type, function, and expression
descriptions in SQL Quick Reference.

Supported Software Releases and Operating
Systems

This book supports Teradata® Database 14.0.

Teradata Database 14.0 is supported on:

• SUSE Linux Enterprise Server (SLES)10

• SLES 11

Note that SLES 11 will be supported after the initial release of Teradata Database 14.0.

Teradata Database client applications support other operating systems.

Prerequisites

If you are not familiar with Teradata Database, you will find it useful to read Introduction to
Teradata before reading this book.

You should be familiar with basic relational database management technology. This book is
not an SQL primer.

Preface
Changes to This Book

4 SQL Fundamentals

Changes to This Book

Additional Information

Release Description

Teradata Database 14.0
January 2012

Updated system limits.

Described Teradata SQL design philosophy.

Teradata Database 14.0
November 2011

Added new reserved, nonreserved, and TPT keywords.

Users should not change cost profile settings in a production
environment without direction from the Teradata Support Center.

Clarified the distinction between SQL statements and SQL requests.

Deleted former chapter 1 (“Objects”) from this book.

URL Description

www.info.teradata.com/ Use the Teradata Information Products Publishing Library site
to:

• View or download a manual:

1 Under Online Publications, select General Search.

2 Enter your search criteria and click Search.

• Download a documentation CD-ROM:

1 Under Online Publications, select General Search.

2 In the Title or Keyword field, enter CD-ROM, and click
Search.

• Order printed manuals:

Under Print & CD Publications, select How to Order.

www.teradata.com The Teradata home page provides links to numerous sources of
information about Teradata. Links include:

• Executive reports, case studies of customer experiences with
Teradata, and thought leadership

• Technical information, solutions, and expert advice

• Press releases, mentions and media resources

www.teradata.com/t/TEN/ Teradata Customer Education designs, develops and delivers
education that builds skills and capabilities for our customers,
enabling them to maximize their Teradata investment.

www.teradataatyourservice.com Use Teradata @ Your Service to access Orange Books, technical
alerts, and knowledge repositories, view and join forums, and
download software patches.

http://www.info.teradata.com
http://www.teradata.com
http://www.teradata.com/t/TEN/
www.teradataatyourservice.com

Preface
Teradata Database Optional Features

SQL Fundamentals 5

To maintain the quality of our products and services, we would like your comments on the
accuracy, clarity, organization, and value of this document. Please email teradata-
books@lists.teradata.com.

Teradata Database Optional Features

This book may include descriptions of the following optional Teradata Database features and
products:

• Teradata Row Level Security

• Temporal Table Support

• Teradata Columnar

• Teradata Virtual Storage (VS)

You may not use these features without the appropriate licenses. The fact that these features
may be included in product media or downloads, or described in documentation that you
receive, does not authorize you to use them without the appropriate licenses.

Contact your Teradata sales representative to purchase and enable optional features.

developer.teradata.com/ Teradata Developer Exchange provides articles on using
Teradata products, technical discussion forums, and code
downloads.

URL Description

http://developer.teradata.com/
mailto:teradata-books@lists.teradata.com
mailto:teradata-books@lists.teradata.com

Preface
Teradata Database Optional Features

6 SQL Fundamentals

SQL Fundamentals 7

Table of Contents

Preface. .3

Purpose .3

Audience .3

Supported Software Releases and Operating Systems .3

Prerequisites .3

Changes to This Book. .4

Additional Information .4

Teradata Database Optional Features .5

Chapter 1: Basic SQL Syntax and Lexicon . 11

Structure of an SQL Statement . 11

SQL Lexicon Characters . 12

Keywords . 13

Expressions . 14

Names on Systems with Standard Language Support . 15

Name Validation on Systems with Japanese Language Support. 19

Object Name Translation and Storage . 23

Object Name Comparisons . 23

Finding the Internal Hexadecimal Representation for Object Names 24

Standard Form for Data in Teradata Database . 25

Unqualified Object Names . 27

Default Database . 29

Literals . 31

NULL Keyword as a Literal . 34

Operators . 35

Functions . 37

Delimiters . 37

Separators . 39

Comments . 39

Terminators . 42

Null Statements . 43

Table of Contents

8 SQL Fundamentals

Chapter 2: SQL Data Definition, Control, and Manipulation . .45

SQL Functional Families and Binding Styles .45

Data Definition Language .46

Altering Table Structure and Definition .47

Dropping and Renaming Objects .48

Data Control Language .50

Data Manipulation Language .50

Subqueries .55

Recursive Queries .56

Query and Workload Analysis Statements .60

Help and Database Object Definition Tools. .61

Chapter 3: SQL Data Handling. .63

SQL Statement and SQL Requests. .63

Invoking SQL Statements. .63

SQL Requests. .64

Transactions .66

Teradata Extensions to ANSI SQL. .66

Transaction Processing in ANSI Session Mode .67

Transaction Processing in Teradata Session Mode .68

Multistatement Requests .69

Iterated Requests .71

Dynamic and Static SQL .73

Dynamic SQL in Stored Procedures .75

Using SELECT With Dynamic SQL .76

Event Processing Using Queue Tables .77

Manipulating Nulls .78

Session Parameters .83

Session Management .87

Return Codes. .88

Statement Responses. .91

Success Response. .92

Warning Response .93

Error Response (ANSI Session Mode Only). .93

Failure Response .94

Table of Contents

SQL Fundamentals 9

Chapter 4: Query Processing . 97

Queries and AMPs . 97

Table Access. 105

Full-Table Scans . 107

Collecting Statistics . 108

Appendix A: Notation Conventions . 111

Syntax Diagram Conventions . 111

Character Shorthand Notation In This Book . 116

Appendix B: Restricted Words . 119

Teradata Reserved Words. 119

Teradata Nonreserved Words . 123

Teradata Future Reserved Words . 125

Teradata Parallel Transporter Reserved Keywords . 126

SQLRestrictedWords Function . 128

ANSI SQL:2008 Reserved Words. 132

ANSI SQL:2008 Nonreserved Words . 135

Appendix C: Teradata Database Limits . 139

System Limits . 139

Database Limits . 144

Session Limits . 155

Appendix D: ANSI SQL Compliance . 157

ANSI SQL Standard . 157

Terminology Differences Between ANSI SQL and Teradata . 162

SQL Flagger . 163

Table of Contents

10 SQL Fundamentals

Appendix E:
Performance Considerations .165

Using the 2 PC Protocol .165

Glossary .167

Index .169

SQL Fundamentals 11

CHAPTER 1 Basic SQL Syntax and Lexicon

This chapter explains the syntax and lexicon for Teradata SQL, a single, unified,
nonprocedural language that provides capabilities for queries, data definition, data
modification, and data control of Teradata Database.

Structure of an SQL Statement

Syntax

The following diagram indicates the basic structure of an SQL statement.

where:

This syntax element … Specifies …

statement_keyword the name of the statement.

expressions literals, name references, or operations using names and literals.

functions the name of a function and its arguments, if any.

keywords special values introducing clauses or phrases or representing special
objects, such as NULL.

Most keywords are reserved words and cannot be used in names.

clauses subordinate statement qualifiers.

phrases data attribute phrases.

; the Teradata SQL statement separator and request terminator.

The semicolon separates statements in a multistatement request and
terminates a request when it is the last nonblank character on an input line
in BTEQ.

The request terminator is required for a request defined in the body of a
macro.

FF07D232

statement_keyword

;

expressions

functions

keywords

clauses

,

phrases

Chapter 1: Basic SQL Syntax and Lexicon
SQL Lexicon Characters

12 SQL Fundamentals

Typical SQL Statement

A typical SQL statement consists of a statement keyword, one or more column names, a
database name, a table name, and one or more optional clauses introduced by keywords. For
example, in the following single-statement request, the statement keyword is SELECT:

SELECT deptno, name, salary
FROM personnel.employee
WHERE deptno IN(100, 500)
ORDER BY deptno, name ;

The select list for this statement is made up of the names:

• Deptno, name, and salary (the column names)

• Personnel (the database name)

• Employee (the table name)

The search condition, or WHERE clause, is introduced by the keyword WHERE.

WHERE deptno IN(100, 500)

The sort order, or ORDER BY, clause is introduced by the keywords ORDER BY.

ORDER BY deptno, name

Related Topics

The pages that follow provide details on the elements that appear in an SQL statement.

SQL Lexicon Characters

Client Character Data

The characters that make up the SQL lexicon can be represented on the client system in ASCII,
EBCDIC, UTF-8, UTF-16, or in an installed user-defined character set.

If the client system character data is not ASCII, then it is converted by Teradata Database to an
internal form for processing and storage. Data returned to the client system is converted to the
client character set.

For more information on … See …

statement_keyword “Keywords” on page 13

keywords

expressions “Expressions” on page 14

functions “Functions” on page 37

separators “Separators” on page 39

terminators “Terminators” on page 42

Chapter 1: Basic SQL Syntax and Lexicon
Keywords

SQL Fundamentals 13

Server Character Data

The internal forms used for character support are described in International Character Set
Support. The notation used for Japanese characters is described in:

• “Character Shorthand Notation In This Book”

• Appendix A: “Notation Conventions”

Case Sensitivity

See the following topics in SQL Data Types and Literals:

• “Default Case Sensitivity of Character Columns”

• “CASESPECIFIC Phrase”

• “UPPERCASE Phrase”

• "Character String Literals"

See the following topics in SQL Functions, Operators, Expressions, and Predicates:

• “LOWER Function”

• “UPPER Function”

Keywords

Keywords are words that have special meanings in SQL statements. Keywords can be reserved
and nonreserved. Reserved keywords are included in the list of reserved words that you cannot
use to name database objects. Although you can use nonreserved keywords as object names,
doing so may result in possible confusion.

Statement Keyword

The statement keyword, the first keyword in an SQL statement, is usually a verb. For example,
in the INSERT statement, the first keyword is INSERT.

Other Keywords

Other keywords appear throughout a statement as modifiers (for example, DISTINCT,
PERMANENT), or as words that introduce clauses (for example, IN, AS, AND, TO, WHERE).

In this book, keywords appear entirely in uppercase letters, though SQL does not discriminate
between uppercase and lowercase letters in a keyword.

For example, SQL interprets the following SELECT statements identically:

Select Salary from Employee where EmpNo = 10005;
SELECT Salary FROM Employee WHERE EmpNo = 10005;
select Salary FRom Employee WherE EmpNo = 10005;

All keywords must be from the ASCII repertoire. Full-width letters are not valid regardless of
the character set being used. For a list of Teradata SQL keywords, see Appendix B: “Restricted
Words.”

Chapter 1: Basic SQL Syntax and Lexicon
Expressions

14 SQL Fundamentals

Reserved Words and Object Names

You cannot use reserved words to name database objects. Because new reserved words are
frequently added to new releases of Teradata Database, you may experience a problem with
database object names that were valid in prior releases but then become nonvalid in a new
release. The workaround for this is to do one of the following:

• Put the newly nonvalid name in double quotation marks.

• Rename the object.

In either case you must change your applications.

Expressions

An expression, which specifies a value, can consist of literals (or constants), name references,
or operations using names and literals.

Scalar Expressions

A scalar expression produces a single number, character string, byte string, date, time,
timestamp, or interval.

A value expression has exactly one declared type common to every possible result of
evaluation. Implicit type conversion rules apply to expressions.

Query Expressions

Query expressions operate on table values and produce rows and tables of data. Query
expressions can include a FROM clause, which operates on a table reference and returns a
single-table value.

Zero-table SELECT statements do not require a FROM clause.

Related Topics

For more information on … See …

• CASE expressions

• arithmetic expressions

• logical expressions

• datetime expressions

• interval expressions

• character expressions

• byte expressions

SQL Functions, Operators, Expressions, and Predicates.

data type conversions SQL Functions, Operators, Expressions, and Predicates.

query expressions SQL Data Manipulation Language.

Chapter 1: Basic SQL Syntax and Lexicon
Names on Systems with Standard Language Support

SQL Fundamentals 15

Names on Systems with Standard Language
Support

In Teradata SQL, various database objects such as tables, views, stored procedures, macros,
columns, and collations are identified by a name.

Rules

Following are the rules for naming Teradata Database database objects on systems enabled for
standard language support:

• You must define and reference each object, such as user, database, or table, by a name.

• In general, names consist of 1 to 30 characters.

• Names can appear as a sequence of characters within double quotation marks, as a
hexadecimal name literal, and as a Unicode delimited identifier. Such names have fewer
restrictions on the characters that can be included. The restrictions are described in
“QUOTATION MARK Characters and Names” on page 16 and “Internal Hexadecimal
Representation of a Name” on page 17.

• Names that are not enclosed within double quotation marks have the following syntactic
restrictions:

• They may only include the following characters:

• Uppercase or lowercase letters (A to Z and a to z)

• Digits (0 through 9)

• The special characters DOLLAR SIGN ($), NUMBER SIGN (#), and LOW
LINE (_)

• They must not begin with a digit.

• They must not be a reserved word.

• Systems that are enabled for Japanese language support allow more characters to be used
for names, but determining the maximum number of characters allowed in a name
becomes much more complex (see “Name Validation on Systems with Japanese Language
Support” on page 19).

• Names that define databases and objects must observe the following rules:

• Databases, users, and profiles must have unique names.

• Tables, views, stored procedures, join or hash indexes, triggers, user-defined functions,
or macros can take the same name as the database or user in which they are created,
but cannot take the same name as another of these objects in the same database or user.

• Roles can have the same name as a profile, table, column, view, macro, trigger, table
function, user-defined function, external stored procedure, or stored procedure;
however, role names must be unique among users and databases.

• Table and view columns must have unique names.

• Parameters defined for a macro or stored procedure must have unique names.

• Secondary indexes on a table must have unique names.

Chapter 1: Basic SQL Syntax and Lexicon
Names on Systems with Standard Language Support

16 SQL Fundamentals

• Named constraints on a table must have unique names.

• Secondary indexes and constraints can have the same name as the table they are
associated with.

• CHECK constraints, REFERENCE constraints, and INDEX objects can also have assigned
names. Names are optional for these objects.

• Names are not case-specific (see “Case Sensitivity and Names” on page 18).

QUOTATION MARK Characters and Names

Enclosing names in QUOTATION MARK characters (U+0022) greatly increases the valid set
of characters for defining names.

Pad characters and special characters can also be included. For example, the following strings
are both valid names:

• "Current Salary"

• "D'Augusta"

The QUOTATION MARK characters that delineate a name are not part of the name, but they
are required if the name is not otherwise valid.

For example, these two names are identical, even though one is enclosed within QUOTATION
MARK characters:

• This_Name

• "This_Name"

Object names may only contain characters that are translatable to a specific subset of the
UNICODE server character set. For a list of characters from the UNICODE server character
set that are valid in object names, see the following text files that are available on CD and on
the Web at http://www.info.teradata.com.

The object name must not consist entirely of blank characters. In this context, a blank
character is any of the following:

File Name (on CD) Title (on the Web)

UOBJNSTD.txt UNICODE in Object Names on Standard Language Support Systems

UOBJNJAP.txt UNICODE in Object Names on Japanese Language Support Systems

• NULL (U+0000)

• CHARACTER TABULATION (U+0009)

• LINE FEED (U+000A)

• LINE TABULATION (U+000B)

• FORM FEED (U+000C)

• CARRIAGE RETURN (U+000D)

• SPACE (U+0020)

http://www.info.teradata.com

Chapter 1: Basic SQL Syntax and Lexicon
Names on Systems with Standard Language Support

SQL Fundamentals 17

To include a QUOTATION MARK in an object name, use two consecutive QUOTATION
MARK characters (""). Only one QUOTATION MARK character is counted in the length of
the name and is stored in Dictionary tables that track name usage.

Using any of the following example names for an object is valid.

Note: If you use names that are enclosed in double quotation marks, the QUOTATION
MARK characters that delineate the names are not counted in the length of the name and are
not stored in Dictionary tables used to track name usage.

If a Dictionary view display such names, they are displayed without the double quotation
marks, and if the resulting names are used without adding double quotation marks, the likely
outcome is an error report.

For example, if a statement used "D'Augusta" as the name of a table column, any HELP
statements that return column names return the name as D'Augusta (without being enclosed
in QUOTATION MARK characters).

Internal Hexadecimal Representation of a Name

You can also create and reference object names by their internal hexadecimal representation in
the Data Dictionary using hexadecimal name literals or Unicode delimited identifiers.

Object names are stored in the Data Dictionary using the UNICODE server character set.

For backward compatibility, object names are processed internally as LATIN strings on
systems enabled with standard language support and as KANJI1 strings on systems enabled
with Japanese language support.

Hexadecimal name literals and Unicode delimited identifiers are subject to the same
restrictions as names enclosed within double quotation marks and may only contain
characters that are translatable to a specific subset of the UNICODE server character set. For a
list of characters from the UNICODE server character set that are valid in object names, see
the following text files that are available on CD and on the Web at http://
www.info.teradata.com.

• Employee

• job_title

• CURRENT_SALARY

• DeptNo

• Population_of_Los_Angeles

• Totaldollars

• "Table A"

• "Today's Date"

• “Monthly””A””Sales”

File Name (on CD) Title (on the Web)

UOBJNSTD.txt UNICODE in Object Names on Standard Language Support Systems

UOBJNJAP.txt UNICODE in Object Names on Japanese Language Support Systems

http://www.info.teradata.com
http://www.info.teradata.com

Chapter 1: Basic SQL Syntax and Lexicon
Names on Systems with Standard Language Support

18 SQL Fundamentals

Here is an example of a hexadecimal name literal that represents the name TAB1 using full
width Latin characters from the KANJIEBCDIC5035_0I character set on a system enabled for
Japanese language support:

SELECT EmployeeID FROM '0E42E342C142C242F10F'XN;

Teradata Database converts the hexadecimal name literal from a KANJI1 string to a
UNICODE string to find the object name in the Data Dictionary.

Here is an example of a Unicode delimited identifier that represents the name TAB1 on a
system enabled for Japanese language support:

SELECT EmployeeID FROM U&"#FF34#FF21#FF22#FF11" UESCAPE '#';

The best practice is to use Unicode delimited identifiers because the hexadecimal values are
the same across all supported character sets. The hexadecimal name representation using
hexadecimal name literals varies depending on the character set.

For more information on the syntax and usage notes for hexadecimal name literals and
Unicode delimited identifiers, see SQL Data Types and Literals.

Case Sensitivity and Names

Names are not case-dependent. A name cannot be used twice by changing its case. Any mix of
uppercase and lowercase can be used when referencing symbolic names in a request.

For example, the following statements are identical.

SELECT Salary FROM Employee WHERE EmpNo = 10005;
SELECT SALARY FROM EMPLOYEE WHERE EMPNO = 10005;
SELECT salary FROM employee WHERE eMpNo = 10005;

The case in which a column name is defined can be important. The column name is the
default title of an output column, and symbolic names are returned in the same case in which
they were defined.

For example, assume that the columns in the SalesReps table are defined:

CREATE TABLE SalesReps
(last_name VARCHAR(20) NOT NULL,
first_name VARCHAR(12) NOT NULL, ...

In response to a query that does not define a TITLE phrase, the column names are returned
exactly as defined they were defined, for example, last_name, then first_name.

SELECT Last_Name, First_Name
FROM SalesReps
ORDER BY Last_Name;

You can use the TITLE phrase to specify the case, wording, and placement of an output
column heading either in the column definition or in an SQL statement.

For more information, see SQL Data Manipulation Language.

Chapter 1: Basic SQL Syntax and Lexicon
Name Validation on Systems with Japanese Language Support

SQL Fundamentals 19

Name Validation on Systems with Japanese
Language Support

A system that is enabled with Japanese language support allows thousands of additional
characters to be used for names, but also introduces additional restrictions.

Rules

Names that are not enclosed in double quotation marks can use the following characters when
Japanese language support is enabled:

• Any character valid in a name that is not enclosed in double quotation marks under
standard language support:

• Uppercase or lowercase letters (A to Z and a to z)

• Digits (0 through 9)

• The special characters DOLLAR SIGN ($), NUMBER SIGN (#), and LOW LINE (_)

• The full-width (zenkaku) versions of the characters valid for names under standard
language support:

• Full-width uppercase or lowercase letters (A to Z and a to z)

• Full-width digits (0 through 9)

• The special characters full width DOLLAR SIGN ($), full width NUMBER SIGN (#),
and full width LOW LINE (_)

• Full-width (zenkaku) and half-width (hankaku) Katakana characters and sound marks.

• Hiragana characters.

• Kanji characters from JIS-x0208.

The length of a name is restricted in a complex fashion. For details, see “Calculating the
Length of a Name” on page 21.

Names cannot begin with a digit or a full-width digit.

Charts of the supported Japanese character sets, the Teradata Database internal encodings, the
valid character ranges for Japanese object names and data, and the nonvalid character ranges
for Japanese data and object names are documented in International Character Set Support.

Rules for Names Enclosed in Double Quotation Marks and Internal
Hexadecimal Representation of Names

As described in “QUOTATION MARK Characters and Names” on page 16 and “Internal
Hexadecimal Representation of a Name” on page 17, a name can also appear as a sequence of
characters within double quotation marks, as a hexadecimal name literal, or as a Unicode
delimited identifier. Such names have fewer restrictions on the characters that can be
included.

Chapter 1: Basic SQL Syntax and Lexicon
Name Validation on Systems with Japanese Language Support

20 SQL Fundamentals

Object names are stored in the Data Dictionary using the UNICODE server character set. For
backward compatibility, object names are processed internally as KANJI1 strings on systems
enabled with Japanese language support.

Object names may only contain characters that are translatable to a specific subset of the
UNICODE server character set. For a list of characters from the UNICODE server character
set that are valid in object names on systems enabled with Japanese language support, see the
following text file that is available on CD and on the Web at http://www.info.teradata.com.

The list of valid UNICODE characters in object names applies to characters that translate
from Japanese client character sets, predefined non-Japanese multibyte client character sets
such as UTF-8, UTF-16, TCHBIG5_1R0, and HANGULKSC5601_2R4, and extended site-
defined multibyte client character sets.

The object name must not consist entirely of blank characters. In this context, a blank
character is any of the following:

Cross-Platform Integrity

Because object names are stored in the Data Dictionary using the UNICODE server character
set, you can access objects from heterogeneous clients. For example, consider a table name of

 where the translation to the UNICODE server character set is equivalent to the
following Unicode delimited identifier:

U&"#FF83#FF70#FF8C#FF9E#FF99" UESCAPE '#'

From a client where the client character set is KANJIEUC_0U, you can access the table using
the following hexadecimal name literal:

'80C380B080CC80DE80D9'XN

From a client where the client character set is KANJISJIS_0S, you can access the table using the
following hexadecimal name literal:

'C3B0CCDED9'XN

Name Validation

Name validation occurs when the object is created or renamed:

• User names, database names, and account names are verified during the CREATE/
MODIFY USER and CREATE/MODIFY DATABASE statements.

File Name (on CD) Title (on the Web)

UOBJNJAP.txt UNICODE in Object Names on Japanese Language Support Systems

• NULL (U+0000)

• CHARACTER TABULATION (U+0009)

• LINE FEED (U+000A)

• LINE TABULATION (U+000B)

• FORM FEED (U+000C)

• CARRIAGE RETURN (U+000D)

• SPACE (U+0020)

http://www.info.teradata.com

Chapter 1: Basic SQL Syntax and Lexicon
Name Validation on Systems with Japanese Language Support

SQL Fundamentals 21

• Names of work tables and error tables are validated by the MultiLoad and FastLoad client
utilities.

• Table names and column names are verified during the CREATE/ALTER TABLE and
RENAME TABLE statements. View and macro names are verified during the CREATE/
RENAME VIEW and CREATE/RENAME MACRO statements.

Stored procedure and external stored procedure names are verified during the execution of
CREATE/RENAME/REPLACE PROCEDURE statements.

UDF names are verified during the execution of CREATE/RENAME/REPLACE
FUNCTION statements.

Hash index names are verified during the execution of CREATE HASH INDEX. Join index
names are verified during the execution of CREATE JOIN INDEX.

• Alias object names used in the SELECT, UPDATE, and DELETE statements are verified.
The validation occurs only when the SELECT statement is used in a CREATE/REPLACE
VIEW statement, and when the SELECT, UPDATE, or DELETE TABLE statement is used
in a CREATE/REPLACE MACRO statement.

Calculating the Length of a Name

The length of a name is measured by the physical bytes of its internal representation, not by
the number of viewable characters. Under the KanjiEBCDIC character sets, the Shift-Out and
Shift-In characters that delimit a multibyte character string are included in the byte count.

For example, the following table name contains six logical characters of mixed single byte
characters/multibyte characters, defined during a KanjiEBCDIC session:

<TAB1>QR

All single byte characters, including the Shift-Out/Shift-In characters, are translated into the
Teradata Database internal encoding, based on JIS-x0201. Under the KanjiEBCDIC character
sets, all multibyte characters remain in the client encoding.

Thus, the processed name is a string of twelve bytes, padded on the right with the single byte
space character to a total of 30 bytes.

The internal representation is:

0E 42E3 42C1 42C2 42F1 0F 51 52 20 20 20 20 20 20 20 20 20 20 20 20 ...
< T A B 1 > Q R

To ensure upgrade compatibility, an object name created under one character set cannot
exceed 30 bytes in any supported character set.

For example, a single Katakana character occupies 1 byte in KanjiShift-JIS. However, when
KanjiShift-JIS is converted to KanjiEUC, each Katakana character occupies two bytes. Thus, a
30-byte Katakana name in KanjiShift-JIS expands in KanjiEUC to 60 bytes, which is illegal.

The formula for calculating the correct length of an object name is:

Length = ASCII + (2*KANJI) + MAX (2*KATAKANA, (KATAKANA + S2M + M2S))

where:

Chapter 1: Basic SQL Syntax and Lexicon
Name Validation on Systems with Japanese Language Support

22 SQL Fundamentals

Examples of Validating Japanese Object Names

The following tables illustrate valid and nonvalid object names under the Japanese character
sets: KanjiEBCDIC, KanjiEUC, and KanjiShift-JIS. The meanings of ASCII, KATAKANA,
KANJI, S2M, M2S, and LEN are defined in “Calculating the Length of a Name” on page 21.

KanjiEBCDIC Object Name Examples

KanjiEUC Object Name Examples

This variable … Represents the number of …

ASCII single-byte ASCII characters in the name.

KANJI double-byte characters in the name from the JIS-x0208 standard.

KATAKANA single-byte Hankaku Katakana characters in the name.

S2M transitions from ASCII or KATAKANA to JIS-x0208.

M2S transitions from JIS-x0208 to ASCII or KATAKANA.

Name ASCII Kanji Katakana S2M M2S LEN Result

<ABCDEFGHIJKLMN> 0 14 0 1 1 30 Valid.

<ABCDEFGHIJ>kl<MNO> 2 13 0 2 2 32 Not valid because LEN > 30.

<ABCDEFGHIJ>kl<> 2 10 0 2 2 26 Not valid because consecutive SO
and SI characters are not allowed.

<ABCDEFGHIJ><K> 0 11 0 2 2 26 Not valid because consecutive SI
and SO characters are not allowed.

ABCDEFGHIJKLMNO 0 0 15 0 0 30 Valid.

<ABCDEFGHIJ>KLMNO 0 10 5 1 1 30 Valid.

<> 0 1 0 1 1 6 Not valid because the double byte
space is not allowed.

Name ASCII Kanji Katakana S2M M2S LEN Result

ABCDEFGHIJKLMOPQ 6 10 0 3 3 32 Not valid because LEN > 30 bytes.

ABCDEFGHIJKLM 6 7 0 2 2 24 Valid.

ss2ABCDEFGHIJKL 0 11 1 1 1 25 Valid.

Ass2BCDEFGHIJKLMN 0 13 1 2 2 31 Not valid because LEN > 30 bytes.

ss3C 0 0 0 1 1 2 Not valid because characters from
code set 3 are not allowed.

Chapter 1: Basic SQL Syntax and Lexicon
Object Name Translation and Storage

SQL Fundamentals 23

KanjiShift-JIS Object Name Examples

Related Topics

For charts of the supported Japanese character sets, the Teradata Database internal encodings,
the valid character ranges for Japanese object names and data, and the nonvalid character
ranges for Japanese data and object names, see International Character Set Support.

Object Name Translation and Storage

Object names are stored in the dictionary tables using the UNICODE server character set. For
backward compatibility, object names on systems enabled with Japanese language support are
processed internally as KANJI1 strings using the following translation conventions.

Object Name Comparisons

In comparing two names, the following rules apply:

• Names are case insensitive.

Name ASCII Kanji Katakana S2M M2S LEN Result

ABCDEFGHIJKLMNOPQR 6 5 7 1 1 30 Valid.

ABCDEFGHIJKLMNOPQR 6 5 7 4 4 31 Not valid because LEN > 30 bytes.

Character Type Description

Single byte All single byte characters in a name, including the KanjiEBCDIC Shift-Out/Shift-
In characters, are translated into the Teradata Database internal representation
(based on JIS-x0201 encoding).

Multibyte Multibyte characters in object names are handled according to the character set in
effect for the current session:

• KanjiEBCDIC: Each multibyte character within the Shift-Out/Shift-In
delimiters is processed without translation; that is, it remains in the client
encoding. The name string must have matched (but not consecutive) Shift-Out
and Shift-In delimiters.

• KanjiEUC: Under code set 1, each multibyte character is translated from
KanjiEUC to KanjiShift-JIS. Under code set 2, byte ss2 (0x8E) is translated to
0x80; the second byte is left unmodified. This translation preserves the relative
ordering of code set 0, code set 1, and code set 2.

• KanjiShift-JIS: Each multibyte character is processed without translation. It
remains in the client encoding.

For information on non-Japanese multibyte character sets, see International
Character Set Support.

Chapter 1: Basic SQL Syntax and Lexicon
Finding the Internal Hexadecimal Representation for Object Names

24 SQL Fundamentals

A simple Latin lowercase letter is equivalent to its corresponding simple Latin uppercase
letter. For example, 'a' is equivalent to 'A'.

A full-width Latin lowercase letter is equivalent to its corresponding full-width Latin
uppercase letter. For example, the full-width letter 'a' is equivalent to the full-width letter
'A'.

• Although different character sets have different physical encodings, multibyte characters
that have the same logical presentation compare as equivalent.

For example, the following strings illustrate the internal representation of two names, both
of which were defined with the same logical multibyte characters. However, the first name
was created under the KANJIEBCDIC5026_0I client character set, and the second name
was created under KANJISJIS_0S.

KanjiEBCDIC: 0E 42E3 42C1 42C2 42F1 0F
KanjiShift-JIS: 8273 8260 8261 8250

Finding the Internal Hexadecimal
Representation for Object Names

The CHAR2HEXINT function converts a character string to its internal hexadecimal
representation. You can use this function to find the internal representation of any Teradata
Database name.

For details on CHAR2HEXINT, see SQL Functions, Operators, Expressions, and Predicates.

Example 1: Names that Form Hexadecimal Name Literals

Here is an example that shows how to find the internal representation of the Dbase table name
in hexadecimal notation.

SELECT CHAR2HEXINT(T.TableName) (FORMAT 'X(60)',
TITLE 'Internal Hex Representation'),T.TableName (TITLE 'Name')

FROM DBC.Tables T
WHERE T.TableKind = 'T' AND T.TableName = 'Dbase';

Here is the result:

IF you want to find the internal representation of … THEN use the CHAR2HEXINT function on the …

a database name that you can use to form a
hexadecimal name literal

DatabaseName column of the DBC.Databases
view.

a database name that you can use to form a
Unicode delimited identifier

DatabaseName column of the
DBC.DatabasesV view.

a table, macro, or view name that you can use to
form a hexadecimal name literal

TableName column of the DBC.Tables view.

a table, macro, or view name that you can use to
form a Unicode delimited identifier

TableName column of the DBC.TablesV view.

Chapter 1: Basic SQL Syntax and Lexicon
Standard Form for Data in Teradata Database

SQL Fundamentals 25

Internal Hex Representation Name
-- --------------
446261736520 Dbase

You can use the result of the CHAR2HEXINT function on an object name from the
DBC.Tables view to form a hexadecimal name literal:

'4462617365'XN

To obtain the internal hexadecimal representation of the names of other types of objects,
modify the WHERE condition. For example, to obtain the internal hexadecimal
representation of a view, modify the WHERE condition to TableKind = 'V'.

Similarly, to obtain the internal hexadecimal representation of a macro, modify the WHERE
condition to TableKind = 'M'.

