
array — Efficient arrays of numeric values

This module defines an object type which can compactly represent an array of basic values: characters, inte‐

gers, floating-point numbers. Arrays are sequence types and behave very much like lists, except that the type

of objects stored in them is constrained. The type is specified at object creation time by using a type code,

which is a single character. The following type codes are defined:

Type code C Type Python Type Minimum size in bytes Notes

'b' signed char int 1

'B' unsigned char int 1

'u' wchar_t Unicode character 2 (1)

'w' Py_UCS4 Unicode character 4

'h' signed short int 2

'H' unsigned short int 2

'i' signed int int 2

'I' unsigned int int 2

'l' signed long int 4

'L' unsigned long int 4

'q' signed long long int 8

'Q' unsigned long long int 8

'f' float float 4

'd' double float 8

Notes:

1. It can be 16 bits or 32 bits depending on the platform.

Changed in version 3.9: array('u') now uses wchar_t as C type instead of deprecated

Py_UNICODE. This change doesn’t affect its behavior because Py_UNICODE is alias of wchar_t
since Python 3.3.

Deprecated since version 3.3, will be removed in version 3.16: Please migrate to 'w' typecode.

The actual representation of values is determined by the machine architecture (strictly speaking, by the C im‐

plementation). The actual size can be accessed through the array.itemsize attribute.



The module defines the following item:

array.typecodes
A string with all available type codes.

The module defines the following type:

class array.array(typecode[, initializer])
A new array whose items are restricted by typecode, and initialized from the optional initializer value,

which must be a bytes or bytearray object, a Unicode string, or iterable over elements of the appropri‐

ate type.

If given a bytes or bytearray object, the initializer is passed to the new array’s frombytes() method;

if given a Unicode string, the initializer is passed to the fromunicode() method; otherwise, the initializ‐

er’s iterator is passed to the extend() method to add initial items to the array.

Array objects support the ordinary sequence operations of indexing, slicing, concatenation, and multipli‐

cation. When using slice assignment, the assigned value must be an array object with the same type

code; in all other cases, TypeError is raised. Array objects also implement the buffer interface, and may

be used wherever bytes-like objects are supported.

Raises an auditing event array.__new__ with arguments typecode, initializer.

typecode
The typecode character used to create the array.

itemsize
The length in bytes of one array item in the internal representation.

append(x)
Append a new item with value x to the end of the array.

buffer_info()
Return a tuple (address, length) giving the current memory address and the length in elements

of the buffer used to hold array’s contents. The size of the memory buffer in bytes can be computed

as array.buffer_info()[1] * array.itemsize. This is occasionally useful when working with
low-level (and inherently unsafe) I/O interfaces that require memory addresses, such as certain

ioctl() operations. The returned numbers are valid as long as the array exists and no length-

changing operations are applied to it.

Note: When using array objects from code written in C or C++ (the only way to effectively make

use of this information), it makes more sense to use the buffer interface supported by array ob‐

jects. This method is maintained for backward compatibility and should be avoided in new code.

The buffer interface is documented in Buffer Protocol.

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/library/sys.html#auditing
https://docs.python.org/3/c-api/buffer.html#bufferobjects


byteswap()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in

size; for other types of values, RuntimeError is raised. It is useful when reading data from a file

written on a machine with a different byte order.

count(x)
Return the number of occurrences of x in the array.

extend(iterable)
Append items from iterable to the end of the array. If iterable is another array, it must have exactly

the same type code; if not, TypeError will be raised. If iterable is not an array, it must be iterable

and its elements must be the right type to be appended to the array.

frombytes(buffer)
Appends items from the bytes-like object, interpreting its content as an array of machine values (as

if it had been read from a file using the fromfile() method).

Added in version 3.2: fromstring() is renamed to frombytes() for clarity.

fromfile(f, n)
Read n items (as machine values) from the file object f and append them to the end of the array. If

less than n items are available, EOFError is raised, but the items that were available are still inserted

into the array.

fromlist(list)
Append items from the list. This is equivalent to for x in list: a.append(x) except that if there

is a type error, the array is unchanged.

fromunicode(s)
Extends this array with data from the given Unicode string. The array must have type code 'u' or

'w'; otherwise a ValueError is raised. Use array.frombytes(unicodestring.encode(enc))
to append Unicode data to an array of some other type.

index(x[, start[, stop]])
Return the smallest i such that i is the index of the first occurrence of x in the array. The optional ar‐

guments start and stop can be specified to search for x within a subsection of the array. Raise

ValueError if x is not found.

Changed in version 3.10: Added optional start and stop parameters.

insert(i, x)
Insert a new item with value x in the array before position i. Negative values are treated as being rel‐

ative to the end of the array.

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/glossary.html#term-file-object
https://docs.python.org/3/library/exceptions.html#EOFError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError


pop([i])
Removes the item with the index i from the array and returns it. The optional argument defaults to

-1, so that by default the last item is removed and returned.

remove(x)
Remove the first occurrence of x from the array.

clear()
Remove all elements from the array.

Added in version 3.13.

reverse()
Reverse the order of the items in the array.

tobytes()
Convert the array to an array of machine values and return the bytes representation (the same se‐

quence of bytes that would be written to a file by the tofile() method.)

Added in version 3.2: tostring() is renamed to tobytes() for clarity.

tofile(f)
Write all items (as machine values) to the file object f.

tolist()
Convert the array to an ordinary list with the same items.

tounicode()
Convert the array to a Unicode string. The array must have a type 'u' or 'w'; otherwise a
ValueError is raised. Use array.tobytes().decode(enc) to obtain a Unicode string from an ar‐

ray of some other type.

The string representation of array objects has the form array(typecode, initializer). The initializer is
omitted if the array is empty, otherwise it is a Unicode string if the typecode is 'u' or 'w', otherwise it is a
list of numbers. The string representation is guaranteed to be able to be converted back to an array with the

same type and value using eval(), so long as the array class has been imported using from array
import array. Variables inf and nan must also be defined if it contains corresponding floating-point val‐

ues. Examples:

See also:

array('l')
array('w', 'hello \u2641')
array('l', [1, 2, 3, 4, 5])
array('d', [1.0, 2.0, 3.14, -inf, nan])

https://docs.python.org/3/glossary.html#term-file-object
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#eval


Module struct
Packing and unpacking of heterogeneous binary data.

NumPy

The NumPy package defines another array type.

https://docs.python.org/3/library/struct.html#module-struct
https://numpy.org/

