
SonPy
1.7.5

Generated by Doxygen 1.8.16



i

1 Python interface to the SON64 library 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Package layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.4 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.5 Contact CED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Hierarchical Index 2

2.1 Class Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Class Index 3

3.1 Class List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4 File Index 3

4.1 File List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

5 Class Documentation 4

5.1 DigMark Struct Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5.1.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5.2 MarkerFilter Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5.2.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5.2.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5.3 RealMarker Struct Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.3.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.4 SonFile Class Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.4.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.4.2 Constructor & Destructor Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.4.3 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.5 TextMarker Struct Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.5.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5.2 Member Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.6 WaveMarker Struct Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.6.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 File Documentation 49

6.1 D:/hgwork/sonpy/doc.h File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 D:/hgwork/sonpy/pfilter.cpp File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3 D:/hgwork/sonpy/pfilter.h File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.3.2 Enumeration Type Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.4 D:/hgwork/sonpy/pfilterbind.cpp File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Generated by Doxygen



1 Python interface to the SON64 library 1

6.4.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.5 D:/hgwork/sonpy/pmarker.cpp File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.5.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.6 D:/hgwork/sonpy/pmarker.h File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.6.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.7 D:/hgwork/sonpy/pmarkerbind.cpp File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.7.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.8 D:/hgwork/sonpy/prealmark.h File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.8.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.9 D:/hgwork/sonpy/prealmarkbind.cpp File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.9.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.10 D:/hgwork/sonpy/psonfile.cpp File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.10.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.10.2 Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.11 D:/hgwork/sonpy/psonfile.h File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.11.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.11.2 Enumeration Type Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.11.3 Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.12 D:/hgwork/sonpy/psonfilebind.cpp File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.12.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.13 D:/hgwork/sonpy/ptextmark.h File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.13.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.14 D:/hgwork/sonpy/ptextmarkbind.cpp File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.14.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.15 D:/hgwork/sonpy/pwavemark.h File Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.15.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.16 D:/hgwork/sonpy/pwavemarkbind.cpp File Reference . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.16.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Index 65

1 Python interface to the SON64 library

1.1 Introduction

SonPy provides a way to access the Son64 library filing system from Python, and is created with PyBind11. If you
see references to "pyson", this is a hangover from a previous naming convention

1.1.1 Installation

SonPy is available for Python 3 only, for versions 3.7 through 3.9. The Linux distributable has been built for Debian,
and is expected to work on most other flavours, especially Ubuntu, which is derived from Debian.

Generated by Doxygen



2

The default installer is only supplied as a wheel, but if you cannot use these for some reason, contact CED directly
and we may be able to create a traditional source distributable. Note however that this doesn't actually contain any
source code, it is just not a wheel!

Ideally, have numpy installed first. Then, install the latest available version of SonPy from PyPI with: "pip install
sonpy". The example files also use matplotlib, which is not included by default but can be pip installed, and tkinter,
which should come already packaged with relevant versions of Python.

1.1.2 Package layout

Because of cross-platform requirements, the actual SonPy library is in a sub-package, called lib. Thus to use it, you
will need to "import sonpy.lib".

1.1.3 Testing

Once installed, you can test that SonPy is working by running the test scripts. These should be available with
"import sonpy.example_name", and can be found in the module install directory, under site-packages/sonpy. They
are not laid out for any particular use case, but are simply provided in order to show some of the objects, functions,
enumerations etc. in the SonPy module.

MakeFile.py will create a 32- and 64-bit Spike2 file and add some channels containing a short amount of arbitary
data.

ReadWave.py will prompt you to select an existing Spike2 file and provide a time in seconds. It will then attempt to
open the file and plot that number of seconds worth of data from the first WaveForm or RealWave channel it finds.
The import will fail if the amount of time you request includes any gaps (see the help for ReadWave()).

ReadFile.py will read all data in a file. You may find this useful to export entire files to Python for your own analysis,
but be careful when doing so. It is almost certainly best to export only the channels you need as and when you need
them, as exporting the whole file at once may take a large amount of resources.