For more information on the DBC.Tables view, see Data Dictionary.

Example 2: Names that Form Unicode Delimited Identifiers

Here is an example that performs the same query as the preceding example on the
DBC.TablesV view.

SELECT CHAR2HEXINT(T.TableName) (FORMAT 'X(60)',
TITLE 'Internal Hex Representation'),T.TableName (TITLE 'Name')

FROM DBC.TablesV T
WHERE T.TableKind = 'T' AND T.TableName = 'Dbase';

Here is the result:

Internal Hex Representation Name
-- --------------
00440062006100730065 Dbase

You can use the result of the CHAR2HEXINT function on an object name from the
DBC.TablesV view to form a Unicode delimited identifier:

U&"x0044x0062x0061x0073x0065" UESCAPE 'x'

For more information on the DBC.TablesV view, see Data Dictionary.

Standard Form for Data in Teradata Database

Data in Teradata Database is presented to a user according to the relational model, which
models data as two dimensional tables with rows and columns. Each row of a table is
composed one or more columns identified by column name. Each column contains a data
item (or a null) having a single data type.

Syntax for Referencing a Column

table_name.

FF07D238

column_name

database_name.

Chapter 1: Basic SQL Syntax and Lexicon
Standard Form for Data in Teradata Database

26 SQL Fundamentals

where:

Fully Qualified Column Name

A fully qualified name consists of a database name, table name, and column name. For
example, a fully qualified reference for the Name column in the Employee table of the
Personnel database is:

Personnel.Employee.Name

Column Alias

In addition to referring to a column by name, an SQL query can reference a column by an
alias. Column aliases are used for join indexes when two columns have the same name.
However, an alias can be used for any column when a pseudonym is more descriptive or easier
to use. Using an alias to name an expression allows a query to reference the expression.

You can specify a column alias with or without the keyword AS on the first reference to the
column in the query. The following example creates and uses aliases for the first two columns.

SELECT departnumber AS d, employeename e, salary
FROM personnel.employee
WHERE d IN(100, 500)
ORDER BY d, e ;

Alias names must meet the same requirements as names of other database objects. For details,
see “Names on Systems with Standard Language Support” on page 15.

The scope of alias names is confined to the query.

This Syntax
element … Specifies …

database_name a qualifying name for the database in which the table and column being
referenced is stored.

Depending on the ambiguity of the reference, database_name might or might
not be required.

See “Unqualified Object Names” on page 27.

table_name a qualifying name for the table in which the column being referenced is stored.

Depending on the ambiguity of the reference, table_name might or might not
be required.

See “Unqualified Object Names” on page 27.

column_name one of the following:

• The name of the column being referenced

• The alias of the column being referenced

• The keyword PARTITION

See “Column Alias” on page 26.

Chapter 1: Basic SQL Syntax and Lexicon
Unqualified Object Names

SQL Fundamentals 27

Referencing All Columns in a Table

An asterisk references all columns in a row simultaneously, for example, the following
SELECT statement references all columns in the Employee table. A list of those fully qualified
column names follows the query.

SELECT * FROM Employee;

Personnel.Employee.EmpNo
Personnel.Employee.Name
Personnel.Employee.DeptNo
Personnel.Employee.JobTitle
Personnel.Employee.Salary
Personnel.Employee.YrsExp
Personnel.Employee.DOB
Personnel.Employee.Sex
Personnel.Employee.Race
Personnel.Employee.MStat
Personnel.Employee.EdLev
Personnel.Employee.HCap

Unqualified Object Names

An unqualified object name is an object such as a table, column, trigger, macro, or stored
procedure reference that is not fully qualified. For example, the WHERE clause in the
following statement uses “DeptNo” as an unqualified column name:

SELECT *
FROM Personnel.Employee
WHERE DeptNo = 100 ;

Unqualified Column Names

You can omit database and table name qualifiers when you reference columns as long as the
reference is not ambiguous.

For example, the WHERE clause in the following statement:

SELECT Name, DeptNo, JobTitle
FROM Personnel.Employee
WHERE Personnel.Employee.DeptNo = 100 ;

can be written as:

WHERE DeptNo = 100 ;

because the database name and table name can be derived from the Personnel.Employee
reference in the FROM clause.

Omitting Database Names

When you omit the database name qualifier, Teradata Database looks in the following
databases to find the unqualified object name:

• The default database (see “Default Database” on page 29)

Chapter 1: Basic SQL Syntax and Lexicon
Unqualified Object Names

28 SQL Fundamentals

• Other databases, if any, referenced by the SQL statement

• The login user database for a volatile table, if the unqualified object name is a table name

• The SYSLIB database, if the unqualified object name is a C or C++ UDF that is not in the
default database

The search must find the name in only one of those databases. An ambiguous name error
message results if the name exists in more than one of those databases.

For example, if your login user database has no volatile tables named Employee and you have
established Personnel as your default database, you can omit the Personnel database name
qualifier from the preceding sample query.

Rules for Name Resolution

• Name resolution is performed statement by statement.

• When an INSERT statement contains a subquery, names are resolved in the subquery first.

• Names in a view are resolved when the view is created.

• Names in a macro data manipulation statement are resolved when the macro is created.

• Names in a macro data definition statement are resolved when the macro is performed
using the default database of the user submitting the EXECUTE statement.

Therefore, you should fully qualify all names in a macro data definition statement, unless
you specifically intend for the user’s default to be used.

• Names in stored procedure statements are resolved either when the procedure is created or
when the procedure is executed, depending on whether the CREATE PROCEDURE
statement includes the SQL SECURITY clause and which option the clause specifies.

Whether unqualified object names acquire the database name of the creator, invoker, or
owner of the stored procedure also depends on whether the CREATE PROCEDURE
statement includes the SQL SECURITY clause and which option the clause specifies.

• An ambiguous unqualified name returns an error to the requestor.

Related Topics

For more information on … See …

default databases “Default Database” on page 29.

the DATABASE statement SQL Data Definition Language.

the CREATE USER statement

the MODIFY USER statement

the CREATE PROCEDURE statement and the SQL
SECURITY clause

Chapter 1: Basic SQL Syntax and Lexicon
Default Database

SQL Fundamentals 29

Default Database

The default database is a Teradata extension to SQL that defines a database that Teradata
Database uses to look for unqualified names, such as table, view, trigger, or macro names, in
SQL statements.

The default database is not the only database that Teradata Database uses to find an
unqualified name in an SQL statement. Teradata Database also looks for the name in:

• Other databases, if any, referenced by the SQL statement

• The login user database for a volatile table, if the unqualified object name is a table name

• The SYSLIB database, if the unqualified object name is a C or C++ UDF that is not in the
default database

If the unqualified object name exists in more than one of the databases in which Teradata
Database looks, the SQL statement produces an ambiguous name error.

Establishing a Permanent Default Database

You can establish a permanent default database that is invoked each time you log on.

For example, the following statement automatically establishes Personnel as the default
database for Marks at the next logon:

MODIFY USER marks AS
DEFAULT DATABASE = personnel ;

After you assign a default database, Teradata Database uses that database as one of the
databases to look for all unqualified object references.

To obtain information from a table, view, trigger, or macro in another database, fully qualify
the table reference by specifying the database name, a FULLSTOP character, and the table
name.

TO … USE one of the following SQL Data Definition statements...

define a permanent default database • CREATE USER, with a DEFAULT DATABASE clause.

• CREATE USER, with a PROFILE clause that specifies a
profile that defines the default database.

change your permanent default
database definition

• MODIFY USER, with a DEFAULT DATABASE clause.

• MODIFY USER, with a PROFILE clause.

• MODIFY PROFILE, with a DEFAULT DATABASE
clause.

add a default database when one had
not been established previously

Chapter 1: Basic SQL Syntax and Lexicon
Default Database

30 SQL Fundamentals

Establishing a Default Database for a Session

You can establish a default database for the current session that Teradata Database uses to look
for unqualified object names in SQL statements.

For example, after entering the following SQL statement:

DATABASE personnel ;

you can enter a SELECT statement:

SELECT deptno (TITLE 'Org'), name
FROM employee ;

which has the same results as:

SELECT deptno (TITLE 'Org'), name
FROM personnel.employee;

To establish a default database, you must have some privilege on an object in that database.
Once defined, the default database remains in effect until the end of a session or until it is
replaced by a subsequent DATABASE statement.

Default Database for a Stored Procedure

Stored procedures can contain SQL statements with unqualified object references. The default
database that Teradata Database uses for the unqualified object references depends on whether
the CREATE PROCEDURE statement includes the SQL SECURITY clause and, if it does,
which option the SQL SECURITY clause specifies.

For details on whether Teradata Database uses the creator, invoker, or owner of the stored
procedure as the default database, see CREATE PROCEDURE in SQL Data Definition
Language.

Related Topics

TO … USE …

establish a default database for a session the DATABASE statement.

For more information on … See …

the DATABASE statement SQL Data Definition Language.

the CREATE USER statement

the MODIFY USER statement

fully-qualified names “Standard Form for Data in Teradata Database” on page 25.

“Unqualified Object Names” on page 27.

using profiles to define a default
database

Chapter 1: Basic SQL Syntax and Lexicon
Literals

SQL Fundamentals 31

Literals

Literals, or constants, are values coded directly in the text of an SQL statement, view or macro
definition text, or CHECK constraint definition text. In general, the system is able to
determine the data type of a literal by its form.

Numeric Literals

A numeric literal (also referred to as a constant) is a character string of 1 to 40 characters
selected from the following:

• digits 0 through 9

• plus sign

• minus sign

• decimal point

There are three types of numeric literals: integer, decimal, and floating point.

Type Description

Integer Literal An integer literal declares literal strings of integer numbers. Integer literals
consist of an optional sign followed by a sequence of up to 10 digits.

A numeric literal that is outside the range of values of an INTEGER is
considered a decimal literal.

Hexadecimal integer literals also represent integer values. A hexadecimal
integer literal specifies a string of 0 to 62000 hexadecimal digits enclosed with
apostrophes followed by the characters XI1 for a BYTEINT, XI2 for a
SMALLINT, XI4 for an INTEGER, or XI8 for a BIGINT.

Decimal Literal A decimal literal declares literal strings of decimal numbers.

Decimal literals consist of the following components, reading from left-to-
right: an optional sign, an optional sequence of up to 38 digits (mandatory
only when no digits appear after the decimal point), an optional decimal
point, an optional sequence of digits (mandatory only when no digits appear
before the decimal point). The scale and precision of a decimal literal are
determined by the total number of digits in the literal and the number of
digits to the right of the decimal point, respectively.

Floating Point
Literal

A floating point literal declares literal strings of floating point numbers.

Floating point literals consist of the following components, reading from left-
to-right: an optional sign, an optional sequence of digits (mandatory only
when no digits appear after the decimal point) representing the whole number
portion of the mantissa, an optional decimal point, an optional sequence of
digits (mandatory only when no digits appear before the decimal point)
representing the fractional portion of the mantissa, the literal character E, an
optional sign, a sequence of digits representing the exponent.

Chapter 1: Basic SQL Syntax and Lexicon
Literals

32 SQL Fundamentals

DateTime Literals

Date and time literals declare date, time, or timestamp values in a SQL expression, view or
macro definition text, or CONSTRAINT definition text.

Date and time literals are introduced by keywords. For example:

DATE '1969-12-23'

There are three types of DateTime literals: DATE, TIME, and TIMESTAMP.

Interval Literals

Interval literals provide a means for declaring spans of time.

Interval literals are introduced and followed by keywords. For example:

INTERVAL '200' HOUR

There are two mutually exclusive categories of interval literals: Year-Month and Day-Time.

Type Description

DATE Literal A date literal declares a date value in ANSI DATE format. ANSI DATE literal is the
preferred format for DATE constants. All DATE operations accept this format.

TIME Literal A time literal declares a time value and an optional time zone offset.

TIMESTAMP
Literal

A timestamp literal declares a timestamp value and an optional time zone offset.

Category Type Description

Year-Month • YEAR

• YEAR TO MONTH

• MONTH

Represent a time span that can include a number
of years and months.

Day-Time • DAY

• DAY TO HOUR

• DAY TO MINUTE

• DAY TO SECOND

• HOUR

• HOUR TO MINUTE

• HOUR TO SECOND

• MINUTE

• MINUTE TO SECOND

• SECOND

Represent a time span that can include a number
of days, hours, minutes, or seconds.

Chapter 1: Basic SQL Syntax and Lexicon
Literals

SQL Fundamentals 33

Character Literals

A character literal declares a character value in an expression, view or macro definition text, or
CHECK constraint definition text.

Graphic Literals

A graphic literal specifies multibyte characters within the graphic repertoire.

Period Literals

A period literal specifies a constant value of a Period data type. Period literals are introduced
by the PERIOD keyword. For example:

PERIOD '(2008-01-01, 2008-02-01)'

The element type of a period literal (DATE, TIME, or TIMESTAMP) is derived from the
format of the DateTime values specified in the string literal.

Object Name Literals

Hexadecimal name literals and Unicode delimited identifiers provide a way to create and
reference object names by their internal representation in the Data Dictionary.

Built-In Functions

The built-in functions, or special register functions, which have no arguments, return various
information about the system and can be used like other literals within SQL expressions. In an
SQL query, the appropriate system value is substituted by the Parser after optimization but
prior to executing a query using a cachable plan.

Available built-in functions include all of the following:

Type Description

Character literal Character literals consist of 0 to 31000 bytes delimited by a matching pair of
apostrophes. A zero-length character literal is represented by two consecutive
apostrophes ('').

Hexadecimal
character literal

A hexadecimal character literal specifies a string of 0 to 62000 hexadecimal
digits enclosed with apostrophes followed by the characters XCF for a
CHARACTER data type or XCV for a VARCHAR data type.

Unicode character
string literal

Unicode character string literals consist of 0 to 31000 Unicode characters and
are useful for inserting character strings containing characters that cannot
generally be entered directly from a keyboard.

• ACCOUNT

• CURRENT_DATE

• CURRENT_ROLE

• CURRENT_TIME

• CURRENT_TIMESTAMP

• CURRENT_USER

• DATABASE

• DATE

• PROFILE

• ROLE

• SESSION

• TIME

• USER

Chapter 1: Basic SQL Syntax and Lexicon
NULL Keyword as a Literal

34 SQL Fundamentals

Related Topics

NULL Keyword as a Literal

A null represents either:

• An empty column

• An unknown value

• An unknowable value

Nulls are neither values nor do they signify values; they represent the absence of value. A null
is a place holder indicating that no value is present.

NULL Keyword

The keyword NULL represents null, and is sometimes available as a special construct similar
to, but not identical with, a literal.

ANSI Compliance

NULL is ANSI SQL:2008-compliant with extensions.

Using NULL as a Literal

Use NULL as a literal in the following ways:

• A CAST source operand, for example:

SELECT CAST (NULL AS DATE);

• A CASE result, for example.

SELECT CASE WHEN orders = 10 THEN NULL END FROM sales_tbl;

• An insert item specifying a null is to be placed in a column position on INSERT.

• An update item specifying a null is to be placed in a column position on UPDATE.

• A default column definition specification, for example:

CREATE TABLE European_Sales
(Region INTEGER DEFAULT 99
,Sales Euro_Type DEFAULT NULL);

• An explicit SELECT item, for example:

SELECT NULL

This is a Teradata extension to ANSI.

For more information on … See …

numeric, DateTime, interval, character, graphic,
period, object name and hexadecimal literals

SQL Data Types and Literals.

built-in functions SQL Functions, Operators, Expressions, and
Predicates.

Chapter 1: Basic SQL Syntax and Lexicon
Operators

SQL Fundamentals 35

• An operand of a function, for example:

SELECT TYPE(NULL)

This is a Teradata extension to ANSI.

Data Type of NULL

When you use NULL as an explicit SELECT item or as the operand of a function, its data type
is INTEGER. In all other cases NULL has no data type because it has no value.

For example, if you perform SELECT TYPE(NULL), then INTEGER is returned as the data
type of NULL.

To avoid type issues, cast NULL to the desired type.

Related Topics

For information on the behavior of nulls and how to use them in data manipulation
statements, see “Manipulating Nulls” on page 78.

Operators

SQL operators express logical and arithmetic operations. Operators of the same precedence
are evaluated from left to right. See “SQL Operations and Precedence” on page 36 for more
detailed information.

Parentheses can be used to control the order of precedence. When parentheses are present,
operations are performed from the innermost set of parentheses outward.

The following definitions apply to SQL operators.

Term Definition

numeric Any literal, data reference, or expression having a numeric value.

string Any character string or string expression.

logical A Boolean expression (resolves to TRUE, FALSE, or unknown).

value Any numeric, character, or byte data item.

set A collection of values returned by a subquery, or a list of values separated by commas
and enclosed by parentheses.

Chapter 1: Basic SQL Syntax and Lexicon
Operators

36 SQL Fundamentals

SQL Operations and Precedence

SQL operations, and the order in which they are performed when no parentheses are present,
appear in the following table. Operators of the same precedence are evaluated from left to
right.

Precedence Result Type Operation

 highest numeric + numeric (unary plus)

- numeric (unary minus)

intermediate numeric numeric ** numeric (exponentiation)

numeric numeric * numeric (multiplication)

numeric / numeric (division)

numeric MOD numeric (modulo operator)

numeric numeric + numeric (addition)

numeric - numeric (subtraction)

string concatenation operator

logical value EQ value

value NE value

value GT value

value LE value

value LT value

value GE value

value IN set

value NOT IN set

value BETWEEN value AND value

character value LIKE character value

logical NOT logical

logical logical AND logical

lowest logical logical OR logical

Chapter 1: Basic SQL Syntax and Lexicon
Functions

SQL Fundamentals 37

Functions

Scalar Functions

Scalar functions take input parameters and return a single value result. Some examples of
standard SQL scalar functions are CHARACTER_LENGTH, POSITION, and SUBSTRING.

Aggregate Functions

Aggregate functions produce summary results. They differ from scalar functions in that they
take grouped sets of relational data, make a pass over each group, and return one result for the
group. Some examples of standard SQL aggregate functions are AVG, SUM, MAX, and MIN.

Related Topics

For the names, parameters, return values, and other details of scalar and aggregate functions,
see SQL Functions, Operators, Expressions, and Predicates.

Delimiters

Delimiters are special characters having meanings that depend on context.

The function of each delimiter appears in the following table.

Delimiter Name Purpose

(

)

LEFT
PARENTHESIS

RIGHT
PARENTHESIS

Group expressions and define the limits of various phrases.

, COMMA Separates and distinguishes column names in the select list, or
column names or parameters in an optional clause, or
DateTime fields in a DateTime type.

: COLON Prefixes reference parameters or client system variables.

Also separates DateTime fields in a DateTime type.

. FULLSTOP • Separates database names from table, trigger, UDF, UDT,
and stored procedure names, such as personnel.employee.

• Separates table names from a particular column name, such
as employee.deptno).

• In numeric constants, the period is the decimal point.

• Separates DateTime fields in a DateTime type.

• Separates a method name from a UDT expression in a
method invocation.

Chapter 1: Basic SQL Syntax and Lexicon
Delimiters

38 SQL Fundamentals

Example

In the following statement submitted through BTEQ, the FULLSTOP separates the database
name (Examp and Personnel) from the table name (Profiles and Employee), and, where
reference is qualified to avoid ambiguity, it separates the table name (Profiles, Employee) from
the column name (DeptNo).

UPDATE Examp.Profiles SET FinGrad = 'A'
WHERE Name = 'Phan A' ; SELECT EdLev, FinGrad,JobTitle,
YrsExp FROM Examp.Profiles, Personnel.Employee
WHERE Profiles.DeptNo = Employee.DeptNo ;

The first SEMICOLON separates the UPDATE statement from the SELECT statement. The
second SEMICOLON terminates the entire multistatement request.

The semicolon is required in Teradata SQL to separate multiple statements in a request and to
terminate a request submitted through BTEQ.

; SEMICOLON • Separates statements in multi-statement requests.

• Separates statements in a stored procedure body.

• Separates SQL procedure statements in a triggered SQL
statement in a trigger definition.

• Terminates requests submitted via utilities such as BTEQ.

• Terminates embedded SQL statements in C or PL/I
applications.

’ APOSTROPHE • Defines the boundaries of character string constants.

• To include an APOSTROPHE character or show possession
in a title, double the APOSTROPHE characters.

• Also separates DateTime fields in a DateTime type.

“ QUOTATION
MARK

Defines the boundaries of nonstandard names.

/ SOLIDUS Separates DateTime fields in a DateTime type.

B

b

Uppercase B

Lowercase b

- HYPHEN-
MINUS

Delimiter Name Purpose

Chapter 1: Basic SQL Syntax and Lexicon
Separators

SQL Fundamentals 39

Separators

Lexical Separators

A lexical separator is a character string that can be placed between words, literals, and
delimiters without changing the meaning of a statement.

Valid lexical separators are any of the following.

• Comments

For an explanation of comment lexical separators, see “Comments” on page 39.

• Pad characters (several pad characters are treated as a single pad character except in a
string literal)

• RETURN characters (X’0D’)

Statement Separators

The SEMICOLON is a Teradata SQL statement separator.

Each statement of a multistatement request must be separated from any subsequent statement
with a semicolon.

The following multistatement request illustrates the semicolon as a statement separator.

SHOW TABLE Payroll_Test ; INSERT INTO Payroll_Test
(EmpNo, Name, DeptNo) VALUES ('10044', 'Jones M',
'300') ; INSERT INTO ...

For statements entered using BTEQ, a request terminates with an input line-ending semicolon
unless that line has a comment, beginning with two dashes (- -). Everything to the right of the
- - is a comment. In this case, the semicolon must be on the following line.

The SEMICOLON as a statement separator in a multistatement request is a Teradata extension
to the ANSI SQL:2008 standard.

Comments

You can embed comments within an SQL request anywhere a pad character can occur.

The SQL Parser and the preprocessor recognize the following types of ANSI SQL:2008-
compliant embedded comments:

• Simple

• Bracketed

Chapter 1: Basic SQL Syntax and Lexicon
Comments

40 SQL Fundamentals

Simple Comments

The simple form of a comment is delimited by two consecutive HYPHEN-MINUS (U+002D)
characters (--) at the beginning of the comment and the newline character at the end of the
comment.

The newline character is implementation-specific, but is typed by pressing the Enter (non-
3270 terminals) or Return (3270 terminals) key.

Simple SQL comments cannot span multiple lines.

Examples

The following examples illustrate the use of a simple comment at the end of a line, at the
beginning of a line, and at the beginning of a statement:

SELECT EmpNo, Name FROM Payroll_Test
ORDER BY Name -- Simple comment at the end of a line
;

SELECT EmpNo, Name FROM Payroll_Test
-- Simple comment at the beginning of a line
ORDER BY Name;

-- Simple comment at the beginning of a statement
SELECT EmpNo, Name FROM Payroll_Test
ORDER BY Name;

Bracketed Comments

A bracketed comment is a text string of unrestricted length that is delimited by the beginning
comment characters SOLIDUS (U+002F) and ASTERISK (U+002A) /* and the end comment
characters ASTERISK and SOLIDUS */.

Bracketed comments can begin anywhere on an input line and can span multiple lines.

1101E231

- - comment_text new_line_character

comment_text /* */

1101E230

Chapter 1: Basic SQL Syntax and Lexicon
Comments

SQL Fundamentals 41

Examples

The following examples illustrate the use of a bracketed comment at the end of a line, in the
middle of a line, at the beginning of a line, and at the beginning of a statement:

SELECT EmpNo, Name FROM Payroll_Test /* This bracketed comment starts
at the end of a line
and spans multiple lines. */

ORDER BY Name;

SELECT EmpNo, Name FROM Payroll_Test
/* This bracketed comment starts

at the beginning of a line
and spans multiple lines. */

ORDER BY Name;

/* This bracketed comment starts
at the beginning of a statement
and spans multiple lines. */

SELECT EmpNo, Name FROM Payroll_Test
ORDER BY Name;

SELECT EmpNo, Name
FROM /* This comment is in the middle of a line. */ Payroll_Test
ORDER BY Name;

SELECT EmpNo, Name FROM Payroll_Test /* This bracketed
comment starts at the end of a line, spans multiple
lines, and ends in the middle of a line. */ ORDER BY Name;

SELECT EmpNo, Name FROM Payroll_Test
/* This bracketed comment starts at the beginning of a line,

spans multiple lines, and ends in the
middle of a line. */ ORDER BY Name;

Comments With Multibyte Character Set Strings

You can include multibyte character set strings in both simple and bracketed comments.

When using mixed mode in comments, you must have a properly formed mixed mode string,
which means that a Shift-In (SI) must follow its associated Shift-Out (SO).

If an SI does not follow the multibyte string, the results are unpredictable.

When using bracketed comments that span multiple lines, the SI must be on the same line as
its associated SO. If the SI and SO are not on the same line, the results are unpredictable.

You must specify the bracketed comment delimiters (/* and */) as single byte characters.

Chapter 1: Basic SQL Syntax and Lexicon
Terminators

42 SQL Fundamentals

Terminators

The SEMICOLON is a Teradata SQL request terminator when it is the last nonblank character
on an input line in BTEQ unless that line has a comment beginning with two dashes. In this
case, the SEMICOLON request terminator must be on the line following the comment line.

A request is considered complete when either the “End of Text” character or the request
terminator character is detected.

ANSI Compliance

The SEMICOLON as a request terminator is a Teradata extension to the ANSI SQL:2008
standard.

Example

On the following input line:

SELECT *
FROM Employee ;

the SEMICOLON terminates the single-statement request “SELECT * FROM Employee”.

BTEQ uses SEMICOLONs to terminate multistatement requests.

A request terminator is mandatory for request types that are:

• In the body of a macro

• Triggered action statements in a trigger definition

• Entered using the BTEQ interface

• Entered using other interfaces that require BTEQ

Example 1: Macro Request

The following statement illustrates the use of a request terminator in the body of a macro.

CREATE MACRO Test_Pay (number (INTEGER),
name (VARCHAR(12)),
dept (INTEGER) AS

(INSERT INTO Payroll_Test (EmpNo, Name, DeptNo)
VALUES (:number, :name, :dept) ;
UPDATE DeptCount
SET EmpCount = EmpCount + 1 ;
SELECT *
FROM DeptCount ;)

Chapter 1: Basic SQL Syntax and Lexicon
Null Statements

SQL Fundamentals 43

Example 2: BTEQ Request

When entered through BTEQ, the entire CREATE MACRO statement must be terminated.

CREATE MACRO Test_Pay
(number (INTEGER),
name (VARCHAR(12)),
dept (INTEGER) AS

(INSERT INTO Payroll_Test (EmpNo, Name, DeptNo)
VALUES (:number, :name, :dept) ;
UPDATE DeptCount
SET EmpCount = EmpCount + 1 ;
SELECT *
FROM DeptCount ;) ;

Null Statements

A null statement has no content except for optional pad characters or SQL comments.

Example 1

The semicolon in the following request is a null statement.

/* This example shows a comment followed by
a semicolon used as a null statement */

; UPDATE Pay_Test SET ...

Example 2

The first SEMICOLON in the following request is a null statement. The second SEMICOLON
is taken as statement separator:

/* This example shows a semicolon used as a null
statement and as a statement separator */

; UPDATE Payroll_Test SET Name = 'Wedgewood A'
WHERE Name = 'Wedgewood A'

; SELECT ...
-- This example shows the use of an ANSI component
-- used as a null statement and statement separator ;

Example 3

A SEMICOLON that precedes the first (or only) statement of a request is taken as a null
statement.

;DROP TABLE temp_payroll;

Chapter 1: Basic SQL Syntax and Lexicon
Null Statements

44 SQL Fundamentals

SQL Fundamentals 45

CHAPTER 2 SQL Data Definition, Control, and
Manipulation

This chapter describes the functional families of the SQL language.

SQL Functional Families and Binding Styles

The SQL language can be characterized in several different ways. This chapter is organized
around functional groupings of the components of the language with minor emphasis on
binding styles.

Functional Family

SQL provides facilities for defining database objects, for defining user access to those objects,
and for manipulating the data stored within them.

The following list describes the principal functional families of the SQL language.

• SQL Data Definition Language (DDL)

• SQL Data Control Language (DCL)

• SQL Data Manipulation Language (DML)

• Query and Workload Analysis Statements

• Help and Database Object Definition Tools

Some classifications of SQL group the data control language statements with the data
definition language statements.

Binding Style

The ANSI SQL standards do not define the term binding style. The expression refers to a
possible method by which an SQL statement can be invoked.

Teradata Database supports the following SQL binding styles:

• Direct, or interactive

• Embedded SQL

• Stored procedure

• SQL Call Level Interface (as ODBC)

• JDBC

Chapter 2: SQL Data Definition, Control, and Manipulation
Data Definition Language

46 SQL Fundamentals

The direct binding style is usually not qualified in this book set because it is the default style.
Embedded SQL and stored procedure binding styles are always clearly specified, either
explicitly or by context.

Related Topics

You can find more information on binding styles in the SQL book set and in other books.

Data Definition Language

The SQL Data Definition Language (DDL) is a subset of the SQL language and consists of all
SQL statements that support the definition of database objects.

Purpose

Data definition language statements perform the following functions:

• Create, drop, rename, alter, modify, and replace database objects

• Comment on database objects

• Collect statistics on a column set or index

• Establish a default database

• Set a different collation sequence, account priority, DateForm, time zone, and database for
the session

• Set roles

• Set the query band for a session or transaction

• Begin and end logging

• Enable and disable online archiving for all tables in a database or a specific set of tables

Rules on Entering DDL Statements

A DDL statement can be entered as:

• A single statement request.

• The solitary statement, or the last statement, in an explicit transaction (in Teradata mode,
one or more requests enclosed by user-supplied BEGIN TRANSACTION and END

For more information on … See …

embedded SQL • Teradata Preprocessor2 for Embedded SQL Programmer Guide

• SQL Stored Procedures and Embedded SQL

stored procedures SQL Stored Procedures and Embedded SQL

ODBC ODBC Driver for Teradata User Guide

JDBC Teradata JDBC Driver User Guide

Chapter 2: SQL Data Definition, Control, and Manipulation
Altering Table Structure and Definition

SQL Fundamentals 47

TRANSACTION statement, or in ANSI mode, one or more requests ending with the
COMMIT keyword).

• The solitary statement in a macro.

DDL statements cannot be entered as part of a multistatement request.

Successful execution of a DDL statement automatically creates and updates entries in the Data
Dictionary.

SQL DDL Statements

For detailed information about the function, syntax, and usage of Teradata SQL Data
Definition statements, see SQL Data Definition Language.

Altering Table Structure and Definition

You may need to change the structure or definition of an existing table or temporary table. In
many cases, you can use ALTER TABLE and RENAME to make the changes. Some changes,
however, may require you to use CREATE TABLE to recreate the table.

You cannot use ALTER TABLE on an error logging table.

Making Changes to a Table

Use the RENAME TABLE statement to change the name of a table, temporary table, queue
table, or error logging table.

Use the ALTER TABLE statement to perform any of the following functions:

• Add or drop columns on an existing table or temporary table

• Add column default control, FORMAT, and TITLE attributes on an existing table or
temporary table

• Add or remove journaling options on an existing table or temporary table

• Add or remove the FALLBACK option on an existing table or temporary table

• Change the DATABLOCKSIZE or percent FREESPACE on an existing table or temporary
table

• Add or drop column and table level constraints on an existing table or temporary table

• Change the LOG and ON COMMIT options for a global temporary table

• Modify referential constraints

• Change the properties of the primary index for a table (some cases require an empty table)

• Change the partitioning properties of the primary index for a table, including
modifications to the partitioning expression defined for use by a partitioned primary
index (some cases require an empty table)

• Regenerate table headers and optionally validate and correct the partitioning of PPI table
rows

Chapter 2: SQL Data Definition, Control, and Manipulation
Dropping and Renaming Objects

48 SQL Fundamentals

• Define, modify, or delete the COMPRESS attribute for an existing column

• Change column attributes (that do not affect stored data) on an existing table or
temporary table

Restrictions apply to many of the preceding modifications. For a complete list of rules and
restrictions on using ALTER TABLE to change the structure or definition of an existing table,
see SQL Data Definition Language.

To perform any of the following functions, use CREATE TABLE to recreate the table:

• Redefine the primary index or its partitioning for a non-empty table when not allowed for
ALTER TABLE

• Change a data type attribute that affects existing data

• Add a column that would exceed the maximum lifetime column count

Interactively, the SHOW TABLE statement can call up the current table definition, which can
then be modified and resubmitted to create a new table.

