
base64 — Base16, Base32, Base64, Base85 Data Encodings

Source code: Lib/base64.py

This module provides functions for encoding binary data to printable ASCII characters and decoding such en‐

codings back to binary data. It provides encoding and decoding functions for the encodings specified in RFC

4648, which defines the Base16, Base32, and Base64 algorithms, and for the de-facto standard Ascii85 and

Base85 encodings.

The RFC 4648 encodings are suitable for encoding binary data so that it can be safely sent by email, used as

parts of URLs, or included as part of an HTTP POST request. The encoding algorithm is not the same as the

uuencode program.

There are two interfaces provided by this module. The modern interface supports encoding bytes-like objects

to ASCII bytes, and decoding bytes-like objects or strings containing ASCII to bytes. Both base-64 alpha‐

bets defined in RFC 4648 (normal, and URL- and filesystem-safe) are supported.

The legacy interface does not support decoding from strings, but it does provide functions for encoding and

decoding to and from file objects. It only supports the Base64 standard alphabet, and it adds newlines every

76 characters as per RFC 2045. Note that if you are looking for RFC 2045 support you probably want to be

looking at the email package instead.

Changed in version 3.3: ASCII-only Unicode strings are now accepted by the decoding functions of the

modern interface.

Changed in version 3.4: Any bytes-like objects are now accepted by all encoding and decoding func‐

tions in this module. Ascii85/Base85 support added.

The modern interface provides:

base64.b64encode(s, altchars=None)
Encode the bytes-like object s using Base64 and return the encoded bytes.

Optional altchars must be a bytes-like object of length 2 which specifies an alternative alphabet for the +
and / characters. This allows an application to e.g. generate URL or filesystem safe Base64 strings. The

default is None, for which the standard Base64 alphabet is used.

May assert or raise a ValueError if the length of altchars is not 2. Raises a TypeError if altchars is not

a bytes-like object.

base64.b64decode(s, altchars=None, validate=False)
Decode the Base64 encoded bytes-like object or ASCII string s and return the decoded bytes.

https://github.com/python/cpython/tree/3.13/Lib/base64.py
https://datatracker.ietf.org/doc/html/rfc4648.html
https://datatracker.ietf.org/doc/html/rfc4648.html
https://datatracker.ietf.org/doc/html/rfc4648.html
https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/library/stdtypes.html#bytes
https://datatracker.ietf.org/doc/html/rfc4648.html
https://docs.python.org/3/glossary.html#term-file-object
https://datatracker.ietf.org/doc/html/rfc2045.html
https://datatracker.ietf.org/doc/html/rfc2045.html
https://docs.python.org/3/library/email.html#module-email
https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/library/stdtypes.html#bytes


Optional altchars must be a bytes-like object or ASCII string of length 2 which specifies the alternative al‐

phabet used instead of the + and / characters.

A binascii.Error exception is raised if s is incorrectly padded.

If validate is False (the default), characters that are neither in the normal base-64 alphabet nor the al‐

ternative alphabet are discarded prior to the padding check. If validate is True, these non-alphabet char‐
acters in the input result in a binascii.Error.

For more information about the strict base64 check, see binascii.a2b_base64()

May assert or raise a ValueError if the length of altchars is not 2.

base64.standard_b64encode(s)
Encode bytes-like object s using the standard Base64 alphabet and return the encoded bytes.

base64.standard_b64decode(s)
Decode bytes-like object or ASCII string s using the standard Base64 alphabet and return the decoded

bytes.

base64.urlsafe_b64encode(s)
Encode bytes-like object s using the URL- and filesystem-safe alphabet, which substitutes - instead of +
and _ instead of / in the standard Base64 alphabet, and return the encoded bytes. The result can still
contain =.

base64.urlsafe_b64decode(s)
Decode bytes-like object or ASCII string s using the URL- and filesystem-safe alphabet, which substi‐

tutes - instead of + and _ instead of / in the standard Base64 alphabet, and return the decoded bytes.

base64.b32encode(s)
Encode the bytes-like object s using Base32 and return the encoded bytes.

base64.b32decode(s, casefold=False, map01=None)
Decode the Base32 encoded bytes-like object or ASCII string s and return the decoded bytes.

Optional casefold is a flag specifying whether a lowercase alphabet is acceptable as input. For security

purposes, the default is False.

RFC 4648 allows for optional mapping of the digit 0 (zero) to the letter O (oh), and for optional mapping

of the digit 1 (one) to either the letter I (eye) or letter L (el). The optional argument map01 when not

None, specifies which letter the digit 1 should be mapped to (when map01 is not None, the digit 0 is al‐

ways mapped to the letter O). For security purposes the default is None, so that 0 and 1 are not allowed

in the input.

A binascii.Error is raised if s is incorrectly padded or if there are non-alphabet characters present in

the input.

base64.b32hexencode(s)

https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/library/binascii.html#binascii.Error
https://docs.python.org/3/library/binascii.html#binascii.Error
https://docs.python.org/3/library/binascii.html#binascii.a2b_base64
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/library/stdtypes.html#bytes
https://datatracker.ietf.org/doc/html/rfc4648.html
https://docs.python.org/3/library/binascii.html#binascii.Error


Similar to b32encode() but uses the Extended Hex Alphabet, as defined in RFC 4648.

Added in version 3.10.

base64.b32hexdecode(s, casefold=False)
Similar to b32decode() but uses the Extended Hex Alphabet, as defined in RFC 4648.

This version does not allow the digit 0 (zero) to the letter O (oh) and digit 1 (one) to either the letter I

(eye) or letter L (el) mappings, all these characters are included in the Extended Hex Alphabet and are

not interchangeable.