1.1.4 Documentation

Detailed documentation is provided in the module installation directory, as well as the help that is available from
within Python by calling help(sonpy), help(DigMark) etc. Because sonpy has been compiled directly from C++ code
however, the separate documentation mirrors the layout of the source code, which is not Pythonic and is likely to
be confusing to those without some basic knowledge of C++. In addition, we have endeavoured to make sure that
all names have been maintained in the binding code, but we cannot guarantee that every name in the help pages
matches the internal Python help, which will always have the correct names.

1.1.5 Contact CED

For help setting up or using SonPy, please contact the CED software helpdesk (see http://ced.co.←↩

uk/support/introduction).

2 Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Generated by Doxygen

http://ced.co.uk/support/introduction
http://ced.co.uk/support/introduction


3 Class Index 3

DigMark 4

RealMarker 10

TextMarker 45

WaveMarker 47

MarkerFilter 5

SonFile 11

3 Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

DigMark
A simple digital marker 4

MarkerFilter
A class for filtering markers 5

RealMarker 10

SonFile
Wraps either a 64- or 32-bit File and passes function calls to it in a tidy way 11

TextMarker 45

WaveMarker 47

4 File Index

4.1 File List

Here is a list of all documented files with brief descriptions:

D:/hgwork/sonpy/doc.h
Documentation file containing no source code 49

D:/hgwork/sonpy/pfilter.cpp
Implements the MarkerFilter class 49

D:/hgwork/sonpy/pfilter.h
Declares the MarkerFilter class 50

D:/hgwork/sonpy/pfilterbind.cpp
Binds the MarkerFilter class 52

D:/hgwork/sonpy/pmarker.cpp
Implements DigMark 52

Generated by Doxygen



4

D:/hgwork/sonpy/pmarker.h
Declares the DigMark struct 53

D:/hgwork/sonpy/pmarkerbind.cpp
Binds the DigMark struct 53

D:/hgwork/sonpy/prealmark.h
Declares the RealMarker struct 54

D:/hgwork/sonpy/prealmarkbind.cpp
Binds the RealMarker struct 55

D:/hgwork/sonpy/psonfile.cpp
Implements the SonFile class 55

D:/hgwork/sonpy/psonfile.h
Declares the SonFile class 56

D:/hgwork/sonpy/psonfilebind.cpp
Binds the SonFile class 61

D:/hgwork/sonpy/ptextmark.h
Declares the TextMarker struct 62

D:/hgwork/sonpy/ptextmarkbind.cpp
Binds the TextMarker struct 62

D:/hgwork/sonpy/pwavemark.h
Declares the WaveMarker struct 63

D:/hgwork/sonpy/pwavemarkbind.cpp
Binds the WaveMarker struct 64

5 Class Documentation

5.1 DigMark Struct Reference

A simple digital marker.

#include <pmarker.h>

Inheritance diagram for DigMark:

DigMark

RealMarker TextMarker WaveMarker

Generated by Doxygen



5.2 MarkerFilter Class Reference 5

5.1.1 Detailed Description

A simple digital marker.

A marker consists of 5 pieces of information: A 64-bit time stamp or tick value, which is measured in units of the file
timebase. Four unsigned 8-bit marker codes, with which the markers can be filtered.

The documentation for this struct was generated from the following file:

• D:/hgwork/sonpy/pmarker.h

5.2 MarkerFilter Class Reference

A class for filtering markers.

#include <pfilter.h>

Public Member Functions

• MarkerFilter ()

Default constructor that makes a filter with a small repr output.

• bool Filter (const DigMark &Marker) const

See whether a Marker passes this filter.

• void SetMode (FilterMode eMode)

Set the filter mode.

• FilterMode GetMode () const

Query the current FilterMode.

• int SetItem (int iLayer, int iItem, FilterSet eSet)

Tell the filter which marker codes to accept.

• int SetLayer (int iLayer, std::array< FilterSet, 256 > eSet)

Sets all of the items in a layer.

• bool GetItem (int iLayer, int iItem) const

Gets an item in a specified layer.

• std::vector< bool > GetLayer (int iLayer) const

Gets either all of the items in a sepcified layer or the item in each active layer.