If the stored data is not affected by incompatible data type changes, an INSERT... SELECT
statement can be used to transfer data from the existing table to the new table.

Dropping and Renaming Objects

Dropping Objects

To drop an object, use the appropriate DDL statement.

Object Use

Constraint DROP CONSTRAINT

Error logging table DROP ERROR TABLE

DROP TABLE

Hash index DROP HASH INDEX

Join index DROP JOIN INDEX

Macro DROP MACRO

Profile DROP PROFILE

Role DROP ROLE

Secondary index DROP INDEX

Stored procedure DROP PROCEDURE

Table DROP TABLE

Global temporary table or volatile table

Primary index

Chapter 2: SQL Data Definition, Control, and Manipulation
Dropping and Renaming Objects

SQL Fundamentals 49

Renaming Objects

Teradata SQL provides RENAME statements that you can use to rename some objects. To
rename objects that do not have associated RENAME statements, you must first drop them
and then recreate them with a new name, or, in the case of primary indexes, use ALTER
TABLE.

Trigger DROP TRIGGER

User-defined function DROP FUNCTION

User-defined method ALTER TYPE

User-defined type DROP TYPE

View DROP VIEW

Object Use

Object Use

Hash index DROP HASH INDEX and then CREATE HASH INDEX

Join index DROP JOIN INDEX and then CREATE JOIN INDEX

Macro RENAME MACRO

Primary index ALTER TABLE

Profile DROP PROFILE and then CREATE PROFILE

Role DROP ROLE and then CREATE ROLE

Secondary index DROP INDEX and then CREATE INDEX

Stored procedure RENAME PROCEDURE

Table RENAME TABLE

Global temporary table or volatile table

Queue table

Error logging table

Trigger RENAME TRIGGER

User-Defined Function RENAME FUNCTION

User-Defined Method ALTER TYPE and then CREATE METHOD

User-Defined Type DROP TYPE and then CREATE TYPE

View RENAME VIEW

Chapter 2: SQL Data Definition, Control, and Manipulation
Data Control Language

50 SQL Fundamentals

Related Topics

For more information on these statements, including rules that apply to usage, see SQL Data
Definition Language.

Data Control Language

The SQL Data Control Language (DCL) is a subset of the SQL language and consists of all
SQL statements that support the definition of security authorization for accessing database
objects.

Purpose

Data control statements perform the following functions:

• Grant and revoke privileges

• Give ownership of a database to another user

Rules on Entering DCL Statements

A data control statement can be entered as:

• A single statement request

• The solitary statement, or as the last statement, in an “explicit transaction” (one or more
requests enclosed by user-supplied BEGIN TRANSACTION and END TRANSACTION
statement in Teradata mode, or in ANSI mode, one or more requests ending with the
COMMIT keyword).

• The solitary statement in a macro

A data control statement cannot be entered as part of a multistatement request.

Successful execution of a data control statement automatically creates and updates entries in
the Data Dictionary.

Teradata SQL DCL Statements

For detailed information about the function, syntax, and usage of Teradata SQL Data Control
statements, see SQL Data Control Language.

Data Manipulation Language

The SQL Data Manipulation Language (DML) is a subset of the SQL language and consists of
all SQL statements that support the manipulation or processing of database objects.

Chapter 2: SQL Data Definition, Control, and Manipulation
Data Manipulation Language

SQL Fundamentals 51

Selecting Columns

The SELECT statement returns information from the tables in a relational database. SELECT
specifies the table columns from which to obtain the data, the corresponding database (if not
defined by default), and the table (or tables) to be accessed within that database.

For example, to request the data from the name, salary, and jobtitle columns of the Employee
table, type:

SELECT name, salary, jobtitle FROM employee ;

The response might be something like the following results table.

Note: The left-to-right order of the columns in a result table is determined by the order in
which the column names are entered in the SELECT statement. Columns in a relational table
are not ordered logically.

As long as a statement is otherwise constructed properly, the spacing between statement
elements is not important as long as at least one pad character separates each element that is
not otherwise separated from the next.

For example, the SELECT statement in the above example could just as well be formulated like
this:

SELECT name, salary,jobtitle
FROM employee;

Notice that there are multiple pad characters between most of the elements and that a comma
only (with no pad characters) separates column name salary from column name jobtitle.

To select all the data in the employee table, you could enter the following SELECT statement:

SELECT * FROM employee ;

The asterisk specifies that the data in all columns (except system-derived columns) of the table
is to be returned.

Selecting Rows

The SELECT statement retrieves stored data from a table. All rows, specified rows, or specific
columns of all or specified rows can be retrieved. The FROM, WHERE, ORDER BY,
DISTINCT, WITH, GROUP BY, HAVING, and TOP clauses provide for a fine detail of
selection criteria.

Name Salary JobTitle

Newman P 28600.00 Test Tech

Chin M 38000.00 Controller

Aquilar J 45000.00 Manager

Russell S 65000.00 President

Clements D 38000.00 Salesperson

Chapter 2: SQL Data Definition, Control, and Manipulation
Data Manipulation Language

52 SQL Fundamentals

To obtain data from specific rows of a table, use the WHERE clause of the SELECT statement.
That portion of the clause following the keyword WHERE causes a search for rows that satisfy
the condition specified.

For example, to get the name, salary, and title of each employee in Department 100, use the
WHERE clause:

SELECT name, salary, jobtitle FROM employee
WHERE deptno = 100 ;

The response appears in the following table.

To obtain data from a multirow result table in embedded SQL, declare a cursor for the
SELECT statement and use it to fetch individual result rows for processing.

To obtain data from the row with the oldest timestamp value in a queue table, use the SELECT
AND CONSUME statement, which also deletes the row from the queue table.

Zero-Table SELECT

Zero-table SELECT statements return data but do not access tables.

For example, the following SELECT statement specifies an expression after the SELECT
keyword that does not require a column reference or FROM clause:

SELECT 40000.00 / 52.;

The response is one row:

(40000.00/52.)

769.23

Here is another example that specifies an attribute function after the SELECT keyword:

SELECT TYPE(sales_table.region);

Because the argument to the TYPE function is a column reference that specifies the table
name, a FROM clause is not required and the query does not access the table.

The response is one row that might be something like the following:

Type(region)

INTEGER

Name Salary JobTitle

Chin M 38000.00 Controller

Greene W 32500.00 Payroll Clerk

Moffit H 35000.00 Recruiter

Peterson J 25000.00 Payroll Clerk

Chapter 2: SQL Data Definition, Control, and Manipulation
Data Manipulation Language

SQL Fundamentals 53

Adding Rows

To add a new row to a table, use the INSERT statement. To perform a bulk insert of rows by
retrieving the new row data from another table, use the INSERT … SELECT form of the
statement.

Defaults and constraints defined by the CREATE TABLE statement affect an insert operation
in the following ways.

If you are performing a bulk insert of rows using INSERT … SELECT, and you want Teradata
Database to log errors that prevent normal completion of the operation, use the LOGGING
ERRORS option. Teradata Database logs errors as error rows in an error logging table that you
create with a CREATE ERROR TABLE statement.

Updating Rows

To modify data in one or more rows of a table, use the UPDATE statement. In the UPDATE
statement, you specify the column name of the data to be modified along with the new value.
You can also use a WHERE clause to qualify the rows to change.

Attributes specified in the CREATE TABLE statement affect an update operation in the
following ways:

• When an update supplies a value that violates some defined constraint on a column or
columns, the update operation is rejected and an error message is returned.

• When an update supplies the value NULL and a NULL is allowed, any existing data is
removed from the column.

• If the result of an UPDATE will violate uniqueness constraints or create a duplicate row in
a table which does not allow duplicate rows, an error message is returned.

WHEN an INSERT statement … THEN the system …

attempts to add a duplicate row

• for any unique index

• to a table defined as SET (not to allow
duplicate rows)

returns an error, with one exception. The
system silently ignores duplicate rows that an
INSERT … SELECT would create when the:

• table is defined as SET

• mode is Teradata

omits a value for a column for which a default
value is defined

stores the default value for that column.

omits a value for a column for which both of the
following statements are true:

• NOT NULL is specified

• no default is specified

rejects the operation and returns an error
message.

supplies a value that does not satisfy the
constraints specified for a column or violates
some defined constraint on a column or columns

Chapter 2: SQL Data Definition, Control, and Manipulation
Data Manipulation Language

54 SQL Fundamentals

To update rows in a multirow result table in embedded SQL, declare a cursor for the SELECT
statement and use it to fetch individual result rows for processing, then use a WHERE
CURRENT OF clause in a positioned UPDATE statement to update the selected rows.

Teradata Database supports a special form of UPDATE, called the upsert form, which is a
single SQL statement that includes both UPDATE and INSERT functionality. The specified
update operation performs first, and if it fails to find a row to update, then the specified insert
operation performs automatically. Alternatively, use the MERGE statement.

Deleting Rows

The DELETE statement allows you to remove an entire row or rows from a table. A WHERE
clause qualifies the rows that are to be deleted.

To delete rows in a multirow result table in embedded SQL, use the following process:

1 Declare a cursor for the SELECT statement.

2 Fetch individual result rows for processing using the cursor you declared.

3 Use a WHERE CURRENT OF clause in a positioned DELETE statement to delete the
selected rows.

Merging Rows

The MERGE statement merges a source row set into a target table based on whether any target
rows satisfy a specified matching condition with the source row. The MERGE statement is a
single SQL statement that includes both UPDATE and INSERT functionality.

If you are performing a bulk insert or update of rows using MERGE, and you want Teradata
Database to log errors that prevent normal completion of the operation, use the LOGGING
ERRORS option. Teradata Database logs errors as error rows in an error logging table that you
create with a CREATE ERROR TABLE statement.

Related Topics

For details about selecting, adding, updating, deleting, and merging rows, see SQL Data
Manipulation Language.

IF the source and target rows … THEN the merge operation is an …

satisfy the matching condition update based on the specified WHEN MATCHED THEN
UPDATE clause.

do not satisfy the matching condition insert based on the specified WHEN NOT MATCHED
THEN INSERT clause.

Chapter 2: SQL Data Definition, Control, and Manipulation
Subqueries

SQL Fundamentals 55

Subqueries

Subqueries are nested SELECT statements. They can be used to ask a series of questions to
arrive at a single answer.

Example: Three Level Subqueries

The following subqueries, nested to three levels, answer the question “Who manages the
manager of Marston?”

SELECT Name
FROM Employee
WHERE EmpNo IN
(SELECT MgrNo
FROM Department
WHERE DeptNo IN
(SELECT DeptNo
FROM Employee
WHERE Name = 'Marston A')) ;

The subqueries that pose the questions leading to the final answer are inverted:

• The third subquery asks the Employee table for the number of Marston’s department.

• The second subquery asks the Department table for the employee number (MgrNo) of the
manager associated with this department number.

• The first subquery asks the Employee table for the name of the employee associated with
this employee number (MgrNo).

The result table looks like the following:

Name

Watson L

This result can be obtained using only two levels of subquery, as the following example shows.

SELECT Name
FROM Employee
WHERE EmpNo IN
(SELECT MgrNo
FROM Department, Employee
WHERE Employee.Name = 'Marston A'
AND Department.DeptNo = Employee.DeptNo) ;

In this example, the second subquery defines a join of Employee and Department tables.

This result could also be obtained using a one-level query that uses correlation names, as the
following example shows.

SELECT M.Name
FROM Employee M, Department D, Employee E
WHERE M.EmpNo = D.MgrNo AND

E.Name = 'Marston A' AND
D.DeptNo = E.DeptNo;

In some cases, as in the preceding example, the choice is a style preference. In other cases,
correct execution of the query may require a subquery.

Chapter 2: SQL Data Definition, Control, and Manipulation
Recursive Queries

56 SQL Fundamentals

For More Information

For more information, see SQL Data Manipulation Language.

Recursive Queries

A recursive query is a way to query hierarchies of data, such as an organizational structure,
bill-of-materials, and document hierarchy.

Recursion is typically characterized by three steps:

1 Initialization

2 Recursion, or repeated iteration of the logic through the hierarchy

3 Termination

Similarly, a recursive query has three execution phases:

1 Create an initial result set.

2 Recursion based on the existing result set.

3 Final query to return the final result set.

Specifying a Recursive Query

You can specify a recursive query by:

• Preceding a query with the WITH RECURSIVE clause

• Creating a view using the RECURSIVE clause in a CREATE VIEW statement

Using the WITH RECURSIVE Clause

Consider the following employee table:

CREATE TABLE employee
(employee_number INTEGER
,manager_employee_number INTEGER
,last_name CHAR(20)
,first_name VARCHAR(30));

The table represents an organizational structure containing a hierarchy of employee-manager
data.

The following figure depicts what the employee table looks like hierarchically.

Chapter 2: SQL Data Definition, Control, and Manipulation
Recursive Queries

SQL Fundamentals 57

The following recursive query retrieves the employee numbers of all employees who directly
or indirectly report to the manager with employee_number 801:

WITH RECURSIVE temp_table (employee_number) AS
(SELECT root.employee_number
FROM employee root
WHERE root.manager_employee_number = 801

UNION ALL
SELECT indirect.employee_number
FROM temp_table direct, employee indirect
WHERE direct.employee_number = indirect.manager_employee_number

)
SELECT * FROM temp_table ORDER BY employee_number;

In the example, temp_table is a temporary named result set that can be referred to in the
FROM clause of the recursive statement.

The initial result set is established in temp_table by the nonrecursive, or seed, statement and
contains the employees that report directly to the manager with an employee_number of 801:

SELECT root.employee_number
FROM employee root
WHERE root.manager_employee_number = 801

The recursion takes place by joining each employee in temp_table with employees who report
to the employees in temp_table. The UNION ALL adds the results to temp_table.

SELECT indirect.employee_number
FROM temp_table direct, employee indirect
WHERE direct.employee_number = indirect.manager_employee_number

Recursion stops when no new rows are added to temp_table.

1101A285

employee # = 801
manager employee # = NULL

employee # = 1003
manager employee # = 801

employee # = 1010
manager employee # = 1003

employee # = 1012
manager employee # = 1004

employee # = 1002
manager employee # = 1004

employee # = 1015
manager employee # = 1004

employee # = 1001
manager employee # = 1003

employee # = 1004
manager employee # = 1003

employee # = 1008
manager employee # = 1019

employee # = 1006
manager employee # = 1019

employee # = 1014
manager employee # = 1019

employee # = 1011
manager employee # = 1019

employee # = 1019
manager employee # = 801

employee # = 1016
manager employee # = 801

Chapter 2: SQL Data Definition, Control, and Manipulation
Recursive Queries

58 SQL Fundamentals

The final query is not part of the recursive WITH clause and extracts the employee
information out of temp_table:

SELECT * FROM temp_table ORDER BY employee_number;

Here are the results of the recursive query:

employee_number

 1001
 1002
 1003
 1004
 1006
 1008
 1010
 1011
 1012
 1014
 1015
 1016
 1019

Using the RECURSIVE Clause in a CREATE VIEW Statement

Creating a view using the RECURSIVE clause is similar to preceding a query with the WITH
RECURSIVE clause.

Consider the employee table that was presented in “Using the WITH RECURSIVE Clause” on
page 56. The following statement creates a view named hierarchy_801 using a recursive query
that retrieves the employee numbers of all employees who directly or indirectly report to the
manager with employee_number 801:

CREATE RECURSIVE VIEW hierarchy_801 (employee_number) AS
(SELECT root.employee_number
FROM employee root
WHERE root.manager_employee_number = 801

UNION ALL
SELECT indirect.employee_number
FROM hierarchy_801 direct, employee indirect
WHERE direct.employee_number = indirect.manager_employee_number

);

The seed statement and recursive statement in the view definition are the same as the seed
statement and recursive statement in the previous recursive query that uses the WITH
RECURSIVE clause, except that the hierarchy_801 view name is different from the temp_table
temporary result name.

To extract the employee information, use the following SELECT statement on the
hierarchy_801 view:

SELECT * FROM hierarchy_801 ORDER BY employee_number;

Chapter 2: SQL Data Definition, Control, and Manipulation
Recursive Queries

SQL Fundamentals 59

Here are the results:

employee_number

 1001
 1002
 1003
 1004
 1006
 1008
 1010
 1011
 1012
 1014
 1015
 1016
 1019

Depth Control to Avoid Infinite Recursion

If the hierarchy is cyclic, or if the recursive statement specifies a bad join condition, a recursive
query can produce a runaway query that never completes with a finite result. The best practice
is to control the depth of the recursion:

• Specify a depth control column in the column list of the WITH RECURSIVE clause or
recursive view

• Initialize the column value to 0 in the seed statements

• Increment the column value by 1 in the recursive statements

• Specify a limit for the value of the depth control column in the join condition of the
recursive statements

Here is an example that modifies the previous recursive query that uses the WITH
RECURSIVE clause of the employee table to limit the depth of the recursion to five cycles:

WITH RECURSIVE temp_table (employee_number, depth) AS
(SELECT root.employee_number, 0 AS depth
FROM employee root
WHERE root.manager_employee_number = 801

UNION ALL
SELECT indirect.employee_number, direct.depth+1 AS newdepth
FROM temp_table direct, employee indirect
WHERE direct.employee_number = indirect.manager_employee_number
AND newdepth <= 5

)
SELECT * FROM temp_table ORDER BY employee_number;

Related Topics

For details on … See …

recursive queries “WITH RECURSIVE” in SQL Data Manipulation Language.

recursive views “CREATE VIEW” in SQL Data Definition Language.

Chapter 2: SQL Data Definition, Control, and Manipulation
Query and Workload Analysis Statements

60 SQL Fundamentals

Query and Workload Analysis Statements

Data Collection and Analysis

Teradata provides the following SQL statements for collecting and analyzing query and data
demographics and statistics:

Collected data can be used in several ways, for example:

• By the Optimizer, to produce the best query plans possible.

• To populate user-defined Query Capture Database (QCD) tables with data used by various
utilities to analyze query workloads as part of the ongoing process to re-engineer the
database design process.

For example, the Teradata Index Wizard determines optimal secondary indexes, single-
table join indexes, and PPIs to support the query workloads you ask it to analyze.

Index Analysis and Target Level Emulation

Teradata also provides diagnostic statements that support the Teradata Index Wizard and the
cost-based and sample-based components of the target level emulation facility used to
emulate a production environment on a test system:

After configuring the test environment and enabling it with the appropriate production
system statistical and demographic data, you can perform various workload analyses to
determine optimal sets of secondary indexes to support those workloads in the production
environment.

Note: Settings should be changed in the production environment only under the direction of
Teradata Support Center personnel.

• BEGIN QUERY LOGGING

• COLLECT DEMOGRAPHICS

• COLLECT STATISTICS

• DROP STATISTICS

• DUMP EXPLAIN

• END QUERY LOGGING

• INITIATE INDEX ANALYSIS

• INITIATE PARTITION ANALYSIS

• INSERT EXPLAIN

• RESTART INDEX ANALYSIS

• SHOW QUERY LOGGING

• DIAGNOSTIC HELP PROFILE

• DIAGNOSTIC SET PROFILE

• DIAGNOSTIC COSTPRINT

• DIAGNOSTIC DUMP COSTS

• DIAGNOSTIC HELP COSTS

• DIAGNOSTIC SET COSTS

• DIAGNOSTIC DUMP SAMPLES

• DIAGNOSTIC HELP SAMPLES

• DIAGNOSTIC SET SAMPLES

• DIAGNOSTIC “Validate Index”

Chapter 2: SQL Data Definition, Control, and Manipulation
Help and Database Object Definition Tools

SQL Fundamentals 61

Related Topics

For details on BEGIN QUERY LOGGING, END QUERY LOGGING, and SHOW QUERY
LOGGING, see SQL Data Definition Language. For more information on other query and
workload analysis statements, see SQL Data Manipulation Language.

For more information on the Teradata Index Wizard, see Teradata Index Wizard User Guide.

Help and Database Object Definition Tools

Teradata SQL provides several powerful tools to get help about database object definitions and
summaries of database object definition statement text.

HELP Statements

Various HELP statements return reports about the current column definitions for named
database objects. The reports these statements return can be useful to database designers who
need to fine tune index definitions, column definitions (for example, changing data typing to
eliminate the necessity of ad hoc conversions), and so on.

For SQL HELP statements, see SQL Data Definition Language Syntax and Examples.

SHOW Statements

Most SHOW statements return a CREATE statement indicating the last data definition
statement performed against the named database object. Some SHOW statements, such as
SHOW QUERY LOGGING, return other information. These statements are particularly
useful for application developers who need to develop exact replicas of existing objects for
purposes of testing new software.

For SQL SHOW statements, see SQL Data Definition Language Syntax and Examples.

Example

Consider the following definition for a table named department:

CREATE TABLE department, FALLBACK
(department_number SMALLINT
,department_name CHAR(30) NOT NULL
,budget_amount DECIMAL(10,2)
,manager_employee_number INTEGER
)

UNIQUE PRIMARY INDEX (department_number)
,UNIQUE INDEX (department_name);

To get the attributes for the table, use the HELP TABLE statement:

HELP TABLE department;

Chapter 2: SQL Data Definition, Control, and Manipulation
Help and Database Object Definition Tools

62 SQL Fundamentals

The HELP TABLE statement returns:

Column Name Type Comment
------------------------------ ---- -------------------------
department_number I2 ?
department_name CF ?
budget_amount D ?
manager_employee_number I ?

To get the CREATE TABLE statement that defines the department table, use the SHOW
TABLE statement:

SHOW TABLE department;

The SHOW TABLE statement returns:

CREATE SET TABLE TERADATA_EDUCATION.department, FALLBACK,
NO BEFORE JOURNAL,
NO AFTER JOURNAL,
CHECKSUM = DEFAULT
(department_number SMALLINT,
department_name CHAR(30) CHARACTER SET LATIN

NOT CASESPECIFIC NOT NULL,
budget_amount DECIMAL(10,2),
manager_employee_number INTEGER)

UNIQUE PRIMARY INDEX (department_number)
UNIQUE INDEX (department_name);

SQL Fundamentals 63

CHAPTER 3 SQL Data Handling

This chapter describes the fundamentals of Teradata Database data handling.

SQL Statement and SQL Requests

In Teradata SQL, a statement has three components.

• A statement keyword, such as SELECT, CREATE TABLE, or ALTER PROCEDURE.

• Zero or more clauses, such as WHERE, PRIMARY KEY, or UNIQUE PRIMARY INDEX.

• A semicolon.

In Teradata SQL, a request has several components, including the following.

• Request-level CLIv2 options parcel.

• One or more SQL statements.

• Metadata about the request data.

Request is a semantic concept. It defines a unit of work that is transmitted from a client
application to Teradata Database in a single message. Each request either completes
successfully (commits) or rolls back if it is not successful.

Note: All individual SQL statements are also individual SQL requests, but not all SQL requests
are also SQL statements because one request can contain an unlimited number of SQL
statements. This special case is called a multistatement request, and it is the primary
superficial characteristic that distinguishes a statement from a request in the Teradata world.

Invoking SQL Statements

SQL provides several ways to invoke an executable statement:

• Interactively from a terminal

• Embedded within an application program

• Dynamically performed from within an embedded application

• Embedded within a stored procedure or external stored procedure

Executable SQL Statements

An executable SQL statement performs an action. The action can be on data or on a
transaction or some other entity at a higher level than raw data.

Some examples of executable SQL statements include:

Chapter 3: SQL Data Handling
SQL Requests

64 SQL Fundamentals

• SELECT

• CREATE TABLE

• COMMIT

• CONNECT

• PREPARE

Most executable SQL statements can be performed interactively from a terminal using an SQL
query manager like BTEQ or Teradata SQL Assistant.

The following types of executable SQL commands cannot be performed interactively:

• Cursor control and declaration statements

• Dynamic SQL control statements

• Stored procedure control statements and condition handlers

• Connection control statements

• Special forms of SQL statements such as SELECT INTO

These statements can only be used within an embedded SQL or stored procedure application.

Nonexecutable SQL Statements

A nonexecutable SQL statement is one that declares an SQL statement, object, or host or local
variable to the preprocessor or stored procedure compiler. Nonexecutable SQL statements are
not processed during program execution.

Examples of nonexecutable SQL statements for embedded SQL applications include:

• DECLARE CURSOR

• BEGIN DECLARE SECTION

• END DECLARE SECTION

• EXEC SQL

Examples of nonexecutable SQL statements for stored procedures include:

• DECLARE CURSOR

• DECLARE

SQL Requests

A request to Teradata Database consists of one or more SQL statements and can span any
number of input lines. Teradata Database can receive and perform SQL statements that are:

• Embedded in a client application program that is written in a procedural language.

• Embedded in a stored procedure.

• Entered interactively through BTEQ or Teradata SQL Assistant interfaces.

• Submitted in a BTEQ script as a batch job.

• Submitted through other supported methods (such as CLIv2, ODBC, and JDBC).

Chapter 3: SQL Data Handling
SQL Requests

SQL Fundamentals 65

• Submitted from a C or C++ external stored procedure using CLIv2 or a Java external
stored procedure using JDBC.

Single Statement Requests

A single statement request consists of a statement keyword followed by one or more
expressions, other keywords, clauses, and phrases. A single statement request is treated as a
solitary unit of work.

Here is the syntax for a single statement request:

Multistatement Requests

A multistatement request consists of two or more statements separated by SEMICOLON
characters.

For more information, see “Multistatement Requests” on page 69.

Iterated Requests

An iterated request is a single DML statement with multiple data records.

Iterated requests do not directly impact the syntax of SQL statements. They provide a more
efficient way of processing DML statements that specify the USING request modifier to
import or export data from Teradata Database.

For more information, see “Iterated Requests” on page 71.

ANSI Session Mode

If an error is found in a request, that request is aborted. Normally, the entire transaction is not
aborted. However, some failures will abort the entire transaction.

Teradata Session Mode

A single statement or multistatement request that does not include the BEGIN
TRANSACTION and END TRANSACTION statements is treated as an implicit transaction. If
an error is found in any statement in the request, then the entire transaction is aborted.

Following are the steps for abort processing:

1 Back out any changes made to the database as a result of any preceding statements in the
transaction.

2 Delete any associated spooled output.

3 Release any associated locks.

4 Bypass any remaining statements in the transaction.

HH01A003

;

statement

Chapter 3: SQL Data Handling
Transactions

66 SQL Fundamentals

Complete Requests

A request is considered complete when either an End of Text character or the request
terminator is encountered. The request terminator is a SEMICOLON character. It is the last
nonpad character on an input line.

A request terminator is optional except when the request is embedded in an SQL macro or
trigger or when it is entered through BTEQ.

Transactions

A transaction is a logical unit of work where the statements nested within the transaction
either execute successfully as a group or do not execute.

Transaction Processing Mode

You can perform transaction processing in either of the following session modes:

• ANSI

• Teradata

In ANSI session mode, transaction processing adheres to the rules defined by the ANSI SQL
specification. In Teradata session mode, transaction processing follows the rules defined by
Teradata prior to the emergence of the ANSI SQL standard.

To set the transaction processing mode, use the:

• SessionMode field of the DBS Control Record

• BTEQ command .SET SESSION TRANSACTION

• Preprocessor2 TRANSACT() option

• ODBC SessionMode option in the .odbc.ini file

• JDBC TeraDataSource.setTransactMode() method

Related Topics

The next few pages highlight some of the differences between transaction processing in ANSI
session mode and transaction processing in Teradata session mode.

For detailed information on statement and transaction processing, see SQL Request and
Transaction Processing.

Teradata Extensions to ANSI SQL

In general, the Teradata Database SQL conforms closely to the American National Standards
Institute/International Organization for Standardization (ANSI/ISO) SQL standard, but also
supports extensions that enable users to take full advantage of the efficiency benefits of

Chapter 3: SQL Data Handling
Transaction Processing in ANSI Session Mode

SQL Fundamentals 67

parallelism. Teradata Database thus supports its own dialect of ANSI/ISO SQL guided by the
following principles:

• When Teradata adds a new feature or enhancement to its SQL, the feature conforms to the
ANSI/ISO SQL standard.

• When the difference between the Teradata SQL dialect and the ANSI/ISO SQL standard
for a language feature is slight, Teradata defines the database feature so that ANSI/ISO SQL
syntax is available as an option.

• When the difference between the Teradata SQL dialect and the ANSI/ISO SQL standard
for a language feature is significant, the user is offered both Teradata and ANSI/ISO syntax
and has the choice of operating either in Teradata or ANSI mode persistently or for a
session, or of turning off the SQL Flagger.

• When Teradata adds a new feature or feature enhancement to Teradata SQL and that
feature is not defined by the ANSI/ISO SQL standard, the feature is designed using the
following criteria:

• If other vendors offer a similar feature or feature extension, Teradata designs the new
feature to broadly comply with other solutions but creates, where necessary, its own
solution.

• If other vendors do not offer a similar feature, Teradata designs the new feature as
cleanly and generically as possible, creating syntax that does not violate any of the basic
tenets of the ANSI/ISO SQL standard and that is not subject to major revisions so that
it can accommodate future updates to the ANSI/ISO SQL standard.

Transaction Processing in ANSI Session Mode

In ANSI mode, transactions are always implicitly started and explicitly closed.

A transaction initiates when one of the following happens:

• The first SQL statement in a session executes.

• The first statement following the close of a transaction executes.

The COMMIT or ROLLBACK/ABORT statements close a transaction.

If a transaction includes a DDL statement, it must be the last statement in the transaction.
DATABASE and SET SESSION are DDL statements. See “Rollback Processing” in SQL Request
and Transaction Processing.

If a session terminates with an open transaction, any effects of that transaction are rolled back.

Two-Phase Commit

Sessions in ANSI session mode do not support Two-Phase Commit (2PC). If an attempt is
made to use the 2PC protocol in ANSI session mode, the Logon process aborts and an error
returns to the requestor.

Chapter 3: SQL Data Handling
Transaction Processing in Teradata Session Mode

68 SQL Fundamentals

Transaction Processing in Teradata Session
Mode

A Teradata SQL transaction can be a single Teradata SQL statement, or a sequence of Teradata
SQL statements, treated as a single unit of work.

Each request is processed as one of the following transaction types:

• Implicit

• Explicit

• Two-phase commit (2PC)

Implicit Transactions

An implicit transaction is a request that does not include the BEGIN TRANSACTION and
END TRANSACTION statements. The implicit transaction starts and completes all within the
SQL request: it is self-contained.

An implicit transaction can be a:

• Single DML statement that affects one or more rows of one or more tables.

• Macro or trigger containing one or more statements.

• Request containing multiple statements separated by SEMICOLON characters.
SEMICOLON characters can appear anywhere in the input line. The Parser interprets a
SEMICOLON at the end of an input line as the request terminator.

DDL statements are not valid in a multistatement request and are therefore not valid in an
implicit multistatement transaction.

Explicit Transactions

In Teradata session mode, an explicit transaction contains one or more statements enclosed by
BEGIN TRANSACTION and END TRANSACTION statements. The first BEGIN
TRANSACTION initiates a transaction and the last END TRANSACTION terminates the
transaction.

When multiple statements are included in an explicit transaction, you can only specify a DDL
statement if it is the last statement in the series.

2PC Rules

2PCprotocol is supported in Teradata session mode:

• A 2PC transaction contains one or more DML statements that affect multiple databases
and are coordinated externally using the 2PC protocol.

• A DDL statement is not valid in a two-phase commit transaction.

Chapter 3: SQL Data Handling
Multistatement Requests

SQL Fundamentals 69

Multistatement Requests

An atomic request containing more than one SQL statement, each terminated by a
SEMICOLON character.

Syntax

ANSI Compliance

Multistatement requests are non-ANSI SQL:2008 standard.

Rules and Restrictions

Teradata Database imposes restrictions on the use of multistatement requests:

• Only one USING modifier is permitted per request, so only one USING modifier can be
used per multistatement request.

This rule applies to interactive SQL only. Embedded SQL and stored procedures do not
permit the USING modifier.

• A multistatement request cannot include a DDL statement.

However, a multistatement request can include one SET QUERY_BAND … FOR
TRANSACTION statement if it is the first statement in the request.

• The keywords BEGIN REQUEST and END REQUEST must delimit a multistatement
request in a stored procedure.

Power of Multistatement Requests

The multistatement request is application-independent. It improves performance for a variety
of applications that can package more than one SQL statement at a time. BTEQ, CLI, and the
SQL preprocessor all support multistatement requests.

