
glob — Unix style pathname pattern expansion

Source code: Lib/glob.py

The glob module finds all the pathnames matching a specified pattern according to the rules used by the

Unix shell, although results are returned in arbitrary order. No tilde expansion is done, but *, ?, and character

ranges expressed with [] will be correctly matched. This is done by using the os.scandir() and

fnmatch.fnmatch() functions in concert, and not by actually invoking a subshell.

Note that files beginning with a dot (.) can only be matched by patterns that also start with a dot, unlike

fnmatch.fnmatch() or pathlib.Path.glob(). (For tilde and shell variable expansion, use

os.path.expanduser() and os.path.expandvars().)

For a literal match, wrap the meta-characters in brackets. For example, '[?]' matches the character '?'.

The glob module defines the following functions:

glob.glob(pathname, *, root_dir=None, dir_fd=None, recursive=False,
include_hidden=False)

Return a possibly empty list of path names that match pathname, which must be a string containing a

path specification. pathname can be either absolute (like /usr/src/Python-1.5/Makefile) or relative
(like ../../Tools/*/*.gif), and can contain shell-style wildcards. Broken symlinks are included in the

results (as in the shell). Whether or not the results are sorted depends on the file system. If a file that

satisfies conditions is removed or added during the call of this function, whether a path name for that file

will be included is unspecified.

If root_dir is not None, it should be a path-like object specifying the root directory for searching. It has

the same effect on glob() as changing the current directory before calling it. If pathname is relative, the

result will contain paths relative to root_dir.

This function can support paths relative to directory descriptors with the dir_fd parameter.

If recursive is true, the pattern “**” will match any files and zero or more directories, subdirectories and

symbolic links to directories. If the pattern is followed by an os.sep or os.altsep then files will not

match.

If include_hidden is true, “**” pattern will match hidden directories.

Raises an auditing event glob.glob with arguments pathname, recursive.

Raises an auditing event glob.glob/2 with arguments pathname, recursive, root_dir, dir_fd.

Note: Using the “**” pattern in large directory trees may consume an inordinate amount of time.

https://github.com/python/cpython/tree/3.13/Lib/glob.py
https://docs.python.org/3/library/os.html#os.scandir
https://docs.python.org/3/library/fnmatch.html#fnmatch.fnmatch
https://docs.python.org/3/library/fnmatch.html#fnmatch.fnmatch
https://docs.python.org/3/library/pathlib.html#pathlib.Path.glob
https://docs.python.org/3/library/os.path.html#os.path.expanduser
https://docs.python.org/3/library/os.path.html#os.path.expandvars
https://docs.python.org/3/glossary.html#term-path-like-object
https://docs.python.org/3/library/os.html#dir-fd
https://docs.python.org/3/library/os.html#os.sep
https://docs.python.org/3/library/os.html#os.altsep
https://docs.python.org/3/library/sys.html#auditing
https://docs.python.org/3/library/sys.html#auditing

Note: This function may return duplicate path names if pathname contains multiple “**” patterns
and recursive is true.

Changed in version 3.5: Support for recursive globs using “**”.

Changed in version 3.10: Added the root_dir and dir_fd parameters.

Changed in version 3.11: Added the include_hidden parameter.

glob.iglob(pathname, *, root_dir=None, dir_fd=None, recursive=False,
include_hidden=False)

Return an iterator which yields the same values as glob() without actually storing them all

simultaneously.

Raises an auditing event glob.glob with arguments pathname, recursive.

Raises an auditing event glob.glob/2 with arguments pathname, recursive, root_dir, dir_fd.

Note: This function may return duplicate path names if pathname contains multiple “**” patterns
and recursive is true.

Changed in version 3.5: Support for recursive globs using “**”.

Changed in version 3.10: Added the root_dir and dir_fd parameters.

Changed in version 3.11: Added the include_hidden parameter.

glob.escape(pathname)
Escape all special characters ('?', '*' and '['). This is useful if you want to match an arbitrary literal
string that may have special characters in it. Special characters in drive/UNC sharepoints are not es‐

caped, e.g. on Windows escape('//?/c:/Quo vadis?.txt') returns '//?/c:/Quo vadis[?].txt'.

Added in version 3.4.

glob.translate(pathname, *, recursive=False, include_hidden=False, seps=None)
Convert the given path specification to a regular expression for use with re.match(). The path specifi‐
cation can contain shell-style wildcards.

For example:

>>> import glob, re
>>>
>>> regex = glob.translate('**/*.txt', recursive=True, include_hidden=True)
>>> regex
'(?s:(?:.+/)?[^/]*\\.txt)\\Z'
>>> reobj = re.compile(regex)
>>> reobj.match('foo/bar/baz.txt')
<re.Match object; span=(0, 15), match='foo/bar/baz.txt'>

>>>

https://docs.python.org/3/glossary.html#term-iterator
https://docs.python.org/3/library/sys.html#auditing
https://docs.python.org/3/library/sys.html#auditing
https://docs.python.org/3/library/re.html#re.match

Path separators and segments are meaningful to this function, unlike fnmatch.translate(). By default
wildcards do not match path separators, and * pattern segments match precisely one path segment.

If recursive is true, the pattern segment “**” will match any number of path segments.

If include_hidden is true, wildcards can match path segments that start with a dot (.).

A sequence of path separators may be supplied to the seps argument. If not given, os.sep and altsep
(if available) are used.

See also: pathlib.PurePath.full_match() and pathlib.Path.glob() methods, which call this

function to implement pattern matching and globbing.

Added in version 3.13.

Examples

Consider a directory containing the following files: 1.gif, 2.txt, card.gif and a subdirectory sub which

contains only the file 3.txt. glob() will produce the following results. Notice how any leading components

of the path are preserved.

If the directory contains files starting with . they won’t be matched by default. For example, consider a direc‐

tory containing card.gif and .card.gif:

See also: The fnmatch module offers shell-style filename (not path) expansion.

See also: The pathlib module offers high-level path objects.

>>> import glob
>>> glob.glob('./[0-9].*')
['./1.gif', './2.txt']
>>> glob.glob('*.gif')
['1.gif', 'card.gif']
>>> glob.glob('?.gif')
['1.gif']
>>> glob.glob('**/*.txt', recursive=True)
['2.txt', 'sub/3.txt']
>>> glob.glob('./**/', recursive=True)
['./', './sub/']

>>>

>>> import glob
>>> glob.glob('*.gif')
['card.gif']
>>> glob.glob('.c*')
['.card.gif']

>>>

https://docs.python.org/3/library/fnmatch.html#fnmatch.translate
https://docs.python.org/3/library/os.html#os.sep
https://docs.python.org/3/library/os.html#os.altsep
https://docs.python.org/3/library/pathlib.html#pathlib.PurePath.full_match
https://docs.python.org/3/library/pathlib.html#pathlib.Path.glob
https://docs.python.org/3/library/fnmatch.html#module-fnmatch
https://docs.python.org/3/library/pathlib.html#module-pathlib