• FilterState GetState (int iLayer) const

Check to see what items the filter will pass.

• void SetColumn (int nCol)

Set the column to return when reading extended marker data.

• int GetColumn () const

Get which column is used when returning data.

• bool operator== (const MarkerFilter &rhs) const

Test if two filters are the same.

Generated by Doxygen



6

5.2.1 Detailed Description

A class for filtering markers.

Objects of this class are used to filter Marker-derived channels to determine if a particular data item is wanted or
not. This class is also used to choose which trace AdcMark channels with multiple traces return when read as Adc
data.

A new filter will pass all markers and traces by default.

A filter consists of several items, the accessible ones of which are: four bit mask layers, the filter mode and the trace
column.

The mask consists of 4 layers, corresponding to the 4 possible marker codes. Each layer containing 256 items,
corresponding to the possible values of each marker code. Each item can be 'Set' or 'Clear'. When the filter is
applied to a marker, the Nth filter layer is searched to see if the Nth marker code is 'Set' in the layer. If it is, the filter
has passed the marker.

There is also a filter mode, which can be 'First' or 'All' from the FilterMode enumeration. If set to 'First', only the first
code must pass the first filter layer, whereas if set to 'All', all four codes much pass each respective layer.

Finally, there is the trace column. This is only relevant if you are reading WaveMark data as a waveform with Read←↩

Wave(). It is used to determine which column of data, or 'trace' is returned if there are multiple columns present. By
default, it is unset (or rather, set to -1), which is the same as being set to zero.

There are three enumerations associated with this class, called FilterMode, FilterState and FilterSet. Each is ex-
plained by the relevant member functions. See GetMode(), SetMode(), SetItem(), GetItems() and GetState().

5.2.2 Member Function Documentation

5.2.2.1 Filter() bool MarkerFilter::Filter (

const DigMark & Marker ) const

See whether a Marker passes this filter.

In 'All' mode, each marker code must have the corresponding item set in the marker mask. In 'First' mode, only
mask 0 is used. One of the 4 marker codes MUST be present in mask 0 with the exception that code 00 is only
tested for the first marker code.

Parameters

Marker A DigMark object to attemp to pass through the filter

Returns

Whether the marker passes the filter

Generated by Doxygen



5.2 MarkerFilter Class Reference 7

5.2.2.2 GetColumn() int MarkerFilter::GetColumn ( ) const

Get which column is used when returning data.

Returns

The column of data that will be returned (zero-indexed). -1 Means you will get all traces.

5.2.2.3 GetItem() bool MarkerFilter::GetItem (

int iLayer,

int iItem ) const

Gets an item in a specified layer.

Parameters

iLayer The index of the layer to look in

iItem The item in the layer to look at

Returns

True if the item is set, False if not

5.2.2.4 GetLayer() std::vector< bool > MarkerFilter::GetLayer (

int iLayer ) const

Gets either all of the items in a sepcified layer or the item in each active layer.

Parameters

iLayer The index of the layer to query

Returns

A list of the relevant items, or containing error codes.

5.2.2.5 GetMode() FilterMode MarkerFilter::GetMode ( ) const

Query the current FilterMode.

Returns

A member of FilterMode, 'All' or 'First'

Generated by Doxygen



8

5.2.2.6 GetState() FilterState MarkerFilter::GetState (

int iLayer ) const

Check to see what items the filter will pass.

This is easy if the State is explicitly set, but if it is unset an internal calculation is performed to see what effect the
filter has at the current time.

Parameters

iLayer The layer to test, ignoring FilterMode. If -1, tests all layers using FilterMode instead.

Returns

The effect of applying this filter as a FilterState. One of All, None or Some.

5.2.2.7 operator==() bool MarkerFilter::operator== (

const MarkerFilter & rhs ) const

Test if two filters are the same.

Checks the number of layers, filter mode and the masks, but not the filter state.

Parameters

rhs The filter to compare the current against

Returns

If the two filters are equivalent

5.2.2.8 SetColumn() void MarkerFilter::SetColumn (

int nCol )

Set the column to return when reading extended marker data.