Multistatement requests improve system performance by reducing processing overhead. By
performing a series of statements as one request, performance for the client, the Parser, and
the Database Manager are all enhanced.

Because of this reduced overhead, using multistatement requests also decreases response time.
A multistatement request that contains 10 SQL statements could be as much as 10 times more
efficient than the 10 statements entered separately (depending on the types of statements
submitted).

HH01A004

;

statement

;

Chapter 3: SQL Data Handling
Multistatement Requests

70 SQL Fundamentals

Implicit Multistatement Transaction

In Teradata session mode, a multistatement request is one form of implicit transaction. As
such, the outcome of an implicit multistatement transaction is typically all-or-nothing. If one
statement in the request fails, the entire implicit transaction fails and the system rolls it back.

Statement Independence for Simple INSERTs

When a multistatement request includes only simple INSERT statements, a failure of one or
more INSERTs does not cause the entire request to be rolled back. In these cases, errors are
reported for the INSERT statements that failed, so those statements can be resubmitted.
INSERT statements that completed successfully are not rolled back.

This behavior is limited to requests submitted directly to the database using an SQL INSERT
multistatement request or submitted using a JDBC application request.

Parallel Step Processing

Teradata Database can perform some requests in parallel (see “Parallel Steps” on page 71).
This capability applies both to implicit transactions, such as macros and multistatement
requests, and to Teradata-style transactions explicitly defined by BEGIN/END
TRANSACTION statements.

Statements in a multistatement request are broken down by the Parser into one or more steps
that direct the execution performed by the AMPs. It is these steps, not the actual statements,
that are executed in parallel.

A handshaking protocol between the PE and the AMP allows the AMP to determine when the
PE can dispatch the next parallel step.

Up to twenty parallel steps can be processed per request if channels are not required, such as a
request with an equality constraint based on a primary index value. Up to ten channels can be
used for parallel processing when a request is not constrained to a primary index value.

For example, if an INSERT step and a DELETE step are allowed to run in parallel, the AMP
informs the PE that the DELETE step has progressed to the point where the INSERT step will
not impact it adversely. This handshaking protocol also reduces the chance of a deadlock.

“Parallel Steps” on page 71 illustrates the following process:

1 The statements in a multistatement request are broken down into a series of steps.

2 The Optimizer determines which steps in the series can be executed in parallel.

3 The steps are processed.

Each step undergoes some preliminary processing before it is executed, such as placing locks
on the objects involved. These preliminary processes are not performed in parallel with the
steps.

Chapter 3: SQL Data Handling
Iterated Requests

SQL Fundamentals 71

Parallel Steps

Related Topics

Iterated Requests

A single DML statement with multiple data records.

Usage

An iterated request is an atomic request consisting of a single SQL DML statement with
multiple sets (records) of data.

Iterated requests do not directly impact the syntax of SQL statements. They provide an
efficient way to execute the same single-statement DML operation on multiple data records,
like the way that ODBC applications execute parameterized statements for arrays of parameter
values, for example.

Several Teradata Database client tools and interfaces provide facilities to pack multiple data
records in a single buffer with a single DML statement.

Time Step 1

2

3

4

5

6

7

8

9

(1)

Time

(2)

Time

Step 1

2

5

6

9

7
8

(3)

FF02A001

Step 1

2

3

4

5

6

7

8

9

3 4

For more information on … See …

multistatement requests, multistatment
request processing

• SQL Data Manipulation Language

• SQL Request and Transaction Processing

Chapter 3: SQL Data Handling
Iterated Requests

72 SQL Fundamentals

For example, suppose you use BTEQ to import rows of data into table ptable using the
following INSERT statement and USING modifier:

USING (pid INTEGER, pname CHAR(12))
INSERT INTO ptable VALUES(:pid, :pname);

To repeat the request as many times as necessary to read up to 200 data records and pack a
maximum of 100 data records with each request, precede the INSERT statement with the
following BTEQ command:

.REPEAT RECS 200 PACK 100

Note: The PACK option is ignored if the database being used does not support iterated
requests or if the request that follows the REPEAT command is not a DML statement
supported by iterated requests. For details, see “Rules” on page 72.

The following tools and interfaces provide facilities that you can use to execute iterated
requests.

Rules

• The iterated request must consist of a single DML statement from the following list:

• ABORT

• DELETE (excluding the positioned form of DELETE)

• EXECUTE macro_name

The fully-expanded macro must be equivalent to a single DML statement that is
qualified to be in an iterated request.

• INSERT

• MERGE

• ROLLBACK

• SELECT

• UPDATE (including atomic UPSERT, but excluding the positioned form of UPDATE)

• The DML statement must reference user-supplied input data, either as named fields in a
USING modifier or as '?' parameter markers in a parameterized request.

Tool/Interface Facility

CLIv2 for network-attached systems using_data_count field in the DBCAREA data area

CLIv2 for channel-attached systems Using-data-count field in the DBCAREA data area

ODBC Parameter arrays

JDBC type 4 driver Batch operations

OLE DB Provider for Teradata Parameter sets

BTEQ • .REPEAT command

• .SET PACK command

Chapter 3: SQL Data Handling
Dynamic and Static SQL

SQL Fundamentals 73

Note: Iterated requests do not support the USING modifier with the TOP n operator.

• All the data records in a given request must use the same record layout. This restriction
applies by necessity to requests where the record layout is given by a single USING
modifier in the request text itself; but the restriction also applies to parameterized
requests, where the request text has no USING modifier and does not fully specify the
input record.

• The server processes the iterated request as if it were a single multistatement request, with
each iteration and its response associated with a corresponding statement number.

Statement Independence for Simple INSERTs

When an iterated request includes only simple INSERT statements, a failure of one or more
INSERTs does not cause the entire request to be rolled back. In these cases, errors are reported
for the INSERT statements that failed, so those statements can be resubmitted. INSERT
statements that completed successfully are not rolled back.

This behavior is limited to requests submitted directly to the database using an SQL INSERT
multistatement request or submitted using a JDBC application request.

Related Topics

Dynamic and Static SQL

Dynamic SQL is a method of invoking an SQL statement by compiling and performing it at
runtime from within an embedded SQL application program or a stored procedure. The
specification of data to be manipulated by the statement is also determined at runtime. Static
SQL is, by default, any method of invoking an SQL statement that is not dynamic.

For more information on … See …

iterated request processing SQL Request and Transaction Processing

which DML statements can be specified in an
iterated request

SQL Data Manipulation Language

CLIv2 • Teradata Call-Level Interface Version 2 Reference
for Network-Attached Systems

• Teradata Call-Level Interface Version 2 Reference
for Network-Attached Systems

ODBC parameter arrays ODBC Driver for Teradata User Guide

JDBC driver batch operations Teradata JDBC Driver User Guide

OLE DB Provider for Teradata parameter
sets

OLE DB Provider for Teradata User Guide

BTEQ PACK command Basic Teradata Query Reference

Chapter 3: SQL Data Handling
Dynamic and Static SQL

74 SQL Fundamentals

ANSI Compliance

Dynamic SQL is ANSI SQL:2008-compliant. The ANSI SQL standard does not define the
expression static SQL, but relational database management commonly uses it to contrast with
the ANSI-defined expression dynamic SQL.

Ad Hoc and Hard-Coded Invocation of SQL Statements

Perhaps the best way to think of dynamic SQL is to contrast it with ad hoc SQL statements
created and executed from a terminal and with preprogrammed SQL statements created by an
application programmer and executed by an application program.

In the case of the ad hoc query, everything legal is available to the requester: choice of SQL
statements and clauses, variables and their names, databases, tables, and columns to
manipulate, and literals.

In the case of the application programmer, the choices are made in advance and hard-coded
into the source code of the application. Once the program is compiled, nothing can be
changed short of editing and recompiling the application.

Dynamic Invocation of SQL Statements

Dynamic SQL offers a compromise between the extremes of ad hoc and hard-coded queries.
By choosing to code dynamic SQL statements in the application, the programmer has the
flexibility to allow an end user to select not only the variables to be manipulated at run time,
but also the SQL statement to be executed.

As you might expect, the flexibility that dynamic SQL offers a user is offset by more work and
increased attention to detail on the part of the application programmer, who needs to set up
additional dynamic SQL statements and manipulate information in the SQLDA to ensure a
correct result.

This is done by first preparing, or compiling, an SQL text string containing placeholder tokens
at run time and then executing the prepared statement, allowing the application to prompt the
user for values to be substituted for the placeholders.

SQL Statements to Set Up and Invoke Dynamic SQL

The embedded SQL statements for preparing and executing an SQL statement dynamically
are:

• PREPARE

• EXECUTE

• EXECUTE IMMEDIATE

EXECUTE IMMEDIATE is a special form that combines PREPARE and EXECUTE into one
statement. EXECUTE IMMEDIATE can only be used in the case where there are no input host
variables.

For details, see SQL Stored Procedures and Embedded SQL.

Chapter 3: SQL Data Handling
Dynamic SQL in Stored Procedures

SQL Fundamentals 75

Related Topics

Dynamic SQL in Stored Procedures

Stored procedures support of dynamic SQL statements is different from embedded SQL
support.

Use the following statement to set up and invoke dynamic SQL in a stored procedure:

CALL DBC.SysExecSQL(string_expression)

where string_expression is any valid string expression that builds an SQL statement.

The string expression consists of string literals, status variables, local variables, input (IN and
INOUT) parameters, and for-loop aliases. Dynamic SQL statements are not validated at
compile time.

The resulting SQL statement cannot have status variables, local variables, parameters, for-loop
aliases, or a USING or EXPLAIN modifier.

Example

The following example uses dynamic SQL within stored procedure source text:

CREATE PROCEDURE new_sales_table(my_table VARCHAR(30),
my_database VARCHAR(30))

BEGIN
DECLARE sales_columns VARCHAR(128)

DEFAULT '(item INTEGER, price DECIMAL(8,2), sold INTEGER)';
CALL DBC.SysExecSQL('CREATE TABLE ' || my_database ||

'.' || my_table || sales_columns);
END;

A stored procedure can make any number of calls to SysExecSQL. The request text in the
string expression can specify a multistatement request, but the call to SysExecSQL must be
delimited by BEGIN REQUEST and END REQUEST keywords.

Because the request text of dynamic SQL statements can vary from execution to execution,
dynamic SQL provides more usability and conciseness to the stored procedure definition.

Restrictions

Whether the creator, owner, or invoker of the stored procedure must have appropriate
privileges on the objects that the stored procedure accesses depends on whether the CREATE

For more information on … See …

examples of dynamic SQL code in
C, COBOL, and PL/I

Teradata Preprocessor2 for Embedded SQL Programmer
Guide.

embedded SQL statements SQL Stored Procedures and Embedded SQL.

Chapter 3: SQL Data Handling
Using SELECT With Dynamic SQL

76 SQL Fundamentals

PROCEDURE statement includes the SQL SECURITY clause and which option the SQL
SECURITY clause specifies.

The following SQL statements cannot be specified as dynamic SQL in stored procedures:

Related Topics

For rules and usage examples of dynamic SQL statements in stored procedures, see SQL Stored
Procedures and Embedded SQL.

Using SELECT With Dynamic SQL

Unlike other executable SQL statements, SELECT returns information beyond statement
responses and return codes to the requester.

DESCRIBE Statement

Because the requesting application needs to know how much (if any) data will be returned by
a dynamically prepared SELECT, you must use an additional SQL statement, DESCRIBE, to
make the application aware of the demographics of the data to be returned by the SELECT
statement (see “DESCRIBE” in SQL Stored Procedures and Embedded SQL).

DESCRIBE writes this information to the SQLDA declared for the SELECT statement as
follows.

• ALTER PROCEDURE

• CALL

• CREATE PROCEDURE

• DATABASE

• EXPLAIN modifier

• HELP

• OPEN

• PREPARE

• REPLACE PROCEDURE

• SELECT

• SET ROLE

• SET SESSION ACCOUNT

• SET SESSION COLLATION

• SET SESSION DATEFORM

• SET TIME ZONE

• SHOW

• Cursor statements, including:

• CLOSE

• FETCH

• OPEN

THIS information … IS written to this field of SQLDA …

number of values to be returned SQLN

column name or label of nth value SQLVAR

(nth row in the SQLVAR(n) array)column data type of nth value

column length of nth value

Chapter 3: SQL Data Handling
Event Processing Using Queue Tables

SQL Fundamentals 77

General Procedure

An application must use the following general procedure to set up, execute, and retrieve the
results of a SELECT statement invoked as dynamic SQL.

1 Declare a dynamic cursor for the SELECT in the form:

DECLARE cursor_name CURSOR FOR sql_statement_name

2 Declare the SQLDA, preferably using an INCLUDE SQLDA statement.

3 Build and PREPARE the SELECT statement.

4 Issue a DESCRIBE statement in the form:

DESCRIBE sql_statement_name INTO SQLDA

DESCRIBE performs the following actions:

a Interrogate the database for the demographics of the expected results.

b Write the addresses of the target variables to receive those results to the SQLDA.

This step is bypassed if any of the following occurs:

• The request does not return any data.

• An INTO clause was present in the PREPARE statement.

• The statement returns known columns and the INTO clause is used on the
corresponding FETCH statement.

• The application code defines the SQLDA.

5 Allocate storage for target variables to receive the returned data based on the
demographics reported by DESCRIBE.

6 Retrieve the result rows using the following SQL cursor control statements:

• OPEN cursor_name

• FETCH cursor_name USING DESCRIPTOR SQLDA

• CLOSE cursor_name

In this step, results tables are examined one row at a time using the selection cursor. This is
because client programming languages do not support data in terms of sets, but only as
individual records.

Event Processing Using Queue Tables

Teradata Database provides queue tables that you can use for event processing. Queue tables
are base tables with first-in-first-out (FIFO) queue properties.

When you create a queue table, you define a timestamp column. You can query the queue
table to retrieve data from the row with the oldest timestamp.

Usage

An application can perform peek, FIFO push, and FIFO pop operations on queue tables.

Chapter 3: SQL Data Handling
Manipulating Nulls

78 SQL Fundamentals

Here is an example of how an application can process events using queue tables:

• Define a trigger on a base table to insert a row into the queue table when the trigger fires.

• From the application, submit a SELECT AND CONSUME statement that waits for data in
the queue table.

• When data arrives in the queue table, the waiting SELECT AND CONSUME statement
returns a result to the application, which processes the event. Additionally, the row is
deleted from the queue table.

Related Topics

Manipulating Nulls

Nulls are neither values nor do they signify values. They represent the absence of value. A null
is a place holder indicating that no value is present.

You cannot solve for the value of a null because, by definition, it has no value. For example,
the expression NULL = NULL has no meaning and therefore can never be true. A query that
specifies the predicate WHERE NULL = NULL is not valid because it can never be true. The
meaning of the comparison it specifies is not only unknown, but unknowable.

These properties make the use and interpretation of nulls in SQL problematic. The following
sections outline the behavior of nulls for various SQL operations to help you to understand
how to use them in data manipulation statements and to interpret the results those statements
affect.

NULL Literals

See “NULL Keyword as a Literal” on page 34 for information on how to use the NULL
keyword as a literal.

TO perform a … USE the …

FIFO push INSERT statement

FIFO pop SELECT AND CONSUME statement

peek SELECT statement

For more information on … See …

creating queue tables the CREATE/REPLACE TABLE statement in SQL Data Definition
Language

SELECT AND CONSUME SQL Data Manipulation Language

Chapter 3: SQL Data Handling
Manipulating Nulls

SQL Fundamentals 79

Nulls and DateTime and Interval Data

A DateTime or Interval value is either atomically null or it is not null. For example, you
cannot have an interval of YEAR TO MONTH in which YEAR is null and MONTH is not.

Rules for the Result of Expressions That Contain Nulls

• When any component of a value expression is null, then the result is null.

• The result of a conditional expression that has a null component is unknown.

• If an operand of any arithmetic operator (such as + or -) or function (such as ABS or
SQRT) is null, then the result of the operation or function is null with the exception of
ZEROIFNULL. If the argument to ZEROIFNULL is NULL, then the result is 0.

• COALESCE, a special shorthand variant of the CASE expression, returns NULL if all its
arguments evaluate to null. Otherwise, COALESCE returns the value of the first non-null
argument.

For more rules on the result of expressions containing nulls, see the sections that follow and
SQL Functions, Operators, Expressions, and Predicates.

Nulls and Comparison Operators

If either operand of a comparison operator is null, then the result is unknown. If either
operand is the keyword NULL, an error is returned that recommends using IS NULL or IS
NOT NULL instead. The following examples indicate this behavior.

5 = NULL
5 <> NULL
NULL = NULL
NULL <> NULL
5 = NULL + 5

If the argument of the NOT operator is unknown, the result is also unknown. This translates
to FALSE as a final boolean result.

Instead of using comparison operators, use the IS NULL operator to search for fields that
contain nulls and the IS NOT NULL operator to search for fields that do not contain nulls. For
details, see “Searching for Nulls” on page 80 and “Excluding Nulls” on page 80.

Using IS NULL is different from using the comparison operator =. When you use an operator
like =, you specify a comparison between values or value expressions, whereas when you use
the IS NULL operator, you specify an existence condition.

Rules for Nulls and CASE Expressions

• CASE and its related expressions COALESCE and NULLIF can return a null.

• NULL and null expressions are valid as the CASE test expression in a valued CASE
expression.

• When testing for NULL, it is best to use a searched CASE expression using the IS NULL or
IS NOT NULL operators in the WHEN clause.

• NULL and null expressions are valid as THEN clause conditions.

Chapter 3: SQL Data Handling
Manipulating Nulls

80 SQL Fundamentals

For details on the rules for nulls in CASE, NULLIF, and COALESCE expressions, see SQL
Functions, Operators, Expressions, and Predicates.

Excluding Nulls

To exclude nulls from the results of a query, use the operator IS NOT NULL.

For example, to search for the names of all employees with a value other than null in the
jobtitle column, enter the statement.

SELECT name
FROM employee
WHERE jobtitle IS NOT NULL ;

Searching for Nulls

To search for columns that contain nulls, use the operator IS NULL.

The IS NULL operator tests row data for the presence of nulls.

For example, to search for the names of all employees who have a null in the deptno column,
you could enter the statement:

SELECT name
FROM employee
WHERE deptno IS NULL ;

This query produces the names of all employees with a null in the deptno field.

Searching for Nulls and Non-Nulls Together

To search for nulls and non-nulls in the same statement, the search condition for nulls must
be separate from any other search conditions.

For example, to select the names of all employees with the job title of Vice Pres, Manager, or
null, enter the following SELECT statement.

SELECT name, jobtitle
FROM employee
WHERE jobtitle IN ('Manager', 'Vice Pres') OR jobtitle IS NULL ;

Including NULL in the IN list has no effect because NULL never equals NULL or any value.

Null Sorts as the Lowest Value in a Collation

When you use an ORDER BY clause to sort records, Teradata Database sorts null as the lowest
value. Sorting nulls can vary from RDBMS to RDBMS. Other systems may sort null as the
highest value.

If any row has a null in the column being grouped, then all rows having a null are placed into
one group.

NULL and Unique Indexes

For unique indexes, Teradata Database treats nulls as if they are equal rather than unknown
(and therefore false).

Chapter 3: SQL Data Handling
Manipulating Nulls

SQL Fundamentals 81

For single-column unique indexes, only one row may have null for the index value; otherwise
a uniqueness violation error occurs.

For multicolumn unique indexes, no two rows can have nulls in the same columns of the
index and also have non-null values that are equal in the other columns of the index.

For example, consider a two-column index. Rows can occur with the following index values:

An attempt to insert a row that matches any of these rows will result in a uniqueness violation.

Replacing Nulls With Values on Return to Client in Record Mode

When Teradata Database returns information to a client system in record mode, nulls must be
replaced with some value for the underlying column because client system languages do not
recognize nulls.

The following table shows the values returned for various column data types.

Value of First Column in Index Value of Second Column in Index

1 null

null 1

null null

Data Type Substitute Value Returned for Null

CHARACTER(n)

DATE

TIME

TIMESTAMP

INTERVAL

Pad character (or n pad characters for
CHARACTER(n), where n > 1)

PERIOD(DATE) 8 binary zero bytes

PERIOD(TIME [(n)]) 12 binary zero bytes

PERIOD(TIME [(n)] WITH TIME ZONE) 16 binary zero bytes

PERIOD(TIMESTAMP [(n)] [WITH TIME ZONE]) 0-length byte string

BYTE[(n)] Binary zero byte if n omitted else n binary
zero bytes

VARBYTE(n) 0-length byte string

VARCHARACTER(n) 0-length character string

Chapter 3: SQL Data Handling
Manipulating Nulls

82 SQL Fundamentals

The substitute values returned for nulls are not, by themselves, distinguishable from valid
non-null values. Data from CLI is normally accessed in IndicData mode, in which additional
identifying information that flags nulls is returned to the client.

BTEQ uses the identifying information, for example, to determine whether the values it
receives are values or just aliases for nulls so it can properly report the results. BTEQ displays
nulls as ?, which are not by themselves distinguishable from a CHAR or VARCHAR value of '?'.

Nulls and Aggregate Functions

With the important exception of COUNT(*), aggregate functions ignore nulls in their
arguments. This treatment of nulls is very different from the way arithmetic operators and
functions treat them.

This behavior can result in apparent nontransitive anomalies. For example, if there are nulls in
either column A or column B (or both), then the following expression is virtually always true.

SUM(A) + (SUM B) <> SUM (A+B)

In other words, for the case of SUM, the result is never a simple iterated addition if there are
nulls in the data being summed.

The only exception to this is the case in which the values for columns A and B are both null in
the same rows, because in those cases the entire row is disregarded in the aggregation. This is a
trivial case that does not violate the general rule.

The same is true, the necessary changes being made, for all the aggregate functions except
COUNT(*).

If this property of nulls presents a problem, you can always do either of the following
workarounds, each of which produces the desired result of the aggregate computation
SUM(A) + SUM(B) = SUM(A+B).

• Always define NUMERIC columns as NOT NULL DEFAULT 0.

• Use the ZEROIFNULL function within the aggregate function to convert any nulls to zeros
for the computation, for example

SUM(ZEROIFNULL(x) + ZEROIFNULL(y))

BIGINT

INTEGER

SMALLINT

BYTEINT

FLOAT

DECIMAL

REAL

DOUBLE PRECISION

NUMERIC

0

Data Type Substitute Value Returned for Null

Chapter 3: SQL Data Handling
Session Parameters

SQL Fundamentals 83

which produces the same result as this:

SUM(ZEROIFNULL(x) + ZEROIFNULL(y)).

COUNT(*) includes nulls in its result. For details, see SQL Functions, Operators, Expressions,
and Predicates.

RANGE_N and CASE_N Functions

Nulls have special considerations in the RANGE_N and CASE_N functions. For details, see
SQL Functions, Operators, Expressions, and Predicates.

Session Parameters

The following session parameters can be controlled with keywords or predefined system
variables.

Parameter Valid Keywords or System Variables

SQL Flagger ON

OFF

Transaction
Mode

ANSI (COMMIT)

Teradata (BTET)

Session
Collation

ASCII

EBCDIC

MULTINATIONAL

HOST

CHARSET_COLL

JIS_COLL

Account and
Priority

Account and reprioritization. Within the account identifier, you can specify a
performance group or use one of the following predefined performance groups:

• $R

• $H

• $M

• $L

Date Form ANSIDATE

INTEGERDATE

Chapter 3: SQL Data Handling
Session Parameters

84 SQL Fundamentals

SQL Flagger

When enabled, the SQL Flagger assists SQL programmers by notifying them of the use of non-
ANSI and non-entry level ANSI SQL syntax.

Enabling the SQL Flagger can be done regardless of whether you are in ANSI or Teradata
session mode.

To set the SQL Flagger on or off for BTEQ, use the .SET SESSION command.

For more detail on using the SQL Flagger, see “SQL Flagger” on page 163.

To set the SQL Flagger on or off for embedded SQL, use the SQLCHECK or -sc and
SQLFLAGGER or -sf options when you invoke the preprocessor.

If you are using SQL in other application programs, see the reference manual for that
application for instructions on enabling the SQL Flagger.

Transaction Mode

You can run transactions in either Teradata or ANSI session modes and these modes can be set
or changed.

To set the transaction mode, use the .SET SESSION command in BTEQ.

Character Set Indicates the character set being used by the client.

You can view site-installed client character sets from DBC.CharSetsV or
DBC.CharTranslationsV.

The following client character sets are permanently enabled:

• ASCII

• EBCDIC

• UTF-8

• UTF-16

For more information on character sets, see International Character Set Support.

Parameter Valid Keywords or System Variables

To set this level of flagging … Set the flag variable to this value …

None SQLFLAG NONE

Entry level SQLFLAG ENTRY

Intermediate level SQLFLAG INTERMEDIATE

To run transactions in this mode … Set the variable to this value …

Teradata TRANSACTION BTET

Chapter 3: SQL Data Handling
Session Parameters

SQL Fundamentals 85

For more detail on transaction semantics, see “Transaction Processing” in SQL Request and
Transaction Processing.

If you are using SQL in other application programs, see the reference manual for that
application for instructions on setting or changing the transaction mode.

Session Collation

Collation of character data is an important and complex option. Teradata Database provides
several named collations. The MULTINATIONAL and CHARSET_COLL collations allow the
system administrator to provide collation sequences tailored to the needs of the site.

The collation for the session is determined at logon from the defined default collation for the
user. You can change your collation any number of times during the session using the SET
SESSION COLLATION statement, but you cannot change your default logon in this way.

Your default collation is assigned via the COLLATION option of the CREATE USER or
MODIFY USER statement. This has no effect on any current session, only new logons.

Each named collation can be CASESPECIFIC or NOT CASESPECIFIC. NOT CASESPECIFIC
collates lowercase data as if it were converted to uppercase before the named collation is
applied.

ANSI TRANSACTION ANSI

To run transactions in this mode … Set the variable to this value …

Collation Name Description

ASCII Character data is collated in the order it would appear if converted for an
ASCII session, and a binary sort performed.

EBCDIC Character data is collated in the order it would appear if converted for an
EBCDIC session, and a binary sort performed.

MULTINATIONAL The default MULTINATIONAL collation is a two-level collation based on
the Unicode collation standard.

Your system administrator can redefine this collation to any two-level
collation of characters in the LATIN repertoire.

For backward compatibility, the following are true:

• MULTINATIONAL collation of KANJI1 data is single level.

• The system administrator can redefine single byte character collation.

This definition is not compatible with MULTINATIONAL collation of non-
KANJI1 data. CHARSET_COLL collation is usually a better solution for
KANJI1 data.

See “ORDER BY Clause” in SQL Data Manipulation Language. For
information on setting up the MULTINATIONAL collation sequence, see
“Collation Sequences” in International Character Set Support.

Chapter 3: SQL Data Handling
Session Parameters

86 SQL Fundamentals

For details, see “SET SESSION COLLATION” in SQL Data Definition Language.

Account and Priority

You can dynamically downgrade or upgrade the performance group priority for your account.

Priorities can be downgraded or upgraded at either the session or the request level. For more
information, see “SET SESSION ACCOUNT” in SQL Data Definition Language.

Note: Changing the performance group for your account changes the account name for
accounting purposes because a performance group is part of an account name.

Date Form

You can change the format in which DATE data is imported or exported in your current
session.

DATE data can be set to be treated either using the ANSI date format
(DATEFORM=ANSIDATE) or using the Teradata date format
(DATEFORM=INTEGERDATE).

For details, see “SET SESSION DATEFORM” in SQL Data Definition Language.

Setting the Client Character Set

To set the client character set, use one of the following:

• From BTEQ, use the BTEQ [.] SET SESSION CHARSET ‘name’ command.

• In a CLIv2 application, call CHARSET name.

• In the URL for selecting a Teradata JDBC driver connection to a Teradata Database, use
the CHARSET=name database connection parameter.

HOST The default. HOST collation defaults are:

• EBCDIC collation for channel-connected systems.

• ASCII collation for all others.

CHARSET_COLL Character data is collated in the order it would appear if converted to the
current client character set and then sorted in binary order.

CHARSET_COLL collation is a system administrator-defined collation.

JIS_COLL Character data is collated based on the Japanese Industrial Standards (JIS).

JIS characters collate in the following order:

1 JIS X 0201-defined characters in standard order

2 JIS X 0208-defined characters in standard order

3 JIS X 0212-defined characters in standard order

4 KanjiEBCDIC-defined characters not defined in JIS X 0201, JIS X 0208,
or JIS X 0212 in standard order

5 All remaining characters in Unicode standard order

Collation Name Description

Chapter 3: SQL Data Handling
Session Management

SQL Fundamentals 87

where the ‘name’ or name value is ASCII, EBCDIC, UTF-8, UTF-16, or a name assigned to the
translation codes that define an available character set.

If not explicitly requested, the session default is the character set associated with the logon
client. This is either the standard client default, or the character set assigned to the client by
the database administrator.

HELP SESSION

The HELP SESSION statement identifies attributes in effect for the current session, including:

• Transaction mode

• Character set

• Collation sequence

• Date form

• Queryband

For details, see “HELP SESSION” in SQL Data Definition Language.

Session Management

Each session is logged on and off via calls to CLIv2 routines or through ODBC or JDBC, which
offer a one-step logon-connect function.

Sessions are internally managed by dividing the session control functions into a series of single
small steps that are executed in sequence to implement multithreaded tasking. This provides
concurrent processing of multiple logon and logoff events, which can be any combination of
individual users, and one or more concurrent sessions established by one or more users and
applications.

Once connected and active, a session can be viewed as a work stream consisting of a series of
requests between the client and server.

Session Pools

For channel-connected applications, you can establish session pools, which are collections of
sessions that are logged on to Teradata Database in advance (generally at the time of TDP
initialization) for use by applications that require a ‘fast path’ logon. This capability is
particularly advantageous for transaction processing in which interaction with Teradata
Database consists of many single, short transactions.

TDP identifies each session with a unique session number. Teradata Database identifies a
session with a session number, the username of the initiating user, and the logical host
identification number of the connection (LAN or mainframe channel) associated with the
controlling TDP or mTDP.

Chapter 3: SQL Data Handling
Return Codes

88 SQL Fundamentals

Session Reserve

On a mainframe client, use the ENABLE SESSION RESERVE command from Teradata
Director Program to reserve session capacity in the event of a PE failure. To release reserved
session capacity, use the DISABLE SESSION RESERVE command.

For more information, see Teradata Director Program Reference.

Session Control

The major functions of session control are session logon and logoff.

Upon receiving a session request, the logon function verifies authorization and returns a yes
or no response to the client.

The logoff function terminates any ongoing activity and deletes the session context.

Trusted Sessions

Applications that use connection pooling, where all sessions use the same Teradata Database
user, can use trusted sessions, where multi-tier applications can assert user identities and roles
to manage privileges and audit queries.

For details on trusted sessions, see Database Administration.

Requests and Responses

Requests are sent to a server to initiate an action. Responses are sent by a server to reflect the
results of that action. Both requests and responses are associated with an established session.

A request consists of the following components:

• One or more Teradata SQL statements

• Control information

• Optional USING data

If any operation specified by an initiating request fails, the request is backed out, along with
any change that was made to the database. In this case, a failure response is returned to the
application.

Return Codes

SQL return codes provide information about the status of a completed executable SQL DML
statement.

Status Variables for Receiving SQL Return Codes

ANSI SQL defines two status variables for receiving return codes:

• SQLSTATE

• SQLCODE

Chapter 3: SQL Data Handling
Return Codes

SQL Fundamentals 89

SQLCODE is not ANSI SQL-compliant. The ANSI SQL-92 standard explicitly deprecates
SQLCODE, and the ANSI SQL-99 standard does not define SQLCODE. The ANSI SQL
committee recommends that new applications use SQLSTATE in place of SQLCODE.

Teradata Database defines a third status variable for receiving the number of rows affected by
an SQL statement in a stored procedure:

• ACTIVITY_COUNT

Teradata SQL defines a non-ANSI SQL Communications Area (SQLCA) that also has a field
named SQLCODE for receiving return codes.

Exception and Completion Conditions

ANSI SQL defines two categories of conditions that issue return codes:

• Exception conditions

• Completion conditions

Exception Conditions

An exception condition indicates a statement failure.

A statement that raises an exception condition does nothing more than return that exception
condition to the application.

There are as many exception condition return codes as there are specific exception conditions.

For more information about exception conditions, see “Failure Response” on page 94 and
“Error Response (ANSI Session Mode Only)” on page 93.

