
copy — Shallow and deep copy operations

Source code: Lib/copy.py

Assignment statements in Python do not copy objects, they create bindings between a target and an object.

For collections that are mutable or contain mutable items, a copy is sometimes needed so one can change

one copy without changing the other. This module provides generic shallow and deep copy operations (ex‐

plained below).

Interface summary:

copy.copy(obj)
Return a shallow copy of obj.

copy.deepcopy(obj[, memo])
Return a deep copy of obj.

copy.replace(obj, /, **changes)
Creates a new object of the same type as obj, replacing fields with values from changes.

Added in version 3.13.

exception copy.Error
Raised for module specific errors.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain

other objects, like lists or class instances):

A shallow copy constructs a new compound object and then (to the extent possible) inserts references into

it to the objects found in the original.

A deep copy constructs a new compound object and then, recursively, inserts copies into it of the objects

found in the original.

Two problems often exist with deep copy operations that don’t exist with shallow copy operations:

Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may

cause a recursive loop.

Because deep copy copies everything it may copy too much, such as data which is intended to be shared

between copies.

The deepcopy() function avoids these problems by:

keeping a memo dictionary of objects already copied during the current copying pass; and

letting user-defined classes override the copying operation or the set of components copied.

https://github.com/python/cpython/tree/3.13/Lib/copy.py

This module does not copy types like module, method, stack trace, stack frame, file, socket, window, or any

similar types. It does “copy” functions and classes (shallow and deeply), by returning the original object un‐

changed; this is compatible with the way these are treated by the pickle module.

Shallow copies of dictionaries can be made using dict.copy(), and of lists by assigning a slice of the entire

list, for example, copied_list = original_list[:].

Classes can use the same interfaces to control copying that they use to control pickling. See the description

of module pickle for information on these methods. In fact, the copy module uses the registered pickle

functions from the copyreg module.

In order for a class to define its own copy implementation, it can define special methods __copy__() and

__deepcopy__().

object.__copy__(self)
Called to implement the shallow copy operation; no additional arguments are passed.

object.__deepcopy__(self, memo)
Called to implement the deep copy operation; it is passed one argument, the memo dictionary. If the

__deepcopy__ implementation needs to make a deep copy of a component, it should call the

deepcopy() function with the component as first argument and the memo dictionary as second argu‐

ment. The memo dictionary should be treated as an opaque object.

Function copy.replace() is more limited than copy() and deepcopy(), and only supports named tuples

created by namedtuple(), dataclasses, and other classes which define method __replace__().

object.__replace__(self, /, **changes)
This method should create a new object of the same type, replacing fields with values from changes.

See also:

Module pickle
Discussion of the special methods used to support object state retrieval and restoration.

https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/stdtypes.html#dict.copy
https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/copyreg.html#module-copyreg
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/dataclasses.html#module-dataclasses
https://docs.python.org/3/library/pickle.html#module-pickle