For WaveMark channels, this means the number of the trace that is used.

Parameters

nCol The column number to use (zero-indexed). Setting a non-existent column will default to using 0. Use -1
to view all at once.

5.2.2.9 SetItem() int MarkerFilter::SetItem (

Generated by Doxygen



5.2 MarkerFilter Class Reference 9

int iLayer,

int iItem,

FilterSet eSet )

Tell the filter which marker codes to accept.

Items in each mask layer are either Set or Clear. You can also invert the current state.

Parameters

iLayer The layer number, 0 to 3, or -1 for all layers

iItem The item number in the layer, 0 to 256, or -1 for all items

eSet A member of FilterSet: 'Clear', 'Invert' or 'Set'

Returns

An error code, zero for success

5.2.2.10 SetLayer() int MarkerFilter::SetLayer (

int iLayer,

std::array< FilterSet, 256 > eSet )

Sets all of the items in a layer.

Parameters

iLayer The layer to set (0-3)

eSet An array of FilterSet objects exactly 256 items long

Returns

An error code, zero for success

5.2.2.11 SetMode() void MarkerFilter::SetMode (

FilterMode eMode )

Set the filter mode.

Tell the filter whether markers need to pass all of the mask layers or only the first one.

Parameters

eMode A member of FilterMode, 'All' or 'First'

The documentation for this class was generated from the following files:

Generated by Doxygen



10

• D:/hgwork/sonpy/pfilter.h
• D:/hgwork/sonpy/pfilter.cpp

5.3 RealMarker Struct Reference

#include <prealmark.h>

Inheritance diagram for RealMarker:

RealMarker

DigMark

Collaboration diagram for RealMarker:

RealMarker

DigMark

Public Member Functions

• RealMarker (size_t nSize, int64_t nTick=0, uint8_t nCode1=0, uint8_t nCode2=0, uint8_t nCode3=0, uint8_t
nCode4=0)

Create a RealMarker with empty data of a known length and the marker codes and tick value.
• RealMarker (size_t nSize, const DigMark &mark)

Create a RealMarker with empty data of a known length and an existing DigMark.
• RealMarker (std::vector< float > &vData, int64_t nTick=0, uint8_t nCode1=0, uint8_t nCode2=0, uint8_t

nCode3=0, uint8_t nCode4=0)

Create a RealMarker from existing data and the marker codes and tick value.
• RealMarker (std::vector< float > &vData, const DigMark &mark)

Create a RealMarker from existing data and an existing DigMark.
• size_t Size () const

Retrieve the length of the attached data.
• DigMark GetMark ()

Retrieve the underlying marker and codes.

Generated by Doxygen



5.4 SonFile Class Reference 11

Public Attributes

• std::vector< float > Data

The encapsulated data.

5.3.1 Detailed Description

The size of the array is determined on construction, and should correspond to the nRows value of a RealMark
channel that you wish to submit this data to.

The access operator in Python is overloaded, so you can call mark[i] on a RealMarker to get or set the ith data
value.

The documentation for this struct was generated from the following file:

• D:/hgwork/sonpy/prealmark.h

5.4 SonFile Class Reference

Wraps either a 64- or 32-bit File and passes function calls to it in a tidy way.

#include <psonfile.h>

Public Member Functions

• SonFile (std::string &sName, bool bReadOnly, OpenFlags flags=OpenFlags::None)

Constructor for opening an existing file.

• SonFile (std::string &sName, uint16_t nChans=32, uint32_t nArea=0)

Constructor for creating a new file.

• int GetOpenError () const noexcept

Return any error code from an attempt to open or create a file.

• bool isFile64 () const noexcept

Is the file 64-bit?

• bool isFile32 () const noexcept

Is the file 32-bit?

• std::string GetName () const noexcept

Retrieve the name of file corrently owned by this object.

• bool CanWrite () const

Is the file read only?;.

• int EmptyFile ()

Mark the file as empty, ready to start sampling again.

• int GetFreeChannel () const

Get the number of the lowest channel that is Off.