For a complete list of exception condition codes, see the Messages book.

Completion Conditions

A completion condition indicates statement success.

There are three categories of completion conditions:

• Successful completion

• Warnings

• No data found

For information on … See …

• SQLSTATE

• SQLCODE

• ACTIVITY_COUNT

“Result Code Variables” in SQL Stored Procedures and Embedded
SQL

SQLCA “SQL Communications Area (SQLCA)” in SQL Stored Procedures
and Embedded SQL

Chapter 3: SQL Data Handling
Return Codes

90 SQL Fundamentals

A statement that raises a completion condition can take further action such as querying the
database and returning results to the requesting application, updating the database, initiating
an SQL transaction, and so on.

Related Topics

For more information, see:

• “Statement Responses” on page 91

• “Success Response” on page 92

• “Warning Response” on page 93

Return Codes for Stored Procedures

The return code values are different in the case of SQL control statements in stored
procedures.

The return codes for stored procedures appear in the following table.

How an Application Uses SQL Return Codes

An application program or stored procedure tests the status of a completed executable SQL
statement to determine its status.

Completion Condition SQLSTATE Return Code SQLCODE Return Code

Success '00000' 0

Warning '01901' 901

'01800' to '01841' 901

'01004' 902

No data found '02000' 100

Completion Condition SQLSTATE Return Code SQLCODE Return Code

Successful completion '00000' 0

Warning SQLSTATE value corresponding
to the warning code.

Teradata Database warning code.

No data found or any other
Exception

SQLSTATE value corresponding
to the error code.

Teradata Database error code.

Condition Action

Successful completion None.

Chapter 3: SQL Data Handling
Statement Responses

SQL Fundamentals 91

Statement Responses

Response Types

Teradata Database responds to an SQL request with one of the following condition responses:

• Success response, with optional warning

• Failure response

• Error response (ANSI session mode only)

Depending on the type of statement, Teradata Database also responds with one or more rows
of data.

Multistatement Responses

A response to a request that contains more than one statement, such as a macro, is not
returned to the client until all statements in the request are successfully executed.

Returning a Response

The manner in which the response is returned depends on the interface that is being used.

For example, if an application is using a language preprocessor, then the activity count,
warning code, error code, and fields from a selected row are returned directly to the program
through its appropriately declared variables. If the application is a stored procedure, then the
activity count is returned directly in the ACTIVITY_COUNT status variable.

If you are using BTEQ, then a success, error, or failure response is displayed automatically.

Response Condition Codes

SQL statements also return condition codes that are useful for handling errors and warnings
in embedded SQL and stored procedure applications.

Warning The statement execution continues.

If a warning condition handler is defined in the application, the handler
executes.

No data found or any
other exception

Whatever appropriate action is required by the exception.

If an EXIT handler is defined for the exception, the statement execution
terminates.

If a CONTINUE handler is defined, execution continues after the
remedial action.

Condition Action

Chapter 3: SQL Data Handling
Success Response

92 SQL Fundamentals

For information about SQL response condition codes, see the following in SQL Stored
Procedures and Embedded SQL:

• SQLSTATE

• SQLCODE

• ACTIVITY_COUNT

Success Response

A success response contains an activity count that indicates the total number of rows involved
in the result.

For example, the activity count for a SELECT statement is the total number of rows selected
for the response. For a SELECT, CALL (when the stored procedure or external stored
procedure creates result sets), COMMENT, or ECHO statement, the activity count is followed
by the data that completes the response.

An activity count is meaningful for statements that return a result set, for example:

• SELECT

• INSERT

• UPDATE

• DELETE

• HELP

• SHOW

• EXPLAIN

• CREATE PROCEDURE

• REPLACE PROCEDURE

• CALL (when the stored procedure or external stored procedure creates result sets)

For other SQL statements, activity count is meaningless.

Example

The following interactive SELECT statement returns the successful response message.

SELECT AVG(f1)
FROM Inventory;

*** Query completed. One row found. One column returned.
*** Total elapsed time was 1 second.
Average(f1)

14

Chapter 3: SQL Data Handling
Warning Response

SQL Fundamentals 93

Warning Response

A success or OK response with a warning indicates either that an anomaly has occurred or
informs the user about the anomaly and indicates how it can be important to the
interpretation of the results returned.

Example

Assume the current session is running in ANSI session mode.

If nulls are included in the data for column f1, then the following interactive query returns the
successful response message with a warning about the nulls.

SELECT AVG(f1) FROM Inventory;

*** Query completed. One row found. One column returned.
*** Warning: 2892 Null value eliminated in set function.
*** Total elapsed time was 1 second.

Average(f1)

14

This warning response is not generated if the session is running in Teradata session mode.

Error Response (ANSI Session Mode Only)

An error response occurs when a query anomaly is severe enough to prevent the correct
processing of the request.

In ANSI session mode, an error for a request causes the request to rollback, and not the entire
transaction.

Example 1

The following command returns the error message immediately following.

.SET SESSION TRANS ANSI;

*** Error: You must not be logged on .logoff to change the SQLFLAG
or TRANSACTION settings.

Example 2

Assume that the session is running in ANSI session mode, and the following table is defined:

CREATE MULTISET TABLE inv, FALLBACK,
NO BEFORE JOURNAL,
NO AFTER JOURNAL
(
item INTEGER CHECK ((item >=10) AND (item <= 20)))

PRIMARY INDEX (item);

Chapter 3: SQL Data Handling
Failure Response

94 SQL Fundamentals

You insert a value of 12 into the item column of the inv table.

This is valid because the defined integer check specifies that any integer between 10 and 20
(inclusive) is valid.

INSERT INTO inv (12);

The following results message returns.

*** Insert completed. One row added....

You insert a value of 9 into the item column of the inv table.

This is not valid because the defined integer check specifies that any integer with a value less
than 10 is not valid.

INSERT INTO inv (9);

The following error response returns:

*** Error 5317 Check constraint violation: Check error in field
inv.item.

You commit the current transaction:

COMMIT;

The following results message returns:

*** COMMIT done. ...

You select all rows from the inv table:

SELECT * FROM inv;

The following results message returns:

*** Query completed. One row found. One column returned.
item

12

Failure Response

A failure response is a severe error. The response includes a statement number, an error code,
and an associated text string describing the cause of the failure.

Teradata Session Mode

In Teradata session mode, a failure causes the system to roll back the entire transaction.

If one statement in a macro fails, a single failure response is returned to the client, and the
results of any previous statements in the transaction are backed out.

ANSI Session Mode

In ANSI session mode, a failure causes the system to roll back the entire transaction, for
example, when the current request:

Chapter 3: SQL Data Handling
Failure Response

SQL Fundamentals 95

• Results in a deadlock

• Performs a DDL statement that aborts

• Executes an explicit ROLLBACK or ABORT statement

Example 1

The following SELECT statement

SELECT * FROM Inventory:;

in BTEQ, returns the failure response message:

*** Failure 3706 Syntax error: expected something between the word
'Inventory' and ':'.

Statement# 1, Info =20
*** Total elapsed time was 1 second.

Example 2

Assume that the session is running in ANSI session mode, and the following table is defined:

CREATE MULTISET TABLE inv, FALLBACK,
NO BEFORE JOURNAL,
NO AFTER JOURNAL
(
item INTEGER CHECK ((item >=10) AND (item <= 20)))

PRIMARY INDEX (item);

You insert a value of 12 into the item column of the inv table.

This is valid because the defined integer check specifies that any integer between 10 and 20
(inclusive) is valid.

INSERT INTO inv (12);

The following results message returns.

*** Insert completed. One row added....

You commit the current transaction:

COMMIT;

The following results message returns:

*** COMMIT done. ...

You insert a valid value of 15 into the item column of the inv table:

INSERT INTO inv (15);

The following results message returns.

*** Insert completed. One row added....

You can use the ABORT statement to cause the system to roll back the transaction:

ABORT;

The following failure message returns:

*** Failure 3514 User-generated transaction ABORT.
Statement# 1, Info =0

Chapter 3: SQL Data Handling
Failure Response

96 SQL Fundamentals

You select all rows from the inv table:

SELECT * FROM inv;

The following results message returns:

*** Query completed. One row found. One column returned.

item

12

SQL Fundamentals 97

CHAPTER 4 Query Processing

This chapter discusses query processing, including single AMP requests and all AMP requests,
and table access methods available to the Optimizer.

Queries and AMPs

An SQL query, which includes DELETE, INSERT, MERGE, and UPDATE as well as SELECT,
can affect one AMP, several AMPs, or all AMPs in the configuration.

IF a query … THEN …

(involving a single table) uses a
unique primary index (UPI)

the row hash can be used to identify a single AMP.

At most one row can be returned.

(involving a single table) uses a
nonunique primary index (NUPI)

the row hash can be used to identify a single AMP.

Any number of rows can be returned.

uses a unique secondary index (USI) one or two AMPs are affected (one AMP if the subtable and
base table are on the same AMP).

At most one row can be returned.

uses a nonunique secondary index
(NUSI)

if the table has a partitioned primary index (PPI) and the
NUSI is the same column set as a NUPI, the query affects
one AMP.

Otherwise, all AMPs take part in the operation and any
number of rows can be returned.

Chapter 4: Query Processing
Queries and AMPs

98 SQL Fundamentals

The SELECT statements in subsequent examples reference the following table data.

The meanings of the abbreviations are as follows.

Single AMP Request

Assume that a PE receives the following SELECT statement:

SELECT last_name
FROM Employee
WHERE employee_number = 1008;

Because a unique primary index value is used as the search condition (the column
employee_number is the primary index for the Employee table), PE1 generates a single AMP
step requesting the row for employee 1008. The AMP step, along with the PE identification, is
put into a message, and sent via the BYNET to the relevant AMP (processor).

See “Flow Diagram of a Single AMP Request” on page 99 for a flow diagram that illustrates
this process.

Employee

Employee
Number

Manager
Employee
Number

Dept.
Number

Job
Code

Last
Name

First
Name

Hire
Date

Birth
Date

Salary
Amount

PK/UPI FK FK FK

1006 1019 301 312101 Stein John 961005 631015 2945000

1008 1019 301 312102 Kanieski Carol 970201 680517 2925000

1005 0801 403 431100 Ryan Loretta 1061015 650910 3120000

1004 1003 401 412101 Johnson Darlene 1061015 760423 3630000

1007 1005 403 432101 Villegas Arnando 1050102 770131 4970000

1003 0801 401 411100 Trader James 960731 670619 3755000

1016 0801 302 321100 Rogers Nora 980310 690904 5650000

1012 1005 403 432101 Hopkins Paulene 970315 720218 3790000

1019 0801 301 311100 Kubic Ron 980801 721211 5770000

1023 1017 501 512101 Rabbit Peter 1040301 621029 2650000

1083 0801 619 414221 Kimble George 1010312 810330 3620000

1017 0801 501 511100 Runyon Irene 980501 611110 6600000

1001 1003 401 412101 Hoover William 1010818 700114 2552500

Abbreviation Meaning

PK Primary Key

FK Foreign Key

UPI Unique Primary Index

Chapter 4: Query Processing
Queries and AMPs

SQL Fundamentals 99

Flow Diagram of a Single AMP Request

Only one BYNET is shown to simplify the illustration.

Assuming that AMP2 has the row, it accepts the message. As shown in the next diagram,
AMP2 retrieves the row from disk, includes the row and the PE identification in a return
message, and sends the message back to PE1 via the BYNET. PE1 accepts the message and
returns the response row to the requesting application.

Flow Diagram of a Single AMP Response to Requesting PE

The following diagram illustrates a single AMP request with partition elimination.

BYNET

PE1 PE2 AMP1 AMP2 AMP3 AMP4

1006 STEIN
1008 KANIESKI
1023 RABBIT
1004 JOHNSON

1101A762

AMP STEP

Disk Disk Disk

BYNET

ROW 1008

PE1 PE2 AMP1 AMP2 AMP3 AMP4

1006 Stein
1008 Kanieski
1023 Rabbit
1004 Johnson

1101D003

Chapter 4: Query Processing
Queries and AMPs

100 SQL Fundamentals

All AMP Request

Assume PE1 receives a SELECT statement that specifies a range of primary index values as a
search condition as shown in the following example:

SELECT last_name, employee_number
FROM employee
WHERE employee_number BETWEEEN 1001 AND 1010
ORDER BY last_name;

In this case, each value hashes differently, and all AMPs must search for the qualifying rows.

PE1 first parses the request and creates the following AMP steps:

• Retrieve rows between 1001 and 1010

• Sort ascending on last_name

• Merge the sorted rows to form the answer set

PE1 then builds a message for each AMP step and puts that message onto the BYNET.
Typically, each AMP step is completed before the next one begins; note, however, that some
queries can generate parallel steps.

When PE1 puts the message for the first AMP step on the BYNET, that message is broadcast to
all processors as illustrated in the following diagram.

The process is:

1 All AMPs accept the message, but the PEs do not.

2 Each AMP checks for qualifying rows on its disk storage units.

3 If any qualifying rows are found, the data in the requested columns is converted to the
client format and copied to a spool file.

4 Each AMP completes the step, whether rows were found or not, and puts a completion
message on the BYNET.

The completion messages flow across the BYNET to PE1.

PE1 PE2 AMP1 AMP2 AMP3 AMP4

1006 STEIN
1008 KANIESKI
1004 JOHNSON

1007 VILLEGAS
1003 TRADER

1001 HOOVER 1005 RYAN

BYNET

FF02A004
DATA SPOOL

Chapter 4: Query Processing
Queries and AMPs

SQL Fundamentals 101

5 When all AMPs have returned a completion message, PE1 transmits a message containing
AMP Step 2 to the BYNET.

Upon receipt of Step 2, the AMPs sort their individual answer sets into ascending sequence
by last_name , as illustrated in the following diagram.

Note: If partitioned on employee_number, the scan may be limited to a few partitions
based on partition elimination.

6 Each AMP sorts its answer set, then puts a completion message on the BYNET.

7 When PE1 has received all completion messages for Step 2, it sends a message containing
AMP Step 3.

8 Upon receipt of Step 3, each AMP copies the first block from its sorted spool to the
BYNET.

Because there can be multiple AMPs on a single node, each node might be required to
handle sort spools from multiple AMPs (see the diagram at the top of the next page).

PE1 PE2 AMP1 AMP2 AMP3 AMP4

1006 STEIN
1008 KANIESKI
1004 JOHNSON

1007 VILLEGAS
1003 TRADER

1001 HOOVER 1005 RYAN

BYNET

FF02A005

1004 JOHNSON
1008 KANIESKI
1006 STEIN

1003 TRADER
1007 VILLEGAS

1001 HOOVER 1005 RYAN

DATA SPOOL

SORT SPOOL

Chapter 4: Query Processing
Queries and AMPs

102 SQL Fundamentals

9 Nodes that contain multiple AMPs must first perform an intermediate sort of the spools
generated by each of the local AMPs.

When the local sort is complete on each node, the lowest sorting row from each node is
sent over the BYNET to PE1. From this point on, PE1 acts as the Merge coordinator
among all the participating nodes.

10 The Merge continues with PE1 building a globally sorted buffer.

When this buffer fills, PE1 forwards it to the application and begins building subsequent
buffers.

11 When a participant node has exhausted its sort spool, it sends a Done message to PE1.

This causes PE1 to prune this node from the set of Merge participants.

When there are no remaining Merge participants, PE1 sends the final buffer to the
application along with an End Of File message.

Partition Elimination

A PPI can increase query efficiency through partition elimination, where partitions can
automatically be skipped because they cannot contain qualifying rows.

Teradata Database supports several types of partition elimination.

HD03A005

Global Sort Buffer

Local Sort
Tree

Sort Spools

Node 1

Local Sort
Tree

Sort Spools

Node 3

Sort Spools

Node 2

Local Sort
Tree

Local Sort
Tree

Sort Spools

Node 4

PE1

PE2

AMP

AMP

AMP

AMP

PE5

PE6

AMP

AMP

AMP

AMP

PE7

PE8

AMP

AMP

AMP

AMP

PE3

PE4

AMP

AMP

AMP

AMPBYNET

Chapter 4: Query Processing
Queries and AMPs

SQL Fundamentals 103

The degree of partition elimination depends on the:

• Partitioning expressions for the primary index of the table

• Conditions in the query

• Ability of the Optimizer to detect partition elimination

It is not always required that all values of the partitioning columns be specified in a query to
have partition elimination occur.

Single AMP Request With Partition Elimination

If a SELECT specifies values for all the primary index columns, the AMP where the rows reside
can be determined and only a single AMP is accessed.

If conditions are also specified on the partitioning columns, partition elimination may reduce
the number of partitions to be probed on that AMP.

Type Description

Static Based on constant conditions such as equality or inequality on the partitioning
columns.

Dynamic The partitions to eliminate cannot be determined until the query is executed and the
data is scanned.

Delayed Occurs with conditions comparing a partitioning column to a USING variable or
built-in function such as CURRENT_DATE, where the Optimizer builds a somewhat
generalized plan for the query but delays partition elimination until specific values of
USING variables and built-in functions are known.

IF a query … THEN …

specifies values for all the primary
index columns

the AMP where the rows reside can be determined and
only a single AMP is accessed.

• If conditions are not specified on the partitioning
columns, each partition can be probed to find the rows
based on the hash value.

• If conditions are also specified on the partitioning
columns, partition elimination may reduce the number
of partitions to be probed on that AMP.

For an illustration, see “Single AMP Request With
Partition Elimination” on page 103.

does not specify the values for all the
primary index columns

an all-AMP full file scan is required for a table with an
NPPI.

However, with a PPI, if conditions are specified on the
partitioning columns, partition elimination may reduce an
all-AMP full file scan to an all-AMP scan of only the non-
eliminated partitions.

Chapter 4: Query Processing
Queries and AMPs

104 SQL Fundamentals

Suppose the Employee table is defined with a single-level PPI where the partitioning column is
dept_number.

Assume that a PE receives the following SELECT statement:

SELECT last_name
FROM Employee
WHERE employee_number = 1023
AND dept_number = 501;

The following flow diagram illustrates this process.

The AMP Step includes the list of partitions (in this case, P3) to access. Partition elimination
(in this case, static partition elimination) reduces access to the partitions that satisfy the query
requirements. In each partition in the list (in this case, only P3), look for rows with a given
row hash value of the PI.

Partition elimination is similar for the Employee table with a multilevel PPI where one
partitioning expression uses the dept_number column and another partitioning expression
uses the hire_date column.

Assume that a PE receives the following SELECT statement:

SELECT last_name
FROM Employee
WHERE employee_number = 1023
AND dept_number = 501
AND hire_date BETWEEN DATE '2006-01-01' AND DATE '2006-12-31';

BYNET

PE1 PE2 AMP1 AMP2 AMP3 AMP4

P1
dept_number = 301

1006 STEIN
1008 KANIESKI

1101C519

1017 RUNYON
1023 RABBIT

P2
dept_number = 401

P3
dept_number = 501

1004 JOHNSON

AMP
STEP

Disk Disk Disk

Chapter 4: Query Processing
Table Access

SQL Fundamentals 105

The following flow diagram illustrates this process.

No one was hired in department number 401 in 2006, so partition P4 is empty.

For more information on partition elimination, see Database Design.

Table Access

Teradata Database uses indexes and partitions to access the rows of a table. If indexed or
partitioned access is not suitable for a query, or if a query accesses a NoPI table that does not
have an index defined on it, the result is a full-table scan.

BYNET

PE1 PE2 AMP1 AMP2 AMP3 AMP4

1006 STEIN

1101B520

1008 KANIESKI

1004 JOHNSON

1017 RUNYON

1023 RABBIT

AMP
STEP

Disk Disk Disk

P2
dept_number = 301
1/01/06 hire_date 12/31/06< <

P1
dept_number = 301
1/01/05 hire_date 12/31/05< <

P5
dept_number = 501
1/01/05 hire_date 12/31/05< <

P6
dept_number = 501
1/01/06 hire_date 12/31/06< <

P3
dept_number = 401
1/01/05 hire_date 12/31/05< <

Chapter 4: Query Processing
Table Access

106 SQL Fundamentals

Access Methods

The following table access methods are available to the Optimizer:

Effects of Conditions in WHERE Clause

For a query on a table that has an index defined on it, the predicates or conditions that appear
in the WHERE clause of the query determine whether the system can use row hashing, or do a
table scan with partition elimination, or whether it must do a full-table scan.

The following functions are applied to rows identified by the WHERE clause, and have no
effect on the selection of rows from the base table:

Statements that specify any of the following WHERE clause conditions result in full-table
scans (FTS). If the table has a PPI, partition elimination might reduce the FTS access to only
the affected partitions.

• Unique Primary Index

• Unique Partitioned Primary Index

• Nonunique Primary Index

• Nonunique Partitioned Primary Index

• Unique Secondary Index

• Nonunique Secondary Index

• Join Index

• Hash Index

• Full-Table Scan

• Partition Scan

• GROUP BY

• HAVING

• INTERSECT

• MINUS/EXCEPT

• ORDER BY

• QUALIFY

• SAMPLE

• UNION

• WITH ... BY

• WITH

• nonequality comparisons

• column_name IS NOT NULL

• column_name NOT IN (explicit list of values)

• column_name NOT IN (subquery)

• column_name BETWEEN ... AND ...

• condition_1 OR condition_2

• NOT condition_1

• column_name LIKE

• column_1 || column_2 = value

• table1.column_x = table1.column_y

• table1.column_x [computation] = value

• table1.column_x [computation] - table1.column_y

• INDEX (column_name)

• SUBSTR (column_name)

• SUM

• MIN

• MAX

• AVG

• DISTINCT

• COUNT

• ANY

• ALL

• missing WHERE clause

Chapter 4: Query Processing
Full-Table Scans

SQL Fundamentals 107

The type of table access that the system uses when statements specify any of the following
WHERE clause conditions depends on whether the column or columns are indexed, the type
of index, and its selectivity:

• column_name = value or constant expression

• column_name IS NULL

• column_name IN (explicit list of values)

• column_name IN (subquery)

• condition_1 AND condition_2

• different data types

• table1.column_x = table2.column_x

In summary, a query influences processing choices:

• A full-table scan (possibly with partition elimination if the table has a PPI) is required if
the query includes an implicit range of values, such as in the following WHERE examples.

When a small BETWEEN range is specified, the Optimizer can use row hashing rather
than a full-table scan.

... WHERE column_name [BETWEEN <, >, <>, <=, >=]

... WHERE column_name [NOT] IN (SELECT...)

... WHERE column_name NOT IN (val1, val2 [,val3])

• Row hashing can be used if the query includes an explicit value, as shown in the following
WHERE examples:

... WHERE column_name = val

... WHERE column_name IN (val1, val2, [,val3])

Related Topics

Full-Table Scans

A full-table scan is a retrieval mechanism that touches all rows in a table.

Teradata Database always uses a full-table scan to access the data of a table if a query:

• Accesses a NoPI table that does not have an index defined on it

• Does not specify a WHERE clause

For more information on … See …

the efficiency, number of AMPs used, and the
number of rows accessed by all table access methods

Database Design

strengths and weaknesses of table access methods Introduction to Teradata

full-table scans “Full-Table Scans” on page 107

Chapter 4: Query Processing
Collecting Statistics

108 SQL Fundamentals

Even when results are qualified using a WHERE clause, indexed or partitioned access may not
be suitable for a query, and a full-table scan may result.

A full-table scan is always an all-AMP operation, and should be avoided when possible. Full-
table scans may generate spool files that can have as many rows as the base table.

Full-table scans are not something to fear, however. The architecture that Teradata Database
uses makes a full-table scan an efficient procedure, and optimization is scalable based on the
number of AMPs defined for the system. The sorts of unplanned, ad hoc queries that
characterize the data warehouse process, and that often are not supported by indexes, perform
very effectively for Teradata Database using full-table scans.

Accessing Rows in a Full-Table Scan

Because full-table scans necessarily touch every row on every AMP, they do not use the
following mechanisms for locating rows:

• Hashing algorithm and hash map

• Primary indexes

• Secondary indexes or their subtables

• Partitioning

Instead, a full-table scan uses the Master Index and Cylinder Index file system tables to locate
each data block. Each row within a data block is located by a forward scan.

Because rows from different tables are never mixed within the same data block and because
rows never span blocks, an AMP can scan up to 128K bytes of the table on each block read,
making a full-table scan a very efficient operation. Data block read-ahead and cylinder reads
can also increase efficiency.

Related Topics

Collecting Statistics

The COLLECT STATISTICS (Optimizer form) statement collects demographic data for one
or more columns of a base table, hash index, or join index, computes a statistical profile of the
collected data, and stores the synopsis in the data dictionary.

The Optimizer uses the synopsis data when it generates its table access and join plans.

For more information on … See …

full-table scans Database Design

cylinder reads Database Administration

enabling data block read-ahead operations DBS Control Utility in Utilities

Chapter 4: Query Processing
Collecting Statistics

SQL Fundamentals 109

Usage

You should collect statistics on newly created, empty data tables. An empty collection defines
the columns, indexes, and synoptic data structure for loaded collections. You can easily collect
statistics again after the table is populated for prototyping, and again when it is in production.

You can collect statistics on a:

• Unique index, which can be:

• Primary or secondary

• Single or multiple column

• Partitioned or nonpartitioned

• Nonunique index, which can be:

• Primary or secondary

• Single or multiple column

• Partitioned or nonpartitioned

• With or without COMPRESS fields

• Non-indexed column or set of columns, which can be:

• Partitioned or nonpartitioned

• With or without COMPRESS fields

• Join index

• Hash index

• NoPI table

• Temporary table

• If you specify the TEMPORARY keyword but a materialized table does not exist, the
system first materializes an instance based on the column names and indexes you
specify. This means that after a true instance is created, you can update (re-collect)
statistics on the columns by entering COLLECT STATISTICS and the TEMPORARY
keyword without having to specify the desired columns and index.

• If you omit the TEMPORARY keyword but the table is a temporary table, statistics are
collected for an empty base table rather than the materialized instance.

• Sample (system-selected percentage) of the rows of a data table or index, to detect data
skew and dynamically increase the sample size when found.

• The system does not store both sampled and defined statistics for the same index or
column set. Once sampled statistics have been collected, implicit re-collection hits the
same columns and indexes, and operates in the same mode. To change this, specify any
keywords or options and name the columns and/or indexes.

Chapter 4: Query Processing
Collecting Statistics

110 SQL Fundamentals

Related Topics

For more information on … See …

using the COLLECT STATISTICS statement SQL Data Definition Language

collecting statistics on a join index Database Design

collecting statistics on a hash index

when to collect statistics on base table columns
instead of hash index columns

database administration and collecting statistics Database Administration

SQL Fundamentals 111

APPENDIX A Notation Conventions

This appendix describes the notation conventions used in this book.

Throughout this book, three conventions describe the SQL syntax and code:

• Syntax diagrams, used to describe SQL syntax form, including options. See “Syntax
Diagram Conventions” on page 111.

• Square braces in the text, used to represent options. The indicated parentheses are
required when you specify options.

For example:

• DECIMAL [(n[,m])] means the decimal data type can be defined optionally:

• without specifying the precision value n or scale value m specifying precision (n)
only

• specifying both values (n and m)

• you cannot specify scale without first defining precision.

• CHARACTER [(n)] means that use of (n) is optional.

The values for n and m are integers in all cases

• Japanese character code shorthand notation, used to represent unprintable Japanese
characters. See “Character Shorthand Notation In This Book” on page 116.

Syntax Diagram Conventions

Notation Conventions

Item Definition / Comments

Letter An uppercase or lowercase alphabetic character ranging from A through Z.

Number A digit ranging from 0 through 9.

Do not use commas when typing a number with more than 3 digits.

Appendix A: Notation Conventions
Syntax Diagram Conventions

112 SQL Fundamentals

Paths

The main path along the syntax diagram begins at the left with a keyword, and proceeds, left
to right, to the vertical bar, which marks the end of the diagram. Paths that do not have an
arrow or a vertical bar only show portions of the syntax.

The only part of a path that reads from right to left is a loop.

Continuation Links

Paths that are too long for one line use continuation links. Continuation links are circled
letters indicating the beginning and end of a link:

When you see a circled letter in a syntax diagram, go to the corresponding circled letter and
continue reading.

Word Keywords and variables.

• UPPERCASE LETTERS represent a keyword.

Syntax diagrams show all keywords in uppercase, unless operating system
restrictions require them to be in lowercase.

• lowercase letters represent a keyword that you must type in lowercase, such as a
Linux command.

• Mixed Case letters represent exceptions to uppercase and lowercase rules. The
exceptions are noted in the syntax explanation.

• lowercase italic letters represent a variable such as a column or table name.

Substitute the variable with a proper value.

• lowercase bold letters represent an excerpt from the diagram. The excerpt is
defined immediately following the diagram that contains it.

• UNDERLINED LETTERS represent the default value.

This applies to both uppercase and lowercase words.

Spaces Use one space between items such as keywords or variables.

Punctuation Type all punctuation exactly as it appears in the diagram.

Item Definition / Comments

FE0CA002

A

A

Appendix A: Notation Conventions
Syntax Diagram Conventions

SQL Fundamentals 113

Required Entries

Required entries appear on the main path:

If you can choose from more than one entry, the choices appear vertically, in a stack. The first
entry appears on the main path:

Optional Entries

You may choose to include or disregard optional entries. Optional entries appear below the
main path:

If you can optionally choose from more than one entry, all the choices appear below the main
path:

Some commands and statements treat one of the optional choices as a default value. This
value is UNDERLINED. It is presumed to be selected if you type the command or statement
without specifying one of the options.

Strings

String literals appear in apostrophes:

FE0CA003

SHOW

FE0CA005

SHOW

VERSIONS

CONTROLS

FE0CA004

SHOW

CONTROLS

JC01A010
SHARE
READ

ACCESS

JC01A004

'msgtext '

Appendix A: Notation Conventions
Syntax Diagram Conventions

114 SQL Fundamentals

Abbreviations

If a keyword or a reserved word has a valid abbreviation, the unabbreviated form always
appears on the main path. The shortest valid abbreviation appears beneath.

In the above syntax, the following formats are valid:

• SHOW CONTROLS

• SHOW CONTROL

Loops

A loop is an entry or a group of entries that you can repeat one or more times. Syntax
diagrams show loops as a return path above the main path, over the item or items that you can
repeat:

Read loops from right to left.

The following conventions apply to loops:

FE0CA042

SHOW

CONTROL
CONTROLS

IF... THEN...

there is a maximum number of
entries allowed

the number appears in a circle on the return path.

In the example, you may type cname a maximum of 4 times.

there is a minimum number of
entries required

the number appears in a square on the return path.

In the example, you must type at least three groups of column
names.

a separator character is required
between entries

the character appears on the return path.

If the diagram does not show a separator character, use one
blank space.

In the example, the separator character is a comma.

JC01B012

(

, 4

cname)

, 3

Appendix A: Notation Conventions
Syntax Diagram Conventions

SQL Fundamentals 115

Excerpts

Sometimes a piece of a syntax phrase is too large to fit into the diagram. Such a phrase is
indicated by a break in the path, marked by (|) terminators on each side of the break. The
name for the excerpted piece appears between the terminators in boldface type.

The boldface excerpt name and the excerpted phrase appears immediately after the main
diagram. The excerpted phrase starts and ends with a plain horizontal line:

Multiple Legitimate Phrases

In a syntax diagram, it is possible for any number of phrases to be legitimate:

In this example, any of the following phrases are legitimate:

• dbname

• DATABASE dbname

• tname

a delimiter character is required
around entries

the beginning and end characters appear outside the return
path.

Generally, a space is not needed between delimiter characters
and entries.

In the example, the delimiter characters are the left and right
parentheses.

IF... THEN...

LOCKING excerpt

where_cond

A

cname

excerpt

JC01A014

A

HAVING con

,

col_pos

,

JC01A016

DATABASE
dbname

TABLE
tname

VIEW
vname

Appendix A: Notation Conventions
Character Shorthand Notation In This Book

116 SQL Fundamentals

• TABLE tname

• vname

• VIEW vname

Sample Syntax Diagram

Diagram Identifier

The alphanumeric string that appears in the lower right corner of every diagram is an internal
identifier used to catalog the diagram. The text never refers to this string.

Character Shorthand Notation In This Book

Introduction

This book uses the Unicode naming convention for characters. For example, the lowercase
character ‘a’ is more formally specified as either LATIN SMALL LETTER A or U+0041. The
U+xxxx notation refers to a particular code point in the Unicode standard, where xxxx stands
for the hexadecimal representation of the 16-bit value defined in the standard.