Added in version 3.10.

base64.b16encode(s)
Encode the bytes-like object s using Base16 and return the encoded bytes.

base64.b16decode(s, casefold=False)
Decode the Base16 encoded bytes-like object or ASCII string s and return the decoded bytes.

Optional casefold is a flag specifying whether a lowercase alphabet is acceptable as input. For security

purposes, the default is False.

A binascii.Error is raised if s is incorrectly padded or if there are non-alphabet characters present in

the input.

base64.a85encode(b, *, foldspaces=False, wrapcol=0, pad=False, adobe=False)
Encode the bytes-like object b using Ascii85 and return the encoded bytes.

foldspaces is an optional flag that uses the special short sequence ‘y’ instead of 4 consecutive spaces

(ASCII 0x20) as supported by ‘btoa’. This feature is not supported by the “standard” Ascii85 encoding.

wrapcol controls whether the output should have newline (b'\n') characters added to it. If this is non-

zero, each output line will be at most this many characters long, excluding the trailing newline.

pad controls whether the input is padded to a multiple of 4 before encoding. Note that the btoa imple‐

mentation always pads.

adobe controls whether the encoded byte sequence is framed with <~ and ~>, which is used by the

Adobe implementation.

Added in version 3.4.

base64.a85decode(b, *, foldspaces=False, adobe=False, ignorechars=b' \t\n\r\x0b')
Decode the Ascii85 encoded bytes-like object or ASCII string b and return the decoded bytes.

foldspaces is a flag that specifies whether the ‘y’ short sequence should be accepted as shorthand for 4

consecutive spaces (ASCII 0x20). This feature is not supported by the “standard” Ascii85 encoding.

adobe controls whether the input sequence is in Adobe Ascii85 format (i.e. is framed with <~ and ~>).

https://datatracker.ietf.org/doc/html/rfc4648.html
https://datatracker.ietf.org/doc/html/rfc4648.html
https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/binascii.html#binascii.Error
https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/library/stdtypes.html#bytes


ignorechars should be a bytes-like object or ASCII string containing characters to ignore from the input.

This should only contain whitespace characters, and by default contains all whitespace characters in

ASCII.

Added in version 3.4.

base64.b85encode(b, pad=False)
Encode the bytes-like object b using base85 (as used in e.g. git-style binary diffs) and return the encod‐

ed bytes.

If pad is true, the input is padded with b'\0' so its length is a multiple of 4 bytes before encoding.

Added in version 3.4.

base64.b85decode(b)
Decode the base85-encoded bytes-like object or ASCII string b and return the decoded bytes. Padding
is implicitly removed, if necessary.

Added in version 3.4.

base64.z85encode(s)
Encode the bytes-like object s using Z85 (as used in ZeroMQ) and return the encoded bytes. See Z85
specification for more information.

Added in version 3.13.

base64.z85decode(s)
Decode the Z85-encoded bytes-like object or ASCII string s and return the decoded bytes. See Z85
specification for more information.

Added in version 3.13.

The legacy interface:

base64.decode(input, output)
Decode the contents of the binary input file and write the resulting binary data to the output file. input

and output must be file objects. input will be read until input.readline() returns an empty bytes

object.

base64.decodebytes(s)
Decode the bytes-like object s, which must contain one or more lines of base64 encoded data, and re‐

turn the decoded bytes.

Added in version 3.1.

base64.encode(input, output)
Encode the contents of the binary input file and write the resulting base64 encoded data to the output

file. input and output must be file objects. input will be read until input.read() returns an empty bytes

https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/library/stdtypes.html#bytes
https://rfc.zeromq.org/spec/32/
https://rfc.zeromq.org/spec/32/
https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/library/stdtypes.html#bytes
https://rfc.zeromq.org/spec/32/
https://rfc.zeromq.org/spec/32/
https://docs.python.org/3/glossary.html#term-file-object
https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/glossary.html#term-file-object


object. encode() inserts a newline character (b'\n') after every 76 bytes of the output, as well as en‐

suring that the output always ends with a newline, as per RFC 2045 (MIME).

base64.encodebytes(s)
Encode the bytes-like object s, which can contain arbitrary binary data, and return bytes containing the

base64-encoded data, with newlines (b'\n') inserted after every 76 bytes of output, and ensuring that

there is a trailing newline, as per RFC 2045 (MIME).

Added in version 3.1.

An example usage of the module:

Security Considerations

A new security considerations section was added to RFC 4648 (section 12); it’s recommended to review the

security section for any code deployed to production.

See also:

Module binascii
Support module containing ASCII-to-binary and binary-to-ASCII conversions.

RFC 1521 - MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and
Describing the Format of Internet Message Bodies

Section 5.2, “Base64 Content-Transfer-Encoding,” provides the definition of the base64 encoding.

>>> import base64
>>> encoded = base64.b64encode(b'data to be encoded')
>>> encoded
b'ZGF0YSB0byBiZSBlbmNvZGVk'
>>> data = base64.b64decode(encoded)
>>> data
b'data to be encoded'

>>>

https://datatracker.ietf.org/doc/html/rfc2045.html
https://docs.python.org/3/glossary.html#term-bytes-like-object
https://docs.python.org/3/library/stdtypes.html#bytes
https://datatracker.ietf.org/doc/html/rfc2045.html
https://datatracker.ietf.org/doc/html/rfc4648.html
https://docs.python.org/3/library/binascii.html#module-binascii
https://datatracker.ietf.org/doc/html/rfc1521.html