• int Commit (CommitFlags flags=CommitFlags::None)

Makes sure all data in memory is passed to the disk system.

• bool IsModified () const

Is there unwritten data, header or channel data, in memory?

• int FlushSysBuffers ()

Tell the disk system to move data in disk buffers to the disk.

Generated by Doxygen



12

• double GetTimeBase () const

Retrieves the current file timebase.

• void SetTimeBase (double dSecPerTick)

Set a new timebase.

• template<typename T >

py::array_t< T > GetExtraData (uint32_t nItems, uint32_t nOffset)

Retrieve data from the user defined area.

• template<typename T >

int SetExtraData (const std::vector< T > &aData, uint32_t nOffset)

Save the binary representation of an array in the user defined area.

• uint32_t GetExtraDataSize () const

Retrieves the size of the user defined extra data region.

• std::string GetFileComment (int n)

Retrieves a file comment.

• int SetFileComment (int n, const std::string &sComment)

Sets a file comment.

• int MaxChannels () const

How many channels can this file contain?

• std::string GetAppID () const

Retrieves the AppID.

• int SetAppID (const std::string &sData)

Sets the AppID.

• std::vector< uint16_t > GetTimeDate ()

Gets the saved TimeDate.

• int SetTimeDate (py::list lData)

Sets the time and date of the file.

• int GetVersion () const

Get the file version.

• uint64_t FileSize () const

Get the offset to the next block the file would allocate.

• uint64_t ChannelBytes (uint16_t chan) const

Get an estimate of how many bytes are stored for a channel.

• int64_t MaxTime (bool bReadChans=true) const

Get the maximum time of any item in the file.

• void ExtendMaxTime (int64_t t)

Extend or cancel the max time in a file.

• std::string GetChannelComment (uint16_t chan)

Retrieves the channel comment if present.

• int SetChannelComment (uint16_t chan, std::string sComment)

Save a comment for an individual channel.

• std::string GetChannelTitle (uint16_t chan)

Retrieves the channel title.

• int SetChannelTitle (uint16_t chan, std::string sTitle)

Set a channel title.

• std::string GetChannelUnits (uint16_t chan)

Retrieves the channel units.

• int SetChannelUnits (uint16_t chan, std::string sUnits)

Set the channel units.

• double GetIdealRate (uint16_t chan) const

Get the ideal rate of a channel.

• int SetIdealRate (uint16_t chan, double dRate)

Generated by Doxygen



5.4 SonFile Class Reference 13

Set a new target channel rate.

• double GetChannelScale (uint16_t chan) const

Retrieves the channel scale.

• int SetChannelScale (uint16_t chan, double dScale)

Set the Y scale for a channel.

• double GetChannelOffset (uint16_t chan) const

Retrieves the channel offset.

• int SetChannelOffset (uint16_t chan, double dOffset)

Set the Y offset for a channel.

• std::pair< double, double > GetChannelYRange (uint16_t chan)

Retrieve suggested channel limits on the Y axis.

• int SetChannelYRange (uint16_t chan, double dLow, double dHigh)

Set the suggested Y range for a channel.

• DataType ChannelType (uint16_t chan) const

What kind of channel is this?

• int ItemSize (uint16_t chan) const

Get the size of the repeating item held by this channel, in bytes.

• int64_t ChannelDivide (uint16_t chan) const

Get the waveform sample interval in clock ticks.

• int64_t ChannelMaxTime (uint16_t chan) const

Get the time of the last item in the channel.

• int64_t PreviousNTime (uint16_t chan, int64_t trStart, int64_t trEnd=0, uint32_t n=1, bool bAsWave=false,
const MarkerFilter &Filter=DefFilter()) const

Search backwards to find the Nth point before a given time.

• int PhysicalChannel (uint16_t chan) const

Get the physical channel number associated with a channel.

• int ChannelDelete (uint16_t chan)

Delete a channel from the file.

• int ChannelUndelete (uint16_t chan, bool bRestore=false)

Undelete a channel.

• void Save (int chan, int64_t t, bool bSave)

Toggle the save state for a buffered channel.