In parts of the book, it is convenient to use a symbol to represent a special character, or a
particular class of characters. This is particularly true in discussion of the following Japanese
character encodings.

JC01A018

viewnameCREATE VIEW AS
cname

A

C

CV

,

LOCKING
LOCK

ACCESSA
DATABASE

dbname

TABLE
tname

VIEW
vname

FOR
IN

B
SHARE
READ
WRITE

EXCLUSIVE
EXCL

MODE

FROMB SEL C
.aname

expr

,

tname

,

qual_cond

qual_cond

WHERE cond

cname

,

col_pos

,
GROUP BY

HAVING cond ;

Appendix A: Notation Conventions
Character Shorthand Notation In This Book

SQL Fundamentals 117

• KanjiEBCDIC

• KanjiEUC

• KanjiShift-JIS

These encodings are further defined in International Character Set Support.

Character Symbols

The symbols, along with character sets with which they are used, are defined in the following
table.

For example, string “TEST”, where each letter is intended to be a fullwidth character, is written
as TEST. Occasionally, when encoding is important, hexadecimal representation is used.

For example, the following mixed single byte/multibyte character data in KanjiEBCDIC
character set

Symbol Encoding Meaning

a–z

A–Z

0–9

Any Any single byte Latin letter or digit.

a–z

A–Z

0–9

Unicode
compatibility
zone

Any fullwidth Latin letter or digit.

< KanjiEBCDIC Shift Out [SO] (0x0E).

Indicates transition from single to multibyte character in
KanjiEBCDIC.

> KanjiEBCDIC Shift In [SI] (0x0F).

Indicates transition from multibyte to single byte KanjiEBCDIC.

T Any Any multibyte character.

The encoding depends on the current character set.

For KanjiEUC, code set 3 characters are sometimes preceded by
“ss3”.

I Any Any single byte Hankaku Katakana character.

In KanjiEUC, it must be preceded by “ss2”, forming an individual
multibyte character.

 Any Represents the graphic pad character.

 Any Represents a single or multibyte pad character, depending on
context.

ss2 KanjiEUC Represents the EUC code set 2 introducer (0x8E).

ss3 KanjiEUC Represents the EUC code set 3 introducer (0x8F).

Appendix A: Notation Conventions
Character Shorthand Notation In This Book

118 SQL Fundamentals

LMN<TEST>QRS

is represented as:

D3 D4 D5 0E 42E3 42C5 42E2 42E3 0F D8 D9 E2

Pad Characters

The following table lists the pad characters for the various server character sets.

Server Character Set Pad Character Name Pad Character Value

LATIN SPACE 0x20

UNICODE SPACE U+0020

GRAPHIC IDEOGRAPHIC SPACE U+3000

KANJISJIS ASCII SPACE 0x20

KANJI1 ASCII SPACE 0x20

SQL Fundamentals 119

APPENDIX B Restricted Words

This appendix details restrictions on the use of certain terminology in SQL queries and in
other user application programs that interface with Teradata Database.

Teradata Reserved Words

Teradata Database reserved words cannot be used as identifiers to name host variables,
correlations, local variables in stored procedures, objects (such as databases, tables, columns,
or stored procedures), or parameters, such as macro or stored procedure parameters, because
Teradata Database already uses the word and might misinterpret it.

You can use the SQLRestrictedWords view or the SQLRestrictedWords_TBF function to
retrieve a list of all Teradata SQL restricted words, including the Teradata reserved words. For
more information, see “SQLRestrictedWords Function” on page 128.

The following notation appears in the list of reserved words.

Notation Explanation

AR superscript This word is also an ANSI SQL:2008 reserved word.

AN superscript This word is also an ANSI SQL:2008 nonreserved word.

Asterisk (*) This word is new for this release.

ABORT ABORTSESSION ABSAR ACCESS_LOCK ACCOUNT ACOS ACOSH

ADDAN ADD_MONTHS ADMINAN AFTERAN AGGREGATE ALLAR ALTERAR

AMP ANDAR ANSIDATE ANYAR ARGLPAREN ASAR ASCAN ASIN

ASINH ATAR ATAN ATAN2 ATANH ATOMICAR AUTHORIZATIONAR

AVE AVERAGE AVGAR

BEFOREAN BEGINAR BETWEENAR BIGINTAR BINARYAR BLOBAR

BOTHAR BT BUT BYAR BYTE BYTEINT BYTES

CALLAR CASEAR CASE_N CASESPECIFIC CASTAR CD CHARAR

CHAR_LENGTHAR CHAR2HEXINT CHARACTERAR CHARACTER_LENGTHAR

CHARACTERSAN CHARS CHECKAR CHECKPOINT CLASS CLOBAR

CLOSEAR CLUSTER CM COALESCEAR COLLATIONAN COLLECTAR

Appendix B: Restricted Words
Teradata Reserved Words

120 SQL Fundamentals

COLUMNAR COMMENT COMMITAR COMPRESS CONNECTAR

CONSTRAINTAR CONSTRUCTORAN CONSUME CONTAINSAN CONTINUEAN

CONVERT_TABLE_HEADER CORRAR COS COSH COUNTAR COVAR_POPAR

COVAR_SAMPAR CREATEAR CROSSAR CS CSUM CT CTCONTROL

CUBEAR CURRENTAR CURRENT_DATEAR CURRENT_ROLEAR

CURRENT_TIMEAR CURRENT_TIMESTAMPAR CURRENT_USERAR CURSORAR

CV CYCLEAR

DATABASE DATABLOCKSIZE DATEAR DATEFORM DAYAR DEALLOCATEAR

DECAR DECIMALAR DECLAREAR DEFAULTAR DEFERREDAN DEGREES

DEL DELETEAR DESCAN DETERMINISTICAR DIAGNOSTIC DISABLED

DISTINCTAR DOAR DOMAINAN DOUBLEAR DROPAR DUAL DUMP

DYNAMICAR

EACHAR ECHO ELSEAR ELSEIFAR ENABLED ENDAR EQ EQUALSAN

ERROR ERRORFILES ERRORTABLES ESCAPEAR ET EXCEPTAR EXECAR

EXECUTEAR EXISTSAR EXITAN EXPAR EXPAND EXPANDING

EXPLAIN EXTERNALAR EXTRACTAR

FALLBACK FASTEXPORT FETCHAR FIRSTAN FLOATAR FORAR

FOREIGNAR FORMAT FOUNDAN FREESPACE FROMAR FULLAR

FUNCTIONAR

GE GENERATEDAN GETAR GIVE GRANTAR GRAPHIC GROUPAR

GROUPINGAR GT

HANDLERAR HASH HASHAMP HASHBAKAMP HASHBUCKET HASHROW

HAVINGAR HELP HOURAR

IDENTITYAR IFAR IMMEDIATEAN INAR INCONSISTENT INDEX

INITIATE INNERAR INOUTAR INPUTAN INS INSERTAR INSTANCEAN

INSTEADAN INTAR INTEGERAR INTEGERDATE INTERSECTAR

INTERVALAR INTOAR ISAR ITERATEAR

JARAR JOINAR JOURNAL

KEYAN KURTOSIS

Appendix B: Restricted Words
Teradata Reserved Words

SQL Fundamentals 121

LANGUAGEAR LARGEAR LE LEADINGAR LEAVEAR LEFTAR LIKEAR

LIMIT LNAR LOADING LOCALAR LOCATORAN LOCK LOCKING

LOG LOGGING LOGON LONG LOOPAR LOWERAR LT

MACRO MAPAN MAVG MAXAR MAXIMUM MCHARACTERS MDIFF

MERGEAR METHODAR MINAR MINDEX MINIMUM MINUS MINUTEAR

MLINREG MLOAD MODAR MODE MODIFIESAR MODIFY MONITOR

MONRESOURCE MONSESSION MONTHAR MSUBSTR MSUM MULTISETAR

NAMED NATURALAR NE NEWAR NEW_TABLE NEXTAN NOAR NONEAR

NONTEMPORAL NORMALIZE AR NOTAR NOWAIT NULLAR NULLIFAR

NULLIFZERO NUMBER* NUMERICAR

OBJECTAN OBJECTS OCTET_LENGTHAR OFAR OFF OLDAR

OLD_TABLE ONAR ONLYAR OPENAR OPTIONAN ORAR ORDERAR

ORDERINGAN OUTAR OUTERAR OVERAR OVERLAPSAR OVERRIDE

PARAMETERAR PASSWORD PERCENT PERCENT_RANKAR PERM

PERMANENT POSITIONAR PRECISIONAR PREPAREAR PRESERVEAN

PRIMARYAR PRIVILEGESAN PROCEDUREAR PROFILE PROTECTION

PUBLICAN

QUALIFIED QUALIFY QUANTILE QUEUE

RADIANS RANDOM RANGE_N RANKAR READSAR REALAR

RECURSIVEAR REFERENCESAR REFERENCINGAR REGR_AVGXAR

REGR_AVGYAR REGR_COUNTAR REGR_INTERCEPTAR REGR_R2AR

REGR_SLOPEAR REGR_SXXAR REGR_SXYAR REGR_SYYAR RELATIVEAN

RELEASEAR RENAME REPEATAR REPLACE REPLCONTROL REPLICATION

REQUEST RESIGNALAR RESTARTAN RESTORE RESULTAR RESUME

RET RETRIEVE RETURNAR RETURNSAR REVALIDATE REVOKEAR

RIGHTAR RIGHTS ROLEAN ROLLBACKAR ROLLFORWARD ROLLUPAR

ROWAR ROW_NUMBERAR ROWID ROWSAR

SAMPLE SAMPLEID SCROLLAR SECONDAR SEL SELECTAR SESSIONAN

SETAR SETRESRATE SETSAN SETSESSRATE SHOW SIGNALAR SIN

SINH SKEW SMALLINTAR SOMEAR SOUNDEX SPECIFICAR SPOOL

SQLAR SQLEXCEPTIONAR SQLTEXT SQLWARNINGAR SQRTAR SS

STARTAR STARTUP STATEMENTAN STATISTICS STDDEV_POPAR

Appendix B: Restricted Words
Teradata Reserved Words

122 SQL Fundamentals

STDDEV_SAMPAR STEPINFO STRING_CS SUBSCRIBER SUBSTR

SUBSTRINGAR SUMAR SUMMARY SUSPEND

TABLEAR TAN TANH TBL_CS TD_ANYTYPE* TEMPORARYAN TERMINATE

THENAR THRESHOLD TIMEAR TIMESTAMPAR TIMEZONE_HOURAR

TIMEZONE_MINUTEAR TITLE TOAR TOP TRACE TRAILINGAR

TRANSACTIONAN TRANSACTIONTIME TRANSFORMAN TRANSLATEAR

TRANSLATE_CHK TRIGGERAR TRIMAR TYPEAN

UC UDTCASTAS UDTCASTLPAREN UDTMETHOD UDTTYPE UDTUSAGE

UESCAPEAR UNDEFINED UNDOAN UNIONAR UNIQUEAR UNTILAR

UNTIL_CHANGED UNTIL_CLOSED UPD UPDATEAR UPPERAR UPPERCASE

USERAR USINGAR

VALIDTIME VALUEAR VALUESAR VAR_POPAR VAR_SAMPAR

VARBYTE VARCHARAR VARGRAPHIC VARIANT_TYPE VARYINGAR

VIEWAN VOLATILE

WHENAR WHEREAR WHILEAR WIDTH_BUCKETAR WITHAR WITHOUTAR

WORKAN

XMLPLAN

YEARAR

ZEROIFNULL ZONEAN

Appendix B: Restricted Words
Teradata Nonreserved Words

SQL Fundamentals 123

Teradata Nonreserved Words

Teradata Database nonreserved keywords are permitted as identifiers but are discouraged
because they may in the future be used as reserved keywords.

You can use the SQLRestrictedWords view or the SQLRestrictedWords_TBF function to
retrieve a list of all Teradata SQL restricted words, including the Teradata nonreserved words.
For more information, see “SQLRestrictedWords Function” on page 128.

The following notation appears in the list of nonreserved words.

Notation Explanation

AR superscript This word is also an ANSI SQL:2008 reserved word.

AN superscript This word is also an ANSI SQL:2008 nonreserved word.

Plus sign (+) This word must always follow the AS keyword if it appears as an alias name
in the select list of a SELECT statement.

Asterisk (*) This word is new for this release.

ACCESS AG ALLOCATEAR ALLOCATION ALLPARAMS ALWAYSAN

ANALYSIS ANCHOR APPLNAME ARCHIVE ARRAY* ASCII

ASSIGNMENTAN ATTR ATTRIBUTEAN ATTRIBUTESAN ATTRS

ATTR AUTO* AUTOTEMP*

BLOCKCOMPRESSION*

CAN CALLEDAR CALENDAR* CALLER CHANGERATE CHARACTERISTICSAN

CHARSET_COLL CHECKSUM CLASS_ORIGINAN CLIENT COLUMNS

COLUMNSPERINDEX COLUMNSPERJOININDEX COMMAND_FUNCTIONAN

COMMAND_FUNCTION_CODEAN COMPARISON COMPILE CONDITIONAR

CONDITION_IDENTIFIERAN CONDITION_NUMBERAN COST COSTS CPP

CPUTIME CPUTIMENORM CREATOR

DATAAN DBC DEBUG DECOMPRESS DEFINERAN DEMOGRAPHICS

DENIALS DIAGNOSTICSAN DIGITS DOWN DR

EBCDIC ELAPSEDSEC ELAPSEDTIME ENCRYPT ERRORS EXCEPTION

EXCL EXCLUSIVE EXPIRE EXPORTWIDTH*

FINALAN FOLLOWINGAN FRIDAY

Appendix B: Restricted Words
Teradata Nonreserved Words

124 SQL Fundamentals

GAN GLOBALAR GLOP

HIGH HOST

IFP INCREMENTAN INDEXESPERTABLE INDEXMAINTMODE INIT

INLINE INSTANTIABLEAN INTERNAL INVOKERAN IOCOUNT

ISOLATIONAN

JAVAAN JIS_COLL

KAN KANJI1 KANJISJIS KBYTE KBYTES KEEP KILOBYTES

LASTAN LATIN LDIFF+ LEVELAN LOCKEDUSEREXPIRE LOW

MAN MANUAL* MATCHEDAN MAXCHAR MAXINTERVALS*

MAXLOGONATTEMPTS MAXVALUEAN MAXVALUELENGTH* MEDIUM

MESSAGE_TEXTAN MINCHAR MINVALUEAN MODIFIED MONDAY

MONTH_BEGIN MONTH_END MOREAN MULTINATIONAL

NAMEAN NEVER* NODDLTEXT NONOPTCOST NONOPTINIT NONSEQUENCED

OA OLD_NEW_TABLE ONLINE OPTIONSAN ORDERED_ANALYTIC

ORDINALITY* OVERLAYS OWNER

P_INTERSECT+ P_NORMALIZE+ PARAMID PARTITIONAR

PARTITIONED PARTITION#Ln (where n=1-62)*

PERIOD PRECEDES+ PRECEDINGAN PRINT PRIORAN PROTECTED

QUARTER_BEGIN* QUARTER_END* QUERY QUERY_BAND

RANDOMIZED RANGEAR RANGE#Ln (where n=1-15) RDIFF+

READAN RECALC REPLACEMENT RESET RESTRICTWORDS RETAIN

RETURNED_SQLSTATEAN REUSE ROW_COUNTAN RU RULES RULESET

SAMPLES SATURDAY SEARCHSPACE SECURITYAN SEED SELFAN

SEQUENCED SERIALIZABLEAN SHARE SOURCEAN SPECCHAR SPL

SQLSTATEAR SR STAT STATS STYLEAN SUBCLASS_ORIGINAN

SUCCEEDS+ SUMMARYONLY SUNDAY SYSTEMAR SYSTEMTEST

TARGET TD_GENERAL TD_INTERNAL TEMPORAL_DATE

Appendix B: Restricted Words
Teradata Future Reserved Words

SQL Fundamentals 125

Teradata Future Reserved Words

The words listed here are reserved for future Teradata Database use and cannot be used as
identifiers.

You can use the SQLRestrictedWords view or the SQLRestrictedWords_TBF function to
retrieve a list of all Teradata SQL restricted words, including the Teradata future reserved
words. For more information, see “SQLRestrictedWords Function” on page 128.

The following notation appears in the list of future reserved words.

TEMPORAL_TIMESTAMP TEXT THROUGH THURSDAY TIESAN

TPA TRANSACTION_ACTIVEAN TRUST_ONLY TUESDAY

UNBOUNDEDAN UNCOMMITTEDAN UNICODE UNKNOWNAR USE

VARRAY*

WEEK_BEGIN* WEEK_END* WARNING WEDNESDAY WORKLOAD WRITEAN

XML

YEAR_BEGIN* YEAR_END*

Notation Explanation

AR superscript This word is also an ANSI SQL:2008 reserved word.

AN superscript This word is also an ANSI SQL:2008 nonreserved word.

Asterisk (*) New word for this release.

Appendix B: Restricted Words
Teradata Parallel Transporter Reserved Keywords

126 SQL Fundamentals

Teradata Parallel Transporter Reserved
Keywords

Teradata Parallel Transporter (PT) reserved keywords cannot be used in Teradata PT job
scripts as identifiers. Identifiers are non-quoted strings used for column names, script object
names, or attributes.

The following notation appears in the list of Teradata PT reserved keywords.

ALIAS

DESCRIPTORAN

GOAN GOTOAN

INDICATORAR

PRIVATE

WAIT

Notation Explanation

TR superscript This word is also a Teradata reserved word.

Asterisk (*) New word for this release.

ACCOUNTTR ALLTR ALLOW ANDTR ANSIDATETR APPLY ARRAY

ATTRIBUTES ASTR ATTR

BIGINTTR BLOBTR BYTR BYTETR BYTEINTTR

CASETR CASTTR CATEGORY CHARTR CHARACTERTR CHARACTERSTR

CHARSTR CHECKTR CHECKPOINTTR CLOBTR COMMAND COMPONENT

CONSUMER

DATABASETR DATACONNECTOR DATAGENERATOR DATETR DATETIME

DAYTR DBMS DDL DEBUG DECTR DECIMALTR DEFAULTTR

DEFERREDTR DEFINE DELETETR DELIM DELIMITER DELTATIME

Appendix B: Restricted Words
Teradata Parallel Transporter Reserved Keywords

SQL Fundamentals 127

DESCRIPTION DIRECTORY DISABLE DISALLOW DISCARD DUPLICATE

ELSETR ENABLE ENDTR EXECUTETR EXPORT EXTERNALTR EXTRA

FALSE FASTEXPORTTR FASTLOAD FILE FILTER FLOATTR FORTR

FROMTR

GENERIC GRAPHICTR

HOURTR

ID IFTR IGNORE INCLUDE INFO INMOD INPUTTR INSERT

INSERTER INSTANCE INTTR INTDATE INTEGERTR INTERFACE

INTERVALTR INTOTR ISTR

JOB

KEEP

LANGUAGETR LATENCY LENGTH LIBRARY LOAD LOCALTR LONGTR

LOGTR LOGGER LOGONTR LOGREP LANGORT

MACROCHARSET* MARK MAXTR MAXIMUMTR MESSAGE METADATA MINTR

MINUTETR MINUTES MISSING MODETR MONTHTR

MSGCATALOG MSGNUMBER MSGTEXT MULTILOAD MULTIPHASE

MSGTEXT MULTILOAD MULTIPHASE

NAME NODE NODEBUG NODENAME NOINFO NOTTR NOTRACE

NULLTR NULLIFTR NUMERICTR

ODBC OFFTR OFFSET ONTR OPERATOR ORTR OS OTHER

OUTMOD OUTPUT

PARALLEL PASSWORDTR PATH PERIOD PROCESSID PRODUCER

PXOPER

REMOTE RESTARTABLE ROWSTR

SCHEMA SEC SECONDTR SECONDS SELECTTR SELECTOR

SEQUENTIAL SERIALIZE SETTR SMALLINTTR SOURCE STANDALONE

STEP STREAM SUPPORT SYSTEM

Appendix B: Restricted Words
SQLRestrictedWords Function

128 SQL Fundamentals

SQLRestrictedWords Function

Purpose

Returns a table of Teradata SQL restricted words including Teradata reserved words, Teradata
nonreserved keywords and Teradata future reserved words.

Syntax

ANSI Compliance

SQLRestrictedWords_TBF is a Teradata extension to the ANSI SQL:2008 standard.

Invocation

Before you can use this function, you must run the Database Initialization Program (DIP)
utility and execute the DIPUDT script. The DIPALL or DIPUDT script will create the
SQLRestrictedWords_TBF function and the associated SQLRestrictedWords view in the
SYSLIB database. For more information about the DIP utility, see Utilities.

TABLETR TASKID TASKNAME TERADATA THENTR TIMETR

TIMESTAMPTR TOTR TRACETR TRUE TYPETR

UNIONTR UNKNOWN UPDATETR USE USERTR USINGTR

VARBYTETR VARCHARTR VARGRAPHICTR VARYINGTR VERSION VIA

VIEWTR

WHENTR WHERETR WITHTR WORKING

XSMOD

YEARTR

ZONETR

1101A752

SYSLIB.
SQLRestrictedWords_TBF()

Appendix B: Restricted Words
SQLRestrictedWords Function

SQL Fundamentals 129

Teradata Database searches for the SQLRestrictedWords_TBF function and the associated
view in the current database. If the function or view is not found, Teradata Database searches
in the SYSLIB database. Alternatively, you may invoke the function and view by using the fully
qualified syntax:

• SYSLIB.SQLRestrictedWords_TBF()

• SYSLIB.SQLRestrictedWords

Description

SQLRestrictedWords_TBF is a table function that returns a table of Teradata SQL restricted
words. You can use this function to retrieve the restricted words for the current or a specified
Teradata Database release. This is useful for migration or upgrade planning, or in cases when
you want to back down or revert to a prior Teradata Database release.

SQLRestrictedWords_TBF returns only Teradata reserved words, Teradata nonreserved
keywords, and Teradata future reserved words. It does not return ANSI reserved words or
ANSI nonreserved words. However, if a Teradata restricted word is also an ANSI reserved
word or ANSI nonreserved word, the function indicates this in the ANSI_restricted column of
the result table.

You can also query for Teradata SQL restricted words using the SQLRestrictedWords view,
which selects data from the result table of the function. This view only returns restricted
words for the current Teradata Database release.

Note: Queries using the SQLRestrictedWords_TBF function and the SQLRestrictedWords
view are case specific.

Result

The output table contains the following columns:

Column Name Data Type and Attributes Column Value

restricted_word VARCHAR(30)

CHARACTER SET LATIN

The Teradata SQL restricted word.

release_introduced CHAR(5)

CHARACTER SET LATIN

The release when the restricted word was introduced.

The release version numbers are in the following format:

MM.mm

where MM are 2 digits representing a major release number and mm
are 2 digits representing a minor release number. For example, '06.02',
'12.00', or '13.10'.

For all restricted words that were introduced in Teradata Database 6.2
or earlier, the value of the release_introduced field will be '06.02'.

release_dropped CHAR(5)

CHARACTER SET LATIN

The release when the restricted word was dropped. The release version
numbers are in the same format as for the release_introduced column.

A NULL value indicates that the restricted word is still active.

Appendix B: Restricted Words
SQLRestrictedWords Function

130 SQL Fundamentals

SQLRestrictedWords View

You can use the SQLRestrictedWords view to retrieve the Teradata SQL restricted words that
are applicable to the current Teradata Database release. The view selects the following
columns from the result table of the SQLRestrictedWords_TBF function:

• restricted_word

• category

• ANSI_restricted

To retrieve Teradata SQL restricted words for Teradata Database releases other than the
current release, use the SQLRestrictedWords_TBF function.

Downloading the SQLRestrictedWords Package

The DIPUDT script creates the SQLRestrictedWords_TBF function and the
SQLRestrictedWords view in the SYSLIB database for the current Teradata Database release.

If you are running a previous Teradata Database release and do not have this function, you can
download it at Teradata Developer Exchange (developer.teradata.com/).

The SQLRestrictedWords package includes the following:

• The SQLRestrictedWords_TBF function.

• View definitions for all Teradata Database releases that are currently supported.

• Documentation for installing the function and creating a view to retrieve Teradata
restricted words for your Teradata Database release.

For future Teradata Database releases, the package will be updated and available for download
in advance of the release so that you can see the new Teradata restricted words of the
upcoming release and plan accordingly.

category CHAR(1)

CHARACTER SET LATIN

The valid values are 'R', 'F', or 'N', indicating that the restricted word
is:

• a Teradata reserved word (R)

• a Teradata future reserved word (F)

• a Teradata nonreserved keyword (N)

ANSI_restricted CHAR(1)

CHARACTER SET LATIN

The valid values are 'R', 'N', or 'T', indicating that the restricted word
is:

• an ANSI reserved word (R)

• an ANSI nonreserved word (N)

• a Teradata restricted word only (T)

Note: This column always reflects the ANSI standard that the latest
Teradata Database release is compliant with.

Column Name Data Type and Attributes Column Value

developer.teradata.com/

Appendix B: Restricted Words
SQLRestrictedWords Function

SQL Fundamentals 131

Example 1: Getting the Restricted Words for the Current Release

The following query uses the SQLRestrictedWords view to retrieve the Teradata SQL restricted
words that are applicable to the current Teradata Database release.

SELECT * FROM SYSLIB.SQLRestrictedWords;

Example 2: Getting the Restricted Words for a Specific Release

The following queries use the SQLRestrictedWords_TBF function to retrieve the Teradata
SQL restricted words for a specified release.

Retrieve all restricted words for Teradata Database 12.0:

SELECT *
FROM TABLE (SYSLIB.SQLRestrictedWords_TBF()) AS t1
WHERE release_introduced <= '12.00' AND

(release_dropped > '12.00' OR release_dropped IS NULL);

Retrieve the restricted words that were introduced in Teradata Database 13.0:

SELECT *
FROM TABLE (SYSLIB.SQLRestrictedWords_TBF()) AS t1
WHERE release_introduced = '13.00';

Example 3: Dropped and Reintroduced Restricted Words

The restricted word 'INTERFACE' was introduced in Teradata Database 12.0 and dropped in
Teradata Database 13.10. Therefore, the output table of the SQLRestrictedWords_TBF
function will include a single row for 'INTERFACE':

If in a later release, for example Teradata Database 16.0, 'INTERFACE' is reintroduced as a
Teradata reserved word, a new row will be added for 'INTERFACE' as follows:

Example 4: Changes Between Reserved and Nonreserved Words

If a Teradata reserved word called 'RESTRICTX' was introduced in Teradata Database 13.10,
but the word is changed in Teradata Database 14.0 to be a Teradata nonreserved word, the
output table of the SQLRestrictedWords_TBF function will include two rows for
'RESTRICTX':

restricted_word release_introduced release_dropped category ANSI_restricted

'INTERFACE' '12.00' '13.10' 'N' 'N'

restricted_word release_introduced release_dropped category ANSI_restricted

'INTERFACE' '12.00' '13.10' 'N' 'N'

'INTERFACE' '16.00' NULL 'R' 'N'

Appendix B: Restricted Words
ANSI SQL:2008 Reserved Words

132 SQL Fundamentals

Example 5: Tracking Future Reserved Words

'WAIT' is a Teradata future reserved word introduced in Teradata Database 06.02, so as of
Teradata Database 13.10, the row for 'WAIT' in the output table of the
SQLRestrictedWords_TBF function is as follows:

If 'WAIT' becomes a Teradata reserved word in Teradata Database 14.0, the row will be
updated as follows when Teradata Database 14.0 is available:

If 'WAIT' is removed as a Teradata future reserved word in Teradata Database 14.0, the row for
'WAIT' will be removed from the table.

ANSI SQL:2008 Reserved Words

The words listed here are ANSI SQL:2008 reserved words.

The following notation appears in the list of reserved words.

restricted_word release_introduced release_dropped category ANSI_restricted

'RESTRICTX' '13.10' '14.00' 'R' 'T'

'RESTRICTX' '14.00' NULL 'N' 'T'

restricted_word release_introduced release_dropped category ANSI_restricted

'WAIT' '06.02' NULL 'F' 'T'

restricted_word release_introduced release_dropped category ANSI_restricted

'WAIT' '14.00' NULL 'R' 'T'

Notation Explanation

TR superscript This word is also a Teradata reserved word and cannot be used as an
identifier.

TN superscript This word is also a Teradata nonreserved word. Although the word is
permitted as an identifier, it is discouraged because of possible confusion
that may result.

TF superscript This word is also a Teradata future reserved word and cannot be used as an
identifier.

Appendix B: Restricted Words
ANSI SQL:2008 Reserved Words

SQL Fundamentals 133

Note: Words in the list that do have special notation are permitted as identifiers, but are
discouraged because of possible confusion that may result.

ABSTR ALLTR ALLOCATETN ALTERTR ANDTR ANYTR ARE ARRAY

ARRAY_AGG ASTR ASENSITIVE ASYMMETRIC ATTR ATOMICTR

AUTHORIZATIONTR AVGTR

BEGINTR BETWEENTR BIGINTTR BINARYTR BLOBTR BOOLEAN BOTHTR

BYTR

CALLTR CALLEDTN CARDINALITY CASCADED CASETR CASTTR CEIL

CEILING CHARTR CHAR_LENGTHTR CHARACTERTR CHARACTER_LENGTHTR

CHECKTR CLOBTR CLOSETR COALESCETR COLLATE COLLECTTR

COLUMNTR COMMITTR CONDITIONTN CONNECTTR CONSTRAINTTR

CONVERT CORRTR CORRESPONDING COUNTTR COVAR_POPTR

COVAR_SAMPTR CREATETR CROSSTR CUBETR CUME_DIST CURRENTTR

CURRENT_CATALOG CURRENT_DATETR CURRENT_DEFAULT_TRANSFORM_GROUP

CURRENT_PATH CURRENT_ROLETR CURRENT_SCHEMA CURRENT_TIMETR

CURRENT_TIMESTAMPTR CURRENT_TRANSFORM_GROUP_FOR_TYPE

CURRENT_USERTR CURSORTR CYCLETR

DATETR DAYTR DEALLOCATETR DECTR DECIMALTR DECLARETR

DEFAULTTR DELETETR DENSE_RANK DEREF DESCRIBE

DETERMINISTICTR DISCONNECT DISTINCTTR DOTR DOUBLETR

DROPTR DYNAMICTR

EACHTR ELEMENT ELSETR ELSEIFTR ENDTR END-EXEC ESCAPETR

EVERY EXCEPTTR EXECTR EXECUTETR EXISTSTR EXPTR

EXTERNALTR EXTRACTTR

FALSE FETCHTR FILTER FLOATTR FLOOR FORTR FOREIGNTR FREE

FROMTR FULLTR FUNCTIONTR FUSION

GETTR GLOBALTN GRANTTR GROUPTR GROUPINGTR

HANDLERTR HAVINGTR HOLD HOURTR

IDENTITYTR IFTR INTR INDICATORTF INNERTR INOUTTR

INSENSITIVE INSERTTR INTTR INTEGERTR INTERSECTTR

INTERSECTION INTERVALTR INTOTR ISTR ITERATETR

Appendix B: Restricted Words
ANSI SQL:2008 Reserved Words

134 SQL Fundamentals

JARTR JOINTR

LANGUAGETR LARGETR LATERAL LEADINGTR LEAVETR LEFTTR LIKETR

LIKE_REGEX LNTR LOCALTR LOCALTIME LOCALTIMESTAMP LOOPTR

LOWERTR

MATCH MAXTR MEMBERTN MERGETR METHODTR MINTR MINUTETR

MODTR MODIFIESTR MODULE MONTHTR MULTISETTR

NATIONAL NATURALTR NCHAR NCLOB NEWTR NOTR NONETR

NORMALIZETR NOTTR NULLTR NULLIFTR NUMERICTR

OCTET_LENGTHTR OCCURRENCES_REGEX OFTR OLDTR ONTR ONLYTR

OPENTR ORTR ORDERTR OUTTR OUTERTR OVERTR OVERLAPSTR

OVERLAY

PARAMETERTR PARTITIONTN PERCENT_RANKTR PERCENTILE_CONT

PERCENTILE_DISC POSITIONTR POSITION_REGEX POWER PRECISIONTR

PREPARETR PRIMARYTR PROCEDURETR

RANGETN RANKTR READSTR REALTR RECURSIVETR REF

REFERENCESTR REFERENCINGTR REGR_AVGXTR REGR_AVGYTR

REGR_COUNTTR REGR_INTERCEPTTR REGR_R2TR REGR_SLOPETR

REGR_SXXTR REGR_SXYTR REGR_SYYTR RELEASETR REPEATTR

RESIGNALTR RESULTTR RETURNTR RETURNSTR REVOKETR RIGHTTR

ROLLBACKTR ROLLUPTR ROWTR ROW_NUMBERTR ROWSTR

SAVEPOINT SCOPE SCROLLTR SEARCH SECONDTR SELECTTR

SENSITIVE SESSION_USER SETTR SIGNALTR SIMILAR SMALLINTTR

SOMETR SPECIFICTR SPECIFICTYPE SQLTR SQLEXCEPTIONTR

SQLSTATETN SQLWARNINGTR SQRTTR STARTTR STATIC STDDEV_POPTR

STDDEV_SAMPTR SUBMULTISET SUBSTRINGTR SUBSTRING_REGEX SUMTR

SYMMETRIC SYSTEMTN SYSTEM_USER

TABLETR TABLESAMPLE THENTR TIMETR TIMESTAMPTR

TIMEZONE_HOURTR TIMEZONE_MINUTETR TOTR TRAILINGTR TRANSLATETR

TRANSLATE_REGEX TRANSLATION TREAT TRIGGERTR TRUNCATE

TRIMTR TRUE

UESCAPETR UNIONTR UNIQUETR UNKNOWNTN UNNEST UNTILTR

Appendix B: Restricted Words
ANSI SQL:2008 Nonreserved Words

SQL Fundamentals 135

ANSI SQL:2008 Nonreserved Words

The words listed here are ANSI SQL:2008 nonreserved words.