• void SaveRange (int chan, int64_t tFrom, int64_t tUpto)

Set a time range to be saved.

• bool IsSaving (uint16_t chan, int64_t tAt) const

Report the save state at a certain time.

• std::vector< int64_t > NoSaveList (uint16_t chan, size_t nMax, int64_t tFrom=-1, int64_t tUpto=TSTIME64←↩

_MAX)

Get a list of times where saving is turned off and on.

• double SetBuffering (int chan, size_t nBytes, double dSeconds=0.) const

Set the buffering used with one or all channels.

• int LatestTime (int chan, int64_t t)

Tell circular buffering the latest time we have reached during data sampling.

• int SetEventChannel (uint16_t chan, double dRate, DataType evtKind=DataType::EventFall, int iPhysChan=-
1)

Designate a channel to hold event data.

• int SetInitialLevel (uint16_t chan, bool bLevel)

Set the initial level of a DataType::EventBoth channel.

• int WriteEvents (uint16_t chan, std::vector< int64_t > aData)

Writes events to an event channel.

Generated by Doxygen



14

• std::vector< int64_t > ReadEvents (uint16_t chan, int nMax, int64_t tFrom, int64_t tUpto=TSTIME64_MAX,
const MarkerFilter &Filter=DefFilter())

Reads events from the specified channel.
• int SetMarkerChannel (uint16_t chan, double dRate, int iPhysChan=-1)

Designate a channel to hold markers.
• int WriteMarkers (uint16_t chan, const std::vector< DigMark > &aData)

Write a series of simple markers.
• std::vector< DigMark > ReadMarkers (uint16_t chan, int nMax, int64_t tFrom, int64_t tUpto, const

MarkerFilter &Filter=DefFilter())

Reads markers from marker or extended marker channels.
• int EditMarker (uint16_t chan, DigMark &Mark)

For editing marker codes in any Marker based channel.
• int SetWaveMarkChannel (uint16_t chan, double dRate, size_t nRows, size_t nCols, int iPhysChan=-1,

uint64_t tSubDvd=0, int nPre=0)

Designate a channel to hold WaveMark data.
• int WriteWaveMarks (uint16_t chan, const std::vector< WaveMarker > &aData)

Write WaveMarks to the file.
• std::vector< WaveMarker > ReadWaveMarks (uint16_t chan, int nMax, int64_t tFrom, int64_t tUpto=TSTI←↩

ME64_MAX, const MarkerFilter &Filter=DefFilter())

Read WaveMark data.
• int EditWaveMark (uint16_t chan, WaveMarker &Mark)

Edit a WaveMark.
• int SetRealMarkChannel (uint16_t chan, double dRate, size_t nRows, int iPhysChan=-1)

Designate a channel to hold RealMark data.
• int WriteRealMarks (uint16_t chan, const std::vector< RealMarker > &aData)

Write RealMarks to the file.
• std::vector< RealMarker > ReadRealMarks (uint16_t chan, int nMax, int64_t tFrom, int64_t tUpto=TSTIM←↩

E64_MAX, const MarkerFilter &Filter=DefFilter())

Read RealMark data.
• int EditRealMark (uint16_t chan, RealMarker &Mark)

Edit a RealMark.
• int SetTextMarkChannel (uint16_t chan, double dRate, size_t nMax, int iPhysChan=-1)

Designate a channel to hold TextMark data.
• int WriteTextMarks (uint16_t chan, const std::vector< TextMarker > &aData)

Write TextMarks to the file.
• std::vector< TextMarker > ReadTextMarks (uint16_t chan, int nMax, int64_t tFrom, int64_t tUpto=TSTIM←↩

E64_MAX, const MarkerFilter &Filter=DefFilter())

Read TextMark data.
• int EditTextMark (uint16_t chan, TextMarker &Mark)

Edit a TextMark.
• std::vector< size_t > GetExMarkInfo (uint16_t chan)

Get information on extended marker data.
• int SetWaveChannel (uint16_t chan, int64_t tDivide, DataType eKind, double dRate=0., int iPhysChan=-1)