The following notation appears in the list of nonreserved words.

Note: Words in the list that do have special notation are permitted as identifiers, but are
discouraged because of possible confusion that may result.

UPDATETR UPPERTR USERTR USINGTR

VALUETR VALUESTR VAR_POPTR VAR_SAMPTR VARBINARY VARCHARTR

VARYINGTR

WHENTR WHENEVER WHERETR WHILETR WIDTH_BUCKETTR WINDOW

WITHTR WITHIN WITHOUTTR

YEARTR

Notation Explanation

TR superscript This word is also a Teradata reserved word and cannot be used as an
identifier.

TN superscript This word is also a Teradata nonreserved word. Although the word is
permitted as an identifier, it is discouraged because of possible confusion
that may result.

TF superscript This word is also a Teradata future reserved word and cannot be used as an
identifier.

A ABSOLUTE ACTION ADA ADDTR ADMINTR AFTERTR ALWAYSTN

ASCTR ASSERTION ASSIGNMENTTN ATTRIBUTETN ATTRIBUTESTN

BEFORETR BERNOULLI BREADTH

CTN CASCADE CATALOG CATALOG_NAME CHAIN

CHARACTER_SET_CATALOG CHARACTER_SET_NAME CHARACTER_SET_SCHEMA

CHARACTERISTICSTN CHARACTERSTR CLASS_ORIGINTN COBOL

COLLATIONTR COLLATION_CATALOG COLLATION_NAME COLLATION_SCHEMA

COLUMN_NAME COMMAND_FUNCTIONTN COMMAND_FUNCTION_CODETN

COMMITTED COMPARABLE CONDITION_IDENTIFIERTN

CONDITION_NUMBERTN CONNECTION CONNECTION_NAME

Appendix B: Restricted Words
ANSI SQL:2008 Nonreserved Words

136 SQL Fundamentals

CONSTRAINT_CATALOG CONSTRAINT_NAME CONSTRAINT_SCHEMA

CONSTRAINTS CONSTRUCTORTR CONTAINSTR CONTINUETR CURSOR_NAME

DATATN DATETIME_INTERVAL_CODE DATETIME_INTERVAL_PRECISION

DEFAULTS DEFERRABLE DEFERREDTR DEFINED DEFINERTN DEGREE

DEPTH DERIVED DESCTR DESCRIPTORTF DIAGNOSTICSTN DISPATCH

DOMAINTR DYNAMIC_FUNCTION DYNAMIC_FUNCTION_CODE

EQUALSTR EXCLUDE EXCLUDING EXITTR

FINALTN FIRSTTR FLAG FOLLOWINGTN FORTRAN FOUNDTR

GTN GENERAL GENERATEDTR GOTF GOTOTF GRANTED

HIERARCHY

IMMEDIATETR IMPLEMENTATION INCLUDING INCREMENTTN INITIALLY

INPUTTR INSTANCETR INSTANTIABLETN INSTEADTR INTERFACE

INVOKERTN ISOLATIONTN

JAVATN

KTN KEYTR KEY_MEMBER KEY_TYPE

LASTTN LENGTH LEVELTN LOCATORTR

MTN MAPTR MATCHEDTN MAXVALUETN MESSAGE_LENGTHTN

MESSAGE_OCTET_LENGTH MESSAGE_TEXTTN MINVALUETN MORETN MUMPS

NAMETN NAMES NESTING NEXTTR NFC NFD NFKC NFKD

NORMALIZED NULLABLE NULLS NUMBERTN

OBJECTTR OCTETS OPTIONTR OPTIONSTN ORDERINGTR ORDINALITY

OTHERS OUTPUT OVERRIDING

P PAD PARAMETER_MODE PARAMETER_NAME

PARAMETER_ORDINAL_POSITION PARAMETER_SPECIFIC_CATALOG

PARAMETER_SPECIFIC_NAME PARAMETER_SPECIFIC_SCHEMA PARTIAL

PASCAL PATH PLACING PLI PRECEDINGTN PRESERVETR PRIORTN

PRIVILEGESTR PUBLICTR

Appendix B: Restricted Words
ANSI SQL:2008 Nonreserved Words

SQL Fundamentals 137

READTN RELATIVETR REPEATABLE RESTARTTR RESTRICT

RETURNED_CARDINALITY RETURNED_LENGTH RETURNED_OCTET_LENGTH

RETURNED_SQLSTATETN ROLETR ROUTINE ROUTINE_CATALOG

ROUTINE_NAME ROUTINE_SCHEMA ROW_COUNTTN

SCALE SCHEMA SCHEMA_NAME SCOPE_CATALOG SCOPE_NAME

SCOPE_SCHEMA SECTION SECURITYTN SELFTN SEQUENCE

SERIALIZABLETN SERVER_NAME SESSIONTR SETSTR SIMPLE SIZE

SOURCETN SPACE SPECIFIC_NAME SQLDATA STACKED STATE

STATEMENTTR STATSUSAGE STRUCTURE STYLETN SUBCLASS_ORIGINTN

T TABLE_NAME TEMPORARYTR TIESTR TOP_LEVEL_COUNT

TRANSACTIONTR TRANSACTION_ACTIVETN TRANSACTIONS_COMMITTED

TRANSACTIONS_ROLLED_BACK TRANSFORMTR TRANSFORMS

TRIGGER_CATALOG TRIGGER_NAME TRIGGER_SCHEMA TYPETR

UNBOUNDEDTN UNCOMMITTEDTN UNDER UNDOTR UNNAMED USAGE

USER_DEFINED_TYPE_CATALOG USER_DEFINED_TYPE_CODE

USER_DEFINED_TYPE_NAME USER_DEFINED_TYPE_SCHEMA

VIEWTR

WORKTR WRITETR

ZONETR

Appendix B: Restricted Words
ANSI SQL:2008 Nonreserved Words

138 SQL Fundamentals

SQL Fundamentals 139

APPENDIX C Teradata Database Limits

This appendix provides information on the limits that apply to Teradata Database systems,
databases, and sessions.

System Limits

The system specifications in the following tables apply to an entire Teradata Database
configuration.

Miscellaneous System Limits

Parameter Value

Maximum number of combined databases and users. 4.2 x 109

Maximum number of database objects per system lifetime.

A database object is any object whose definition is recorded in DBC.TVM.

Because the system does not reuse DBC.TVM IDs, this means that a maximum of
1,073,741,824 such objects can be created over the lifetime of any given system. At the
rate of creating one new database object per minute, it would take 2,042 years to use
1,073,741,824 unique IDs.

1,073,741,824

Maximum size for a table header. 1 MB

Maximum size of table header cache. 8 x 106 bytes

Maximum size of a response spool file row. 1 MB

Maximum number of change logs that can be specified for a system at any point in
time.

1,000,000

Maximum number of locks that can be placed on aggregate online archive logging
tables, databases, or both per request.

The maximum number of locks that can be placed per LOGGING ONLINE
ARCHIVE ON request is fixed at 25,000 and cannot be altered.

25,000

Maximum number of 64KB parse tree segments allocated for parsing requests. 12,000

Maximum number of nodes per system configuration.

Limits on vprocs of each type restrict systems with a large number of nodes to fewer
vprocs per node.

Systems with the maximum vprocs per node cannot approach the maximum number
of nodes.

1,024

Appendix C: Teradata Database Limits
System Limits

140 SQL Fundamentals

Message Limits

Storage Limits

Parameter Value

Maximum number of CLIv2 parcels per message. 256

Maximum message size. ~ 65,000 bytes

This limit applies to messages to and from client systems and
to some internal Teradata Database messages.

Maximum error message text size in a failure parcel. 255 bytes

Parameter Value

Total data capacity. ~ 12 TB/AMP

Maximum number of sectors per data block. 255

Minimum data block size with large cylinders enabled.

CREATE TABLE and ALTER TABLE requests allow you to specify a
minimum data block size of 21,248 bytes (41.5 512-byte sectors), but
Teradata Database rounds that value up internally to 21,504 bytes (42
512-byte sectors), and that is the actual minimum data block size the
system uses.

21,504 bytes

42 512-byte sectors

Maximum data block size. 11,894,784 bytes

23,232 512-byte sectors

Minimum data block size with large cylinders not enabled.

CREATE TABLE and ALTER TABLE requests allow you to specify a
minimum data block size of 8,960 bytes (17.5 512-byte sectors), but
Teradata Database rounds that value up internally to 9,216 bytes (18
512-byte sectors), and that is the actual minimum data block size the
system uses.

9,216 bytes

18 512-byte sectors

Maximum number of data blocks that can be merged per data block
merge.

8

Maximum merge block ratio 100% of the maximum multirow block size for a
table.

Data block header size Depends on several factors.

• For a data block that is new or has been
updated, the data block header size is 72 bytes.

• For a data block that has not been updated,
the data block header size is 40 bytes,

Appendix C: Teradata Database Limits
System Limits

SQL Fundamentals 141

Gateway and Vproc Limits

Parameter Value

Maximum number of sessions per PE. 120

Maximum number of gateways per node. Multiple.

This is true because the gateway runs in its own vproc
on each node. See Utilities for details.

The exact number depends on whether the gateways
belong to different host groups and listen on different
IP addresses.

Maximum number of sessions per gateway. Tunable: 1 - 2,147,483,647.

1,200 maximum certified.

The default is 600.

See Utilities for details.

Maximum number of vprocs per system. 30,720

This includes the sum of all of the following types of
vproc for a configuration.

• AMP

Access Module Processor vprocs

• GTW

Gateway Control vprocs

• PE

Parsing Engine vprocs

• RSG

Relay Services Gateway vprocs

• TVS

Teradata Virtual Storage allocator vprocs

Maximum number of AMP vprocs per system. 16,200

Appendix C: Teradata Database Limits
System Limits

142 SQL Fundamentals

Maximum number of GTW vprocs per system.

This is a soft limit that Teradata technical support personnel can
reconfigure for you.

Each GTW vproc on a node must be in a different host group. If
two GTW vprocs are in the same host group, they must be on
different nodes.

The default is one GTW vproc per node with all of
them assigned to the same host group.

The maximum depends on two factors.

• Number of IP addresses assigned to each node.

• Number of host groups configured in the
database.

Each gateway on a node must be assigned to a
different host group from any other gateway on the
same node and each gateway needs to be assigned a
disjoint set of IP addresses to service.

This does not mean that all gateways in a system must
be assigned to a different host group. It means that
each gateway on the same node must be assigned to a
different host group.

Gateways on different nodes can be assigned to the
same host group.

Maximum number of PE vprocs per system.

This is a soft limit that Teradata technical support personnel can
reconfigure for you.

2,048

Maximum number of RSG vprocs per system.

This is a soft limit that Teradata technical support personnel can
reconfigure for you.

1,024

See Teradata Replication Services Using Oracle
GoldenGate.

Maximum number of TVS allocator vprocs per system.

This is a soft limit that Teradata technical support personnel can
reconfigure for you.

2,048

Maximum number of vprocs, in any combination, per node. 127

Maximum number of AMP vprocs per cluster. 8

Maximum number of external routine protected mode platform
tasks per PE or AMP.

This value is derived by subtracting 1 from the maximum total of
PE and AMP vprocs per system (because each system must have at
least one PE), which is 16,384. This is obviously not a practical
configuration.

The valid range is 0 to 20, inclusive. The limit is 20 platform tasks
for each platform type, not 20 combined for both. See Utilities for
details.

20

Maximum number of external routine secure mode platform tasks
per PE or AMP.

This value is derived by subtracting 1 from the maximum total of
PE and AMP vprocs per system (because each system must have at
least one PE), which is 16,384. This is obviously not a practical
configuration.

20

Parameter Value

Appendix C: Teradata Database Limits
System Limits

SQL Fundamentals 143

Hash Bucket Limits

Size of a request control block ~ 40 bytes

Default number of lock segments per AMP vproc.

This is controlled by the NumLokSegs parameter in DBS Control.

2

Maximum number of lock segments per AMP vproc.

This is controlled by the NumLokSegs parameter in DBS Control.

8

Default size of a lock segment.

This is controlled by the LockLogSegmentSize parameter in DBS
Control.

64 KB

Maximum size of a lock segment.

This is controlled by the LockLogSegmentSize parameter in DBS
Control.

1 MB

Default number of locks per AMP 3,200

Maximum number of locks per AMP. 209.000

Maximum size of the lock table per AMP.

The AMP lock table size is fixed at 2 MB and cannot be altered.

2 MB

Maximum size of the queue table FIFO runtime cache per PE. • 100 queue table entries

• 1 MB

Maximum number of SELECT AND CONSUME requests that can
be in a delayed state per PE.

24

Amount of private disk swap space required per protected or
secure mode server for C/C++ external routines per PE or AMP
vproc.

256 KB

Amount of private disk swap space required per protected or
secure mode server for Java external routines per node.

30 MB

Parameter Value

Parameter Value

Number of hash buckets per system.

This value is user-selectable. See the topic “Hash
Maps” in Chapter 8 of Database Design for details.

The number is user-selectable per system.

The choices are the following.

• 65,536

• 1,048,576

Bucket numbers range from 0 to the system maximum.

Appendix C: Teradata Database Limits
Database Limits

144 SQL Fundamentals

Interval Histogram Limits

Database Limits

The database specifications in the following tables apply to a single Teradata database. The
values presented are for their respective parameters individually and not in combination.

Table and View Limits

Size of a hash bucket The size depends on the number of hash buckets on the system.

• If the system has 65,536 hash buckets, the size of a hash bucket is
16 bits.

• If the system has 1,048,576 hash buckets, the size of a hash bucket
is 20 bits.

You set the default hash bucket size for your system using the DBS
Control utility (see Utilities: Volume 1 (A-K) for details).

Parameter Value

Parameter Value

Number of hash values. 4.2 x 109

Maximum number of intervals per index or column set histogram.

The system-wide maximum number of interval histograms is set using the MaxStatsInterval
parameter of the DBS Control record or your cost profile. For descriptions of the other
parameters listed, see SQL Request and Transaction Processing.

500

Default number of intervals per index or column set histogram. 250

Maximum number of equal-height intervals per interval histogram. 500

Parameter Value

Maximum number of journal tables per database. 1

Maximum number of error tables per base data table. 1

Maximum number of columns per base data table or view. 2,048

Maximum number of columns per error table.

This limit includes 2,048 data table columns plus 13 error table columns.

2,061

Maximum number of UDT columns per base data table.

The same limit is true for both distinct and structured UDTs.

The absolute limit is 2,048, and the realizable number varies as a function of the
number of other features declared for a table that occupy table header space.

~1,600

Appendix C: Teradata Database Limits
Database Limits

SQL Fundamentals 145

Maximum number of LOB columns per base data table.

This limit includes predefined type LOB columns and UDT LOB columns.

A LOB UDT column counts as one LOB column even if the UDT is a structured type
that has multiple LOB attributes.

32

Maximum number of columns created over the life of a base data table. 2,560

Maximum number of rows per base data table. Limited only by disk capacity.

Maximum number of bytes per table header per AMP.

A table header that is large enough to require more than ~64,000 bytes uses multiple
64KB rows per AMP up to 1 MB.

A table header that requires 64,000 or fewer bytes uses only a single row and does not
use the additional rows that are required to contain a larger table header.

The maximum size for a table header is 1 MB.

1 MB

Maximum number of characters per SQL index constraint. 16,000

Maximum row size. 64,256 bytes

Maximum size of the queue table FIFO runtime cache per table. 2,211 row entries

Maximum logical row size.

In this case, a logical row is defined as a base table row plus the sum of the bytes stored
in a LOB subtable for that row.

This value is derived by multiplying the maximum number of LOB columns per base
table (32) times the maximum size of a LOB column (2,097,088,000 8-bit bytes).

Remember that each LOB column consumes 39 bytes of Object ID from the base table,
so 1,248 of those 67,106,816,000 bytes cannot be used for data.

67,106,816,000 bytes

Maximum non-LOB column size for an NPPI table.

This limit is based on subtracting the minimum row overhead value for an NPPI table
row (12 bytes) from the system-defined maximum row length (64,256 bytes).

64,244 bytes

Maximum non-LOB column size for a PPI table.

This limit is based on subtracting the minimum row overhead value for a PPI table row
(16 bytes) from the system-defined maximum row length (64,256 bytes).

64,240 bytes

Maximum database, user, base table, view, macro, index, trigger, stored procedure,
UDF, UDM, UDT, replication group name, constraint, or column name size.

Other rules apply for Japanese character sets, which might restrict names to fewer than
30 bytes. See Chapter 2 in SQL Fundamentals for the applicable rules.

30 bytes in LATIN or KANJI1
internal representation

Maximum number of values that can be multi-value compressed per base table
column.

255

Maximum number of bytes per column that can be multi-value compressed for byte,
Kanji1, and KanjiSJIS data

~7,800 bytes

Maximum number of characters per column that can be multi-value compressed for
GRAPHIC, LATIN, and UNICODE server character set data

~7,800 characters

~15,600 bytes

Parameter Value

Appendix C: Teradata Database Limits
Database Limits

146 SQL Fundamentals

Maximum number of columns that can be compressed per primary-indexed table
using multi-value compression or algorithmic compression.

This assumes that the object is not a non-partitioned NoPI table, a column-partitioned
table or join index, or a global temporary trace table. All other tables, hash indexes,
and join indexes must have a primary index, and primary indexes cannot be either
multi-value compressed or algorithmically compressed. Because of this, the limit is the
maximum number of columns that can be defined for a table, which is 2,048, minus 1.

The limit for multi-value compression is far more likely to be reached because of table
header overflow, but the amount of table header space that is available for multi-value
compressed values is limited by a number of different factors. See Database Design for
details.

Join index columns inherit their compression characteristics from their parent tables.

2,047

Maximum number of columns that can be compressed per non-partitioned NoPI table
or column-partitioned table using multi-value compression or algorithmic
compression

Column-partitioned join index columns inherit their compression characteristics from
their parent tables.

2,048

Maximum number of algorithmically compressed values per base table column. Unlimited

Maximum width of data that can be multi-value compressed for BYTE, BYTEINT,
CHARACTER, GRAPHIC, VARCHAR, and VARGRAPHIC data types

510 bytes

Maximum width of data that can be multi-value compressed for data types other than
BYTE, BYTEINT, CHARACTER, DATE, GRAPHIC, VARCHAR, and VARGRAPHIC

Unlimited

Maximum width of data that can be algorithmically compressed.

The maximum data width is unlimited if you specify only algorithmic compression for
a column.

If you specify a mix of multi-value and algorithmic compression for a column, then the
limits for multi-value compression also apply for algorithmic compression.

Unlimited

Maximum number of table-level CHECK constraints that can be defined per table. 100

Maximum number of primary indexes per table, hash index, or join index that is not a
NoPI or column-partitioned database object.

1

Minimum number of primary indexes per primary-indexed table, hash index, or join
index.

1

Maximum number of primary indexes per non-partitioned NoPI table,
column-partitioned table or join index, or global temporary trace table.

This maximum applies only to non-partitioned NoPI tables, column-partitioned tables
and join indexes, and global temporary trace tables. All other tables, hash indexes, and
join indexes must have a primary index.

0

Maximum number of columns per primary index. 64

Maximum number of column partitions per table, including two columns partitions
reserved for internal use).

2,050

Parameter Value

Appendix C: Teradata Database Limits
Database Limits

SQL Fundamentals 147

Minimum number of column partition numbers that must be available for use by an
ALTER TABLE request to alter a column partition.

1

Maximum partition number for a column partitioning level. Maximum number of partitions
for that level + 1

Maximum combined partition number for a single-level column-partitioned table or
column-partitioned join index.

The same as the maximum
partition number for the single
partitioning level.

Maximum number of rows per hash bucket for a 44-bit uniqueness value. 17,592,186,044,415

Maximum combined partition number for a multilevel partitioned primary index,
multilevel column-partitioned table, multilevel partitioned join index, or multilevel
column-partitioned join index for 2-byte partitioning.

65,535

Maximum combined partition number for a multilevel partitioned primary index,
multilevel column-partitioned table, multilevel partitioned join index, or multilevel
column-partitioned join index for 8-byte partitioning.

9,223,372,036,854,775,807

Maximum number of ranges, including the NO RANGE, UNKNOWN, and NO
RANGE OR UNKNOWN and UNKNOWN partitions, for a RANGE_N partitioning
expression for 2-byte partitioning.

This value is limited by the largest possible INTEGER value.

65,533

Maximum number of ranges, including the NO RANGE, UNKNOWN, and NO
RANGE OR UNKNOWN and UNKNOWN partitions, for a RANGE_N partitioning
expression for 8-byte partitioning.

This value is limited by the largest possible BIGINT value.

9,223,372,036,854,775,805

Minimum value for n in a RANGE#Ln expression. 1

Maximum value for n in a RANGE#Ln expression for 2-byte partitioning 15

Maximum value for n in a RANGE#Ln expression for 8-byte partitioning. 62

Maximum number of partitions, including the NO RANGE, UNKNOWN, and NO
RANGE OR UNKNOWN partitions, for a single-level partitioning expression
composed of a single RANGE_N function with INTEGER data type

2.147.483.647

Maximum number of ranges for a single-level partitioning expression composed of a
single RANGE_N function with INTEGER data type that is used as a partitioning
expression if the NO RANGE and UNKNOWN partitions are not specified.

65,533

Maximum number of ranges for a single-level partitioning expression composed of a
single RANGE_N function with BIGINT data type that is used as a partitioning
expression if the NO RANGE and UNKNOWN partitions are not specified.

9,223,372,036,854,775,805

Maximum number of ranges for a single-level partitioning expression composed of a
single RANGE_N function with BIGINT data type that is used as a partitioning
expression if both the NO RANGE and UNKNOWN partitions are specified.

9,223,372,036,854,775,807

Maximum value for a partitioning expression that is not based on a RANGE_N or
CASE_N function.

This is allowed only for single-level partitioning.

65,535

Parameter Value

Appendix C: Teradata Database Limits
Database Limits

148 SQL Fundamentals

Maximum number of defined partitions for a column partitioning level The number of column partitions
specified + 2

The 2 additional partitions are
reserved for internal use.

Maximum number of defined partitions for a row partitioning level if the row
partitions specify the RANGE_N or CASE_N function.

The number of row partitions
specified.

Maximum number of defined partitions for a row partitioning level if the row
partitions do not specify the RANGE_N or CASE_N function.

65,535

Maximum number of partitions for a partitioning level when you specify an ADD
clause.

This value is computed by adding the number of defined partitions for the level plus
the value of the integer constant specified in the ADD clause.

9,223,372,036,854,775,807

Maximum number of partitions for a column partitioning level when you do not
specify an ADD clause and at least one row partitioning level does not specify an ADD
clause

The number of column partitions
defined + 10.

Maximum number of column partitions for a column partitioning level when you do
not specify an ADD clause, you also specify row partitioning, and each of the row
partitions specifies an ADD clause.

The largest number for the
column partitioning level that
does not cause the partitioning to
be 8-byte partitioning.

Maximum number of partitions for each row partitioning level without an ADD clause
in level order, if using the number of row partitions defined as the maximum for this
and any lower row partitioning level without an ADD clause.

The largest number for the
column partitioning level that
does not cause the partitioning to
be 8-byte partitioning.

Maximum partition number for a row partitioning level. The same as the maximum
number of partitions for the level.

Minimum number of partitions for a row partitioning level. 2

Maximum number of partitions, including the 2 partitions reserved for internal use,
for a column partitioning level when you do not specify an ADD clause and there is
only one partitioning level.

65,534

Maximum number of partitions for a CASE_N partitioning expression.

This value is limited by the largest possible INTEGER value.

2,147,483,647

Maximum value for a RANGE_N function with an INTEGER data type. 2,147,483,647

Maximum value for a RANGE_N function with a BIGINT data type that is part of a
partitioning expression.

9,223,372,036,854,775,805

Maximum value for a CASE_N function for both 2-byte and 8-byte partitioning. 2,147,483,647

Maximum number of partitioning levels or partitioning expressions for a multilevel
partitioned primary index or column-partitioned table or join index for 2-byte
partitioning.

Other limits can further restrict the number of levels for a specific partitioning.

15

Parameter Value

Appendix C: Teradata Database Limits
Database Limits

SQL Fundamentals 149

Large Object and Related Limits

Maximum number of partitioning levels or partitioning expressions for a multilevel
partitioned primary index or column-partitioned table or join index for 8-byte
partitioning.

Other limits can further restrict the number of levels for a specific partitioning.

62

Maximum value for n for the system-derived column PARTITION#Ln for 2-byte
partitioning.

15

Maximum value for n for the system-derived column PARTITION#Ln for 8-byte
partitioning.

62

Minimum number of partitions per partitioning level for a multilevel partitioned
primary index.

2

Maximum number of partition number ranges from each level that are not eliminated
for static partition elimination for an 8-byte PPI table or join index.

8,000

Maximum number of table-level constraints per base data table. 100

Maximum size of the SQL text for a table-level index CHECK constraint definition. 16,000 characters

Maximum number of referential integrity constraints per base data table. 64

Maximum number of columns per foreign and parent keys in a referential integrity
relationship.

64

Maximum number of characters per string constant. 31,000

Minimum PERM space required by a materialized global temporary table for its table
header.

(512 bytes) * (number of AMPs in
the configuration)

Maximum number of row-level security constraints per table, user, or profile. 5

Maximum number of row-level security statement-action UDFs that can be defined
per table.

4

Maximum number of non-set row-level security constraint encodings that can be
defined per constraint.

The valid range is from 1 to 10,000.

0 is not a valid non-set constraint encoding.

10,000

Maximum number of set row-level security constraint encodings that can be defined
per constraint.

256

Parameter Value

Parameter Value

Maximum BLOB object size. 2,097,088,000 8-bit bytes

Maximum CLOB object size. • 2,097,088,000 single-byte characters

• 1,048,544,000 double-byte characters

Appendix C: Teradata Database Limits
Database Limits

150 SQL Fundamentals

User-Defined Data Type, ARRAY Data Type, and VARRAY Data Type Limits

Maximum number of LOB rows per rowkey per AMP for NoPI LOB
tables

~ 256M

The exact number is 268,435,455 LOB rows per
rowkey per AMP.

Maximum size of the file name passed to the AS DEFERRED BY NAME
option in a USING request modifier.

VARCHAR(1024)

Parameter Value

Parameter Value

Maximum structured UDT size.

This value is based on a table having a 1 byte (BYTEINT) primary index. Because a
UDT column cannot be part of any index definition, there must be at least one
non-UDT column in the table for its primary index.

Row header overhead consumes 14 bytes in an NPPI table and 16 bytes in a PPI table, so
the maximum structured UDT size is derived by subtracting 15 bytes (for an NPPI
table) or 17 bytes (for a PPI table) from the row maximum of 64,256 bytes.

• 64,242 bytes (NoPI or
column-partitioned table)

• 64,241 bytes (NPPI table)

• 64,239 bytes (PPI table)

Maximum number of UDT columns per base data table.

The absolute limit is 2,048, and the realizable number varies as a function of the
number of other features declared for a table that occupy table header space.

The figure of 1,600 UDT columns assumes a FAT table header.

This limit is true whether the UDT is a distinct or a structured type.

~1,600

Maximum database, user, base table, view, macro, index, trigger, stored procedure,
UDF, UDM, UDT, replication group name, constraint, or column name size.

Other rules apply for Japanese character sets, which might restrict names to fewer than
30 bytes. See SQL Fundamentals for the applicable rules.

30 bytes in Latin or Kanji1
internal representation

Maximum number of attributes that can be specified for a structured UDT per
CREATE TYPE or ALTER TYPE request.

The maximum is platform-dependent, not absolute.

300 - 512

Maximum number of attributes that can be defined for a structured UDT.

While you can specify no more than 300 to 512 attributes for a structured UDT per
CREATE TYPE or ALTER TYPE request, you can submit any number of ALTER TYPE
requests with the ADD ATTRIBUTE option specified as necessary to add additional
attributes to the type up to the upper limit of approximately 4,000.

~4,000

Maximum number of levels of nesting of attributes that can be specified for a
structured UDT.

512

Appendix C: Teradata Database Limits
Database Limits

SQL Fundamentals 151

Macro, UDF, SQL Stored Procedure, and External Routine Limits

Maximum number of methods associated with a UDT.

There is no absolute limit on the number of methods that can be associated with a given
UDT.

Methods can have a variable number of parameters, and the number of parameters
directly affects the limit, which is due to Parser memory restrictions.

There is a workaround for this issue. See “ALTER TYPE” in SQL Data Definition
Language Detailed Topics for details.

~500

Maximum number of input parameters with a UDT data type of VARIANT_TYPE that
can be declared for a UDF definition.

8

Minimum number of dimensions that can be specified for a multidimensional ARRAY
or VARRAY data type.

2

Maximum number of dimensions that can be specified for a multidimensional ARRAY
or VARRAY data type.

5

Parameter Value

Parameter Value

Maximum number of parameters specified in a macro. 2,048

Maximum expanded text size for macros and views. 2 MB

Maximum number of open cursors per stored procedure. 15

Maximum number of result sets a stored procedure can return 15

Maximum number of columns returned by a dynamic result table function.

The valid range is from 1 to 2,048. There is no default.

2,048

Maximum number of dynamic SQL requests per stored procedure 15

Maximum length of a dynamic SQL request in a stored procedure

This includes its SQL text, the USING data (if any), and the CLIv2 parcel overhead.

64,256 bytes

Maximum number of parameters specified in a UDF defined without dynamic UDT
parameters.

128

Maximum number of parameters that can be defined for a constructor method for all
types except ARRAY/VARRAY

128

Maximum number of parameters that can be defined for a constructor method of an
ARRAY/VARRAY type

n

where n is the number of
elements defined for the type

Maximum number of combined return values and local variables that can be declared
in a single UDF.

Unlimited

Maximum number of combined external routine return values and local variables that
can be instantiated at the same time per session.

1,000

Appendix C: Teradata Database Limits
Database Limits

152 SQL Fundamentals

Query and Workload Analysis Limits

Maximum combined size of the parameters defined for a UDF. 64KB

Maximum number of parameters specified in a UDF defined with dynamic UDT
parameters.

The valid range is from 0 to 15. The default is 0.

1,144

Maximum number of parameters specified in a method. 128

Maximum number of parameters specified in an SQL stored procedure. 256

Maximum number of parameters specified in an external stored procedure written in C
or C++.

256

Maximum number of parameters specified in an external stored procedure written in
Java.

255

Maximum size of an ARRAY or VARRAY UDT.

This limit does not include the number of bytes used by the row header and the primary
index of a table.

64 KB

Maximum length of external name string for an external routine.

An external routine is the portion of a UDF, external stored procedure, or method that
is written in C, C++, or Java (only external stored procedures can be written in Java).
This is the code that defines the semantics for the UDF, procedure, or method.