Designate a channel to hold Wavemark or RealWave data.
• int64_t WriteInts (uint16_t chan, std::vector< short > aData, int64_t tFrom)

Write int data to an Adc channel.
• int64_t WriteFloats (uint16_t chan, std::vector< float > aData, int64_t tFrom)

Write float data to a RealWave channel.
• template<typename T >

py::array_t< T > ReadWave (uint16_t chan, int nMax, int64_t tFrom, int64_t tUpto, const MarkerFilter &Filter)

Reads a wave and returns it in an array of ints or floats.
• int64_t FirstTime (uint16_t chan, int64_t tFrom, int64_t tUpto, const MarkerFilter &Filter=DefFilter())

Search forward to find the point after a given time.

Generated by Doxygen



5.4 SonFile Class Reference 15

5.4.1 Detailed Description

Wraps either a 64- or 32-bit File and passes function calls to it in a tidy way.

This class is meant to obey RAII, in that when you create an instance of one you must either create or open a file,
and when you delete one the resources are closed and saved. The only time this is not the case is when there is a
construction error, and you will be left with an empty SonFile owning no resources, just an error code.

There are several cases where the underlying functions require pointers to be passed. To avoid this in Python, we
either ask for lists/arrays and use the data in them, or return a newly created array or list. As the internal functions
in C++ do not benefit from the useful Python feature of have list 'views', the more times we have to manipulate data
to get it into a list the more copying is involved. Reading extended markers are particularly bad cases, as we return
a list of two arrays.

In some cases, most notably ReadWave(), we ask for an array by reference and append/edit it as neccessary.
This has two advantages: firstly, we can return an error code (none of this code throws any custom exceptions)
separately to the data we return, but more useful is that we can perform basic type checking on the array given, and
proceeed accordingly (there are two copies of WriteWave() in the native library, one each for float and short data).

The family of read functions are hierarchical, in that a function of 'lower' complexity can be successfully called on
channels of 'higher' complexity. For instance, ReadEvents() can be called on marker or extended marker channels,
but ReadMarkers() cannot be called on event channels.

There are two constructors, one for opening files which requires at least two explicit parameters and another for file
creation, which only explicitely requires a file name.

5.4.2 Constructor & Destructor Documentation

5.4.2.1 SonFile() [1/2] SonFile::SonFile (

std::string & sName,

bool bReadOnly,

OpenFlags flags = OpenFlags::None )

Constructor for opening an existing file.

Whether we try and open the file as 32- or 64-bit depends on the file extension. ".smrx" gets opened as 64-bit,
andyhting else is treated as 32-bit. If we succeed in opening the file, m_iOpenErr is set to S64_OK, else an
appropriate error.

Parameters

sName The path of the existing file to open

bReadOnly If the file will be opened in read only mode

flags One of the OpenFlags enum

5.4.2.2 SonFile() [2/2] SonFile::SonFile (

std::string & sName,

Generated by Doxygen



16

uint16_t nChans = 32,

uint32_t nArea = 0 )

Constructor for creating a new file.

Creates a new SON file. If we succeed, m_iOpenErr is set to S64_OK, else an appropriate error.

In the case that the file is 64-bit, some preparation is handled automatically, such as initiallising buffering for channel
writing, and setting a default timebase of 1 microsecond.

Using wExtra, you can set aside an area for entirely arbitary purposes. Currently, we make no use of this, so Spike2
will completely ignore any data in this section. This area is limited to 65536 bytes.

Parameters

sName The name of the new file. We use this to determine architecture. If the name ends with ".smr" we
create a 32-bit file, else it is 64-bit.

nChans The desired number of channels (minimum 32)

nArea The desired extra space in the file header, in bytes.

5.4.3 Member Function Documentation

5.4.3.1 ChannelBytes() uint64_t SonFile::ChannelBytes (

uint16_t chan ) const

Get an estimate of how many bytes are stored for a channel.

This is really only to say if there is any data stored or not for the channel and maybe to allow an estimate of the
space/time needed for an operation on the channel. This will be reasonably accurate as long as all buffers written
are full except the last. If you are sampling and have circular buffers, uncommitted data in the circular buffers is
included.