1,000 characters

Maximum package path length for an external routine. 256 characters

Maximum number of nested CALL statements in a stored procedure. 15

Maximum SQL text size in a stored procedure. 64 KB

Maximum number of Statement Areas per SQL stored procedure diagnostics area. See
SQL Stored Procedures and Embedded SQL and SQL External Routine Programming for
details.

1

Maximum number of Condition Areas per SQL stored procedure diagnostics area. See
SQL Stored Procedures and Embedded SQL and SQL External Routine Programming for
details.

16

Parameter Value

Parameter Value

Maximum size of the Index Wizard workload cache.

The default is 48 Mbytes and the minimum is 32 MB.

187 MB

Maximum number of columns and indexes on which statistics can be recollected for a table or join index
subtable.

512

Maximum number of secondary, hash, and join indexes, in any combination, on which statistics can be
collected and maintained at one time.

This limit is independent of the number of pseudoindexes on which statistics can be collected and
maintained.

32

Appendix C: Teradata Database Limits
Database Limits

SQL Fundamentals 153

Secondary, Hash, and Join Index Limits

Maximum number of pseudoindexes on which multicolumn statistics can be collected and maintained at
one time.

A pseudoindex is a file structure that allows you to collect statistics on a composite, or multicolumn,
column set in the same way you collect statistics on a composite index.

This limit is independent of the number of indexes on which statistics can be collected and maintained.

32

Maximum number of sets of multicolumn statistics that can be collected on a table or join index if
single-column PARTITION statistics are not collected on the table or index.

32

Maximum number of sets of multicolumn statistics that can be collected on a table or join index if
single-column PARTITION statistics are collected on the table or index.

31

Maximum size of SQL query text overflow stored in QCD table QryRelX that can be read by the Teradata
Index Wizard.

1 MB

Parameter Value

Parameter Value

Minimum number of secondary, hash, and join indexes, in any combination, per base data table.

The only index required for any Teradata Database table or index is a primary index.

A primary index is not required or allowed for the following.

• Global temporary trace tables

• Non-partitioned NoPI tables

• Column-partitioned tables and join indexes

• Secondary indexes

0

Maximum number of secondary, hash, and join indexes, in any combination, per base data table.

Each composite NUSI defined with an ORDER BY clause counts as 2 consecutive indexes in this
calculation.

The number of system-defined secondary and single-table join indexes contributed by PRIMARY
KEY and UNIQUE constraints counts against the combined limit of 32 secondary, hash, and join
indexes per base data table.

32

Maximum number of columns referenced per secondary index. 64

Maximum number of columns referenced per single table in a hash or join index. 64

Maximum number of rows per secondary, hash, or join index. Limited only by
disk capacity.

Appendix C: Teradata Database Limits
Database Limits

154 SQL Fundamentals

Reference Index Limits

SQL Request and Response Limits

Maximum number of columns referenced in the fixed part of a compressed join index.

Teradata Database implements two very different types of user-visible compression in the system.

When describing compression of hash and join indexes, compression refers to a logical row
compression in which multiple sets of nonrepeating column values are appended to a single set of
repeating column values. This allows the system to store the repeating value set only once, while any
nonrepeating column values are stored as logical segmental extensions of the base repeating set.

When describing the compression of column values, the term refers one of the following.

• Multi-value compression, in which Teradata Database stores the compressed values for a column
one time only in the table header, not in the row itself.

• Algorithmic compression, in which you specify scalar UDFs to compress and decompress specified
byte, character, or graphic data values. The compression and decompression algorithms used by
algorithmic compression are determined by you and follow the rules that are defined for a given
pair of compression and decompression algorithms.

64

Maximum number of columns referenced in the repeating part of a compressed join index. 64

Maximum number of columns in an uncompressed join index. 2,048

Maximum number of columns in a compressed join index. 128

Parameter Value

Parameter Value

Maximum number of reference indexes per base data table.

There is a maximum of 128 Reference Indexes in a table header, 64 from a parent table to child tables
and 64 from child tables to a parent table.

64

Parameter Value

Maximum SQL text size per request.

This includes SQL request text, USING data, and parcel overhead.

1 MB

Maximum number of entries in an IN list.

There is no fixed limit on the number of entries in an IN list; however, other limits such as the
maximum SQL text size, place a request-specific upper bound on this number.

Unlimited

Maximum SQL text title size. 60 characters

Maximum SQL activity count size.

This value is derived from 232 - 1.

4,294,967,295 rows

Maximum number of tables and single-table views that can be joined per query block.

This limit is controlled by the MaxJoinTables DBS Control parameter and the Cost Profile flags.

128

Appendix C: Teradata Database Limits
Session Limits

SQL Fundamentals 155

Row-Level Security Constraint Limits

Session Limits

The session specifications in the following table apply to a single session:

Maximum number of partitions for a hash join operation. 50

Maximum number of subquery nesting levels per query. 64

Maximum number of tables or single-table views that can be referenced per subquery.

This limit is controlled by the MaxJoinTables DBS Control parameter and the Cost Profile flags.

128

Maximum number of fields in a USING row descriptor. 2,543

Maximum number of open cursors per embedded SQL program 16

Maximum SQL text response size. 1 MB

Maximum number of columns per DML request ORDER BY clause. 64

Maximum number of columns per DML request GROUP BY clause. 64

Maximum number of ORed conditions or IN list values per request 1,048,576

Parameter Value

Parameter Value

Maximum number of row-level security constraints per table. 5

Maximum number of hierarchical row-level security constraints per user or profile. 6

Maximum number of values per hierarchical row-level security constraint. 10,000

Maximum number of non-hierarchical row-level security constraints per user or profile. 2

Maximum number of values per non-hierarchical row-level security constraint. 256

Parameter Value

Maximum number of sessions per PE. 120

Maximum number of sessions per gateway vproc.

See Utilities for details.

Tunable: 1 - 2,147,483,647.

1,200 maximum certified.

The default is 600.

Maximum number of active request result spool files per session. 16

Appendix C: Teradata Database Limits
Session Limits

156 SQL Fundamentals

Maximum number of parallel steps per request.

Parallel steps can be used to process a request submitted within a transaction (which
can be either explicit or implicit).

20

Maximum number of channels required for various parallel step operations.

The value per request is determined as follows:

• Primary index request with an equality constraint. 0 channels

• Requests that do not involve row distribution. 2 channels

• Requests that involves redistribution of rows to other AMPs, such as a join or an
INSERT … SELECT operation.

4 channels

Maximum number of materialized global temporary tables that can be materialized
simultaneously per session.

2,000

Maximum number of volatile tables that can be instantiated simultaneously per
session.

1,000

Maximum number of SQL stored procedure Diagnostic Areas that can be active per
session.

1

Parameter Value

SQL Fundamentals 157

APPENDIX D ANSI SQL Compliance

This appendix describes the ANSI SQL standard, Teradata compliance with the ANSI SQL
standard, and terminology differences between ANSI SQL and Teradata SQL.

ANSI SQL Standard

The American National Standards Institute (ANSI) defines a version of SQL that all vendors
of relational database management systems support to a greater or lesser degree.

The complete ANSI/ISO SQL:2008 standard is defined across nine individual volumes.

The following table lists each of the individual component standards of the complete ANSI
SQL:2008 standard. This standard cancels and replaces the ANSI SQL:2003 standard.

Final versions of the standards are available for purchase from the International Organization
for Standardization (ISO) at http://www.iso.org.

Title Description

ANSI/ISO/IEC 9075-1:2008, Information
technology — Database languages — SQL —
Part 1: Framework (SQL/Framework)

Defines the conceptual framework for the entire
standard.

The subject matter covered is similar to SQL
Fundamentals.

ANSI/ISO/IEC 9075-2:2008, Information
technology — Database languages — SQL —
Part 2: Foundation (SQL/Foundation)

Defines the data structures of, and basic
operations on, SQL data, including the definitions
of the statements, clauses, and operators of the
SQL language.

The subject matter covered is similar to the
following Teradata manuals:

• Data Dictionary

• SQL Request and Transaction Processing
(Chapter 9)

• SQL Data Types and Literals

• SQL Data Definition Language

• SQL Functions, Operators, Expressions, and
Predicates

• SQL Data Manipulation Language

• SQL Stored Procedures and Embedded SQL
(Material about embedded SQL)

http://www.iso.org

Appendix D: ANSI SQL Compliance
ANSI SQL Standard

158 SQL Fundamentals

ANSI/ISO/IEC 9075-3:2008, Information
technology — Database languages — SQL —
Part 3: Call-Level Interface (SQL/CLI)

Defines the structures and procedures used to
execute SQL statements from a client application
using function calls.

The subject matter covered is similar to ODBC
Driver for Teradata User Guide.

ANSI/ISO/IEC 9075-4:2008, Information
technology — Database languages — SQL —
Part 4: Persistent Stored Modules (SQL/PSM)

Defines the syntax and semantics for declaring and
maintaining persistent routines on the database
server.

The subject matter covered is similar to the
following Teradata manuals:

• SQL External Routine Programming

• SQL Stored Procedures and Embedded SQL
(Material about stored procedure control
statements)

• SQL Data Definition Language (Material about
creating and maintaining user-defined
functions, methods, and external stored
procedures)

• SQL Data Manipulation Language (CALL
statement)

ANSI/ISO/IEC 9075-9:2008, Information
technology — Database languages — SQL —
Part 9: Management of External Data (SQL/
MED)

Defines SQL language extensions for supporting
external data using foreign data wrappers and
datalink types.

ANSI/ISO/IEC 9075-10:2008, Information
technology — Database languages — SQL —
Part 10: Object Language Bindings (SQL/
OLB)

Defines SQL language extensions to support
embedded SQL for Java applications.

ANSI/ISO/IEC 9075-11:2008, Information
technology — Database languages — SQL —
Part 11: Information and Definition Schemas
(SQL/Schemata)

“…provide[s] a data model to support the
Information Schema and to assist understanding.
An SQL-implementation need do no more than
simulate the existence of the Definition Schema, as
viewed through the Information Schema views.
The specification does not imply that an SQL
implementation shall provide the functionality in
the manner described in the Definition Schema.”

ANSI/ISO/IEC 9075-13:2008, Information
technology — Database languages — SQL —
Part 13: SQL Routines and Types using the
Java Programming Language (SQL/JRT)

Defines the call-level interface API for Java SQL
function calls.

The subject matter covered is similar to the
following Teradata manuals:

• Teradata JDBC Driver User Guide

• SQL External Routine Programming (Material
about Java external routines)

• SQL Data Definition Language (Material about
Java external routines)

Title Description

Appendix D: ANSI SQL Compliance
ANSI SQL Standard

SQL Fundamentals 159

You can download the complete set of working drafts of the ANSI SQL:2008 standard at no
charge from the following URL: http://www.wiscorp.com/SQLStandards.html. For nearly all
applications, the working drafts are identical to the final standards.

Motivation Behind an SQL Standard

Teradata, like most vendors of relational database management systems, had its own dialect of
the SQL language for many years prior to the development of the SQL standard.

You might ask several questions like the following:

• Why should there be an industry-wide SQL standard?

• Why should any vendor with an entrenched user base consider modifying its SQL dialect
to conform with the ANSI SQL standard?

Advantages of Having an SQL Standard

National and international standards abound in the computer industry. As anyone who has
worked in the industry for any length of time knows, standardization offers both advantages
and disadvantages both to users and to vendors.

The principal advantages of having an SQL standard are the following:

• Open systems

The overwhelming trend in computer technology has been toward open systems with
publicly defined standards to facilitate third party and end user access and development
using the standardized products.

The ANSI SQL standard provides an open definition for the SQL language.

• Less training for transfer and new employees

A programmer trained in ANSI-standard SQL can move from one SQL programming
environment to another with no need to learn a new SQL dialect. When a core dialect of
the language is commonly used among SQL programmers, the need for retraining is
significantly reduced.

• Application portability

When there is a standardized public definition for a programming language, users can rest
assured that any applications they develop to the specifications of that standard are
portable to any environment that supports the same standard.

This is an extremely important budgetary consideration for any large scale end user
application development project.

ANSI/ISO/IEC 9075-14:2008, Information
technology — Database languages — SQL —
Part 14: XML-Related Specifications (SQL/
XML)

Defines how the SQL language manipulates XML
text.

Note: This standard cancels and replaces the 2006
version of this standard.

Title Description

http://www.wiscorp.com/SQLStandards.html

Appendix D: ANSI SQL Compliance
ANSI SQL Standard

160 SQL Fundamentals

• Definition and manipulation of heterogeneous databases is facilitated

Many user data centers support multiple merchant databases across different platforms. A
standard language for communicating with relational databases, irrespective of the vendor
offering the database management software, is an important factor in reducing the
overhead of maintaining such an environment.

• Intersystem communication is facilitated

An enterprise commonly exchanges applications and data among different merchant
databases.

Common examples of this follow.

• Two-phase commit transactions where rows are written to multiple databases
simultaneously.

• Bulk data import and export between different vendor databases.

These operations are made much cleaner and simpler when there is no need to translate
data types, database definitions, and other component definitions between source and
target databases.

Teradata Compliance With the ANSI Standard

Conformance to a standard presents problems for any vendor that produces an evolved
product and supports a large user base.

Teradata, in its historical development, has produced any number of innovative SQL language
elements that do not conform to the ANSI SQL standard, a standard that did not exist when
those features were conceived. The existing Teradata user base had invested substantial time,
effort, and capital into developing applications using that Teradata SQL dialect.

At the same time, new customers demand that vendors conform to open standards for
everything from chip sets to operating systems to application programming interfaces.

Meeting these divergent requirements presents a challenge that Teradata SQL solves by
following the multipronged policy outlined in the following table.

WHEN ... THEN ...

a new feature or feature enhancement is added
to Teradata SQL

that feature conforms to the ANSI SQL standard.

the difference between the Teradata SQL dialect
and the ANSI SQL standard for a language
feature is slight

the ANSI SQL is added to Teradata Database
feature as an option.

Appendix D: ANSI SQL Compliance
ANSI SQL Standard

SQL Fundamentals 161

Third Party Books on the ANSI SQL Standard

There are few third party books on the ANSI SQL standard, and none about the SQL:2003 or
SQL:2008 standards. The following books on earlier ANSI SQL standards were all either
written or co-written by Jim Melton, the editor of the ANSI SQL standard:

• Jim Melton and Alan R. Simon, SQL:1999 Understanding Relational Language Components,
San Francisco, CA: Morgan Kaufmann, 2002.

Provides a thorough overview of the basic components of the SQL language including
statements, expressions, security, triggers, and constraints.

the difference between the Teradata SQL dialect
and the ANSI SQL standard for a language
feature is significant

both syntaxes are offered and the user has the
choice of operating in either Teradata or ANSI
mode or of turning off SQL Flagger.

The mode can be defined in the following ways:

• Persistently

Use the SessionMode field of the DBS
Control Record to define session mode
characteristics.

• For a session

Use the BTEQ .SET SESSION
TRANSACTION command to control
transaction semantics.

Use the BTEQ .SET SESSION SQLFLAG
command to control use of the SQL Flagger.

Use the SQL statement SET SESSION
DATEFORM to control how data typed as
DATE is handled.

a new feature or feature enhancement is added
to Teradata SQL and that feature is not defined
by the ANSI SQL standard

that feature is designed using the following
criteria:

• If other vendors offer a similar feature or
feature extension, Teradata designs the new
feature to broadly comply with other
solutions, but consolidates the best ideas
from all and, where necessary, creates its own,
cleaner solution.

• If other vendors do not offer a similar feature
or feature extension, Teradata designs the
new feature:

• as cleanly and generically as possible with
an eye toward creating a language element
that will not be subject to major revisions
to comply with future updates to the ANSI
SQL standard.

• in a way that offers the most power to
users without violating any of the basic
tenets of the ANSI SQL standard.

WHEN ... THEN ...

Appendix D: ANSI SQL Compliance
Terminology Differences Between ANSI SQL and Teradata

162 SQL Fundamentals

• Jim Melton, Advanced SQL:1999 Understanding Object-Relational and Other Advanced
Features, San Francisco, CA: Morgan Kaufmann, 2003.

Covers object-relational extensions to the basic SQL language including user-defined
types, user-defined procedures, user-defined methods, OLAP, and SQL-related aspects of
Java.

• Jim Melton, SQL’s Stored Procedures: A Complete Guide to SQL/PSM, San Francisco, CA:
Morgan Kaufmann, 1998.

Provides coverage of stored procedures as of the SQL/PSM-96 standard.

• Jim Melton and Andrew Eisenberg, Understanding SQL and Java Together: A Guide to
SQLJ, JDBC, and Related Technologies, San Francisco, CA: Morgan Kaufmann, 2000.

Provides basic coverage of the Java language as it relates to SQL, JDBC, and other
SQL-related aspects of Java.

The following book covers the ANSI SQL-92 standard:

• C.J. Date with Hugh Darwen, A Guide to the SQL Standard (4th ed.), Reading, MA:
Addison-Wesley, 1997.

Terminology Differences Between ANSI SQL
and Teradata

The ANSI SQL standard and Teradata occasionally use different terminology. The following
table lists the more important variances.

ANSI Teradata

Base table Table1

Binding style Not defined, but implicitly includes the following:

• Interactive SQL

• Embedded SQL

• ODBC

• CLIv2

Authorization ID User ID

Catalog Dictionary

CLI ODBC2

Direct SQL Interactive SQL

Domain Not defined

External routine function User-defined function (UDF)

Module Not defined

Appendix D: ANSI SQL Compliance
SQL Flagger

SQL Fundamentals 163

Note:

1) In the ANSI SQL standard, the term table has the following definitions:

• A base table

• A viewed table (view)

• A derived table

2) ANSI CLI is not exactly equivalent to ODBC, but the ANSI standard is heavily based on
the ODBC definition.

3) ANSI transactions are always implicit, beginning with an executable SQL statement and
ending with either a COMMIT or a ROLLBACK statement.

4) Teradata CLIv2 is an implementation-defined binding style.

5) The function of Teradata Database macros is similar to that of ANSI persistent stored
modules without having the loop and branch capabilities stored modules offer.

SQL Flagger

The SQL Flagger, when enabled, reports the use of non-standard SQL. The SQL Flagger always
permits statements flagged as non-entry-level or noncompliant ANSI SQL to execute. Its task
is not to enforce the standard, but rather to return a warning message to the requestor noting
the noncompliance.

The analysis includes syntax checking as well as some dictionary lookup, particularly the
implicit assignment and comparison of different data types (where ANSI requires use of the
CAST function to convert the types explicitly) as well as some semantic checks.

The SQL Flagger does not check or detect every condition for noncompliance; thus, a
statement that is not flagged does not necessarily mean it is compliant.

Persistent stored module Stored procedure

Schema User
Database

SQL database Relational database

Viewed table View

Not defined Explicit transaction3

Not defined CLIv24

Not defined Macro5

ANSI Teradata

Appendix D: ANSI SQL Compliance
SQL Flagger

164 SQL Fundamentals

Enabling and Disabling the SQL Flagger

Flagging is enabled by a client application before a session is logged on and generally is used
only to assist in checking for ANSI compliance in code that must be portable across multiple
vendor environments.

The SQL Flagger is disabled by default. You can enable or disable it using any of the following
procedures, depending on your application.

For this software … Use these commands or options … To turn the SQL Flagger …

BTEQ .[SET] SESSION SQLFLAG ENTRY to entry-level ANSI

.[SET] SESSION SQLFLAG NONE off

See Basic Teradata Query Reference for more detail on using BTEQ
commands.

Preprocessor2 SQLFLAGGER(ENTRY) to entry-level ANSI

SQLFLAGGER(NONE) off

See Teradata Preprocessor2 for Embedded SQL Programmer Guide for details
on setting Preprocessor options.

CLI set lang_conformance = ‘2’

set lang_conformance to ‘2’

to entry-level ANSI

set lang_conformance = ‘N’ off

See Teradata Call-Level Interface Version 2 Reference for Mainframe-Attached
Systems and Teradata Call-Level Interface Version 2 Reference for Network-
Attached Systems for details on setting the conformance field.

SQL Fundamentals 165

APPENDIX E

Performance Considerations

This Appendix provides suggestions for improving database query performance.

Using the 2 PC Protocol

Two-Phase Commit (2PC) is an IMS and CICS protocol for committing update transactions
processed by multiple systems that do not share the same locking and recovery mechanism.

For detailed information on 2PC, see Teradata Director Program Reference.

Performance Impact

Consider the following disadvantages of using the 2PC protocol:

• Performance may decrease because, at the point of synchronization, up to two additional
messages are exchanged between the coordinator and participant, in addition to the
normal messages that update the database

If your original Teradata Database SQL request took longer to complete than your other
requests, the performance impact due to the 2PC overhead will be less noticeable.

• • If Teradata Database restarts, and a session using the 2PC protocol ends up in an IN-
DOUBT state, Teradata Database holds data locks indefinitely until you resolve the IN-
DOUBT session. During this time, other work could be blocked if it accesses the same data
for which Teradata Database holds those locks.

To resolve this situation, perform the following steps:

• Use the COMMIT/ROLLBACK command to resolve manually the IN-DOUBT
sessions.

• Use the RELEASE LOCKS command.

• Use the RESTART command to restart your system.

2PC causes no system overhead when it is disabled.

Appendix E: Performance Considerations
Using the 2 PC Protocol

166 Security Administration

SQL Fundamentals 167

Glossary

2PC Two-Phase Commit

AMP Access Module Processor vproc

ANSI American National Standards Institute

BLOB Binary Large Object

BTEQ Basic Teradata Query facility

BYNET Banyan Network - High speed interconnect

CJK Chinese, Japanese, and Korean

CLIv2 Call Level Interface Version 2

CLOB Character Large Object

cs0, cs1, cs2, cs3 Four code sets (codeset 0, 1, 2, and 3) used in EUC encoding.

distinct type A UDT that is based on a single predefined data type

E2I External-to-Internal

EUC Extended UNIX Code

external routine UDF, UDM, or external stored procedure that is written using C,
C++, or Java

external stored procedure a stored procedure that is written using C, C++, or Java

FK Foreign Key

HI Hash Index

I2E Internal-to-External

JI Join Index

JIS Japanese Industrial Standards

LOB Large Object

LT/ST Large Table/Small Table (join)

NoPI tables Tables that are defined with no primary index (PI)

NPPI Nonpartitioned Primary Index

NUPI Nonunique Primary Index

Glossary

168 SQL Fundamentals

NUSI Nonunique Secondary Index

OLAP Online Analytical Processing

OLTP Online Transaction Processing

QCD Query Capture Database

PDE Parallel Database Extensions

PE Parsing Engine vproc

PI Primary Index

PK Primary Key

PPI Partitioned Primary Index

predefined type Teradata Database system type such as INTEGER and VARCHAR

RDBMS Relational Database Management System

SDF Specification for Data Formatting

stored procedure a stored procedure that is written using SQL statements

structured type A UDT that is a collection of one or more fields called attributes, each of
which is defined as a predefined data type or other UDT (which allows nesting)

UCS-2 Universal Coded Character Set containing 2 bytes

UDF User-Defined Function

UDM User-Defined Method

UDT User-Defined Type

UPI Unique Primary Index

USI Unique Secondary Index

vproc Virtual Process

SQL Fundamentals 169

Index

Numerics
2 PC protocol 165
2PC, request processing 68

A
Account priority 86
ACTIVITY_COUNT 89
Aggregates, null and 82
ALTER TABLE statement 47
ANSI DateTime, null and 79
ANSI SQL

nonreserved words 132
reserved words 132
Teradata compliance with 160
Teradata terminology and 162
terminology differences 162

Arithmetic function, nulls and 79
Arithmetic operators, nulls and 79
ASCII session character set 84

C
Call-Level Interface. See CLI
Character literals 33
Character names 19
Character set, request change of 86
Character sets, Teradata SQL lexicon 15
CLI

session management 87
Collation sequences (SQL) 85
Collecting statistics 109
Column alias 26
Columns

referencing, syntax for 26
Comments

bracketed 40
multibyte character sets and 41
simple 40

Comparison operators, null and 79
Constants. See Literals
Cylinder reads 108

D
Data Control Language. See DCL
Data Definition Language. See DDL
Data Manipulation Language. See DML

Data, standard form of, Teradata Database 25
Database

default, establishing for session 30
default, establishing permanent 29

Database maxima 144
Date literals 32
Date, change format of 86
DCL statements, defined 50
DDL statements, defined 46
Decimal literals 31
Delayed partition elimination 103
Delimiters 37
DML statements, defined 50
Dynamic partition elimination 103
Dynamic SQL

defined 73
in embedded SQL 74
in stored procedures 75

E
EBCDIC session character set 84
Embedded SQL

binding style 45
Event processing

SELECT AND CONSUME and 77
using queue tables 77

Executable SQL statements 63

F
Floating point literals 31
Full table scan 107

G
Graphic literals 33

H
HELP statements 61
Hexadecimal

get representation of name 24
Hexadecimal literals 31, 33

I
Index

renaming 49

Index

170 SQL Fundamentals

Integer literals 31
Interval literals 32
Iterated requests 71

J
Japanese character code notation, how to read 116
Japanese character names 19
JDBC 45

K
Keywords 13

NULL 34

L
Lexical separators 39
Limits

database 144
session 155
system 139

Literals
character 33
date 32
decimal 31
floating point 31
graphic 33
integer 31
interval 32
period 33
time 32
timestamp 32
Unicode character string 33

M
Maxima

database maxima 144
session maxima 155
system maxima 139

Multilevel PPI
partition elimination 104

Multistatement requests
performance 69
restrictions 69

Multistatement transactions 70

N
Name

calculate length of 21
fully qualified 26
get hexadecimal representation 24
multiword 16
object 19

resolving 28
translation and storage 23

Nonexecutable SQL statements 64
Nonreserved words

Teradata 123
Null

aggregates and 82
ANSI DateTime and 79
arithmetic functions and 79
arithmetic operators and 79
collation sequence 80
comparison operators and 79
excluding 80
operations on (SQL) 78
searching for 80
searching for, null and non-null 80

NULL keyword 34
Null statement 43

O
Object names 19
Object, name comparison 23
ODBC 45
Operators 35

P
Parallel step processing 70
Parameters, session 83
Partition elimination 103

delayed 103
dynamic 103
static 103

Period literals 33
PPI

partition elimination and 103
Precedence, SQL operators 36
Primary index

NULL and 81
Procedure, dropping 48
Procedure, renaming 49

Q
QCD tables

populating 60
Query banding

sessions and 46
transactions and 46

Query Capture Database. See QCD
Query processing

access types 106
all AMP request 100
defined 97

Index

SQL Fundamentals 171

full table scan 108
single AMP request 98
single AMP response 99

Query, defined 97

R
Recursive queries (SQL) 56
Recursive query, defined 56
Request processing

2PC 68
ANSI mode 67
Teradata mode 68

Request terminator 42
Requests

iterated 71
multistatement 64
single-statement 64

Requests. See also Blocked requests, Multistatement requests,
Request processing

Reserved keywords
TPT 126

Reserved words
Teradata 119
Teradata (future) 125
TPT reserved keywords 126

Restricted words 119

S
Secondary index

NULL and 81
Seed statements 57
Semicolon

null statement 43
request terminator 42
statement separator 39

Separator
lexical 39
statement 39

Session character set
ASCII 84
EBCDIC 84
UTF-16 84
UTF-8 84

Session collation 85
Session control 83
Session handling, session control 88
Session management

CLI 87
ODBC 87
requests 88
session reserve 88

Session parameters 83
SHOW statements 61

Specifications
database limits 144
database maxima 144
session limits 155
session maxima 155
system limits 139
system maxima 139

SQL
dynamic 73
dynamic, SELECT statement and 76
static 73

SQL binding styles
CLI 45
defined 45
direct 45
embedded 45
JDBC 45
ODBC 45
stored procedure 45

SQL error response (ANSI) 93
SQL Flagger

enabling and disabling 163
function 163
session control 84

SQL functional families, defined 45
SQL lexicon

character names 19
delimiters 37
Japanese character names 15, 19
keywords 13
lexical separators 39
object names 19
operators 35
request terminator 42
statement separator 39

SQL literals
Unicode delimited identifier 17

SQL requests
iterated 71
multistatement 64
single-statement 64

SQL responses 91
failure 94
success 92
warning 93

SQL return codes 88
SQL statements

DIAGNOSTIC 60
executable 63
invoking 63
name resolution 28
nonexecutable 64
partial names, use of 27
SELECT, dynamic SQL 76

Index

172 SQL Fundamentals

structure 11
subqueries 55

SQLCA 89
SQLCODE 88
SQLRestrictedWords function 128
SQLRestrictedWords view 128
SQLSTATE 88
Statement processing. See Query processing
Statement separator 39
Static partition elimination 103
Static SQL

defined 73
in contrast with dynamic SQL 74

Stored procedures
ACTIVITY_COUNT 89

Subqueries (SQL) 55
Subquery, defined 55
Syntax, how to read 111

T
Table

dropping 48
full table scan 107
renaming 49

Table structure, altering 47
Table, change structure of 47
Target level emulation 60
Teradata Database

session specifications 155
specifications 144
system specifications 139

Teradata DBS, session management 87
Teradata Index Wizard

SQL diagnostic statements 60
Teradata SQL, ANSI SQL and 160
Terminator, request 42
Time literals 32
Timestamp literals 32
TITLE phrase, column definition 18
TPT

Reserved keywords 126
Transaction mode, session control 84
Transaction modes (SQL) 84
Transactions

defined 66
explicit, defined 68
implicit, defined 68

Trigger
dropping 48
renaming 49

Two-phase commit. See 2PC

U
Unicode character string literals 33
Unicode delimited identifier 17, 19
UTF-16 session character set 84
UTF-8 session character set 84

V
View

dropping 48
renaming 49

Z
Zero-table SELECT statement 52

	Preface
	Purpose
	Audience
	Supported Software Releases and Operating Systems
	Prerequisites
	Changes to This Book
	Additional Information
	Teradata Database Optional Features

	Table of Contents
	Chapter 1 Basic SQL Syntax and Lexicon
	Structure of an SQL Statement
	SQL Lexicon Characters
	Keywords
	Expressions
	Names on Systems with Standard Language Support
	Name Validation on Systems with Japanese Language Support
	Object Name Translation and Storage
	Object Name Comparisons
	Finding the Internal Hexadecimal Representation for Object Names
	Standard Form for Data in Teradata Database
	Unqualified Object Names
	Default Database
	Literals
	NULL Keyword as a Literal
	Operators
	Functions
	Delimiters
	Separators
	Comments
	Terminators
	Null Statements

	Chapter 2 SQL Data Definition, Control, and Manipulation
	SQL Functional Families and Binding Styles
	Data Definition Language
	Altering Table Structure and Definition
	Dropping and Renaming Objects
	Data Control Language
	Data Manipulation Language
	Subqueries
	Recursive Queries
	Query and Workload Analysis Statements
	Help and Database Object Definition Tools

	Chapter 3 SQL Data Handling
	SQL Statement and SQL Requests
	Invoking SQL Statements
	SQL Requests
	Transactions
	Teradata Extensions to ANSI SQL
	Transaction Processing in ANSI Session Mode
	Transaction Processing in Teradata Session Mode
	Multistatement Requests
	Iterated Requests
	Dynamic and Static SQL
	Dynamic SQL in Stored Procedures
	Using SELECT With Dynamic SQL
	Event Processing Using Queue Tables
	Manipulating Nulls
	Session Parameters
	Session Management
	Return Codes
	Statement Responses
	Success Response
	Warning Response
	Error Response (ANSI Session Mode Only)
	Failure Response

	Chapter 4 Query Processing
	Queries and AMPs
	Table Access
	Full-Table Scans
	Collecting Statistics

	Appendix A Notation Conventions
	Syntax Diagram Conventions
	Character Shorthand Notation In This Book

	Appendix B Restricted Words
	Teradata Reserved Words
	Teradata Nonreserved Words
	Teradata Future Reserved Words
	Teradata Parallel Transporter Reserved Keywords
	SQLRestrictedWords Function
	ANSI SQL:2008 Reserved Words
	ANSI SQL:2008 Nonreserved Words

	Appendix C Teradata Database Limits
	System Limits
	Database Limits
	Session Limits

	Appendix D ANSI SQL Compliance
	ANSI SQL Standard
	Terminology Differences Between ANSI SQL and Teradata
	SQL Flagger

	Appendix E Performance Considerations
	Using the 2 PC Protocol

	Glossary
	Index