To get an upper estimate of the number of data items held by the channel, divide the returned size by the channel
ItemSize().

Parameters

chan The channel to query

Returns

Bytes on or commited to the disk for the channel

5.4.3.2 ChannelDelete() int SonFile::ChannelDelete (

uint16_t chan )

Generated by Doxygen



5.4 SonFile Class Reference 17

Delete a channel from the file.

In a 64-bit file, channels are deleted in such a way that as long as you do not reuse the channel, it is possible to
undelete them. To attempt this, see ChannelUndelete().

Generated by Doxygen



18

Parameters

chan The channel to delete

Returns

Error code, zero for success

5.4.3.3 ChannelDivide() int64_t SonFile::ChannelDivide (

uint16_t chan ) const

Get the waveform sample interval in clock ticks.

This is used by channels that sample equal interval waveforms and is the number of file clocks ticks per sample.

Parameters

chan The channel to query

Returns

The sample interval in clock ticks, or 1 if the channel doesn't exist

5.4.3.4 ChannelMaxTime() int64_t SonFile::ChannelMaxTime (

uint16_t chan ) const

Get the time of the last item in the channel.

This works for both channels read from disk and channels that are being written.

Parameters

chan The channel to query

Returns

The time of the last item in the channel, -1 if there is no data, or an error code.

5.4.3.5 ChannelType() DataType SonFile::ChannelType (

uint16_t chan ) const

What kind of channel is this?

Generated by Doxygen



5.4 SonFile Class Reference 19

Returns

The channel type, which can be Off. See the DataType enumeration.

5.4.3.6 ChannelUndelete() int SonFile::ChannelUndelete (

uint16_t chan,

bool bRestore = false )

Undelete a channel.

To see if you can undelete a channel, call this first with bRestore as false (the default). If the result is not ChanOff,
you can attempt to undelete the channel by calling again with bRestore as true.

Parameters

chan The channel to undelete
bRestore If false, requests the type of the the deleted channel. If true, attempts to undelete it.

Returns

If bRestore is false, the channel kind. Otherwise, an error code, zero for success.

5.4.3.7 Commit() int SonFile::Commit (

CommitFlags flags = CommitFlags::None )

Makes sure all data in memory is passed to the disk system.

Write any parts of the file that need writing. Note that this just means that the data has made it as far as the
operating system buffers. The default flags value of 0 will make sure that all dirty data (in the file header or channel
data) is written to the operating system. The operating system will likely have its own disk buffers and it is entirely
up to the operating system to decide when data is physically transferred to the disk. Even when data is sent to the
disk, this does not guarantee permanent storage as disks have their own buffering systems which allow them to
reorder writes into the most efficient (least head moving) order.

Be very careful and make sure you understand how the flags parameter works if you wish to depart from the default
behaviour.

Parameters

flags one of the CommitFlags items

Returns

Error code, zero for success

Generated by Doxygen



20

5.4.3.8 EditMarker() int SonFile::EditMarker (

uint16_t chan,

DigMark & Marker )

For editing marker codes in any Marker based channel.

Does not currently allow editing the time, only the following codes.

Parameters

chan The channel to edit in
Marker A DigMark object, which replaces an existing marker in this channel. Marker must have the same tick

value as the marker to be replaced.

Returns

Error code, zero for success

5.4.3.9 EditRealMark() int SonFile::EditRealMark (

uint16_t chan,

RealMarker & Mark )

Edit a RealMark.

Parameters

chan The channel number
Mark A RealMarker which replaces an existing one in this channel. It must have the same tick value and

length of data as the marker to be replaced.

Returns

Error code, zero for success

5.4.3.10 EditTextMark() int SonFile::EditTextMark (

uint16_t chan,

TextMarker & Mark )

Edit a TextMark.

Parameters

chan The channel number
Mark A TextMarker which replaces an existing one in this channel. The length of the string must not exceed the

maximum allowed for this channel. See GetExMarkInfo().

Generated by Doxygen



5.4 SonFile Class Reference 21

Returns

Error code, zero for success

5.4.3.11 EditWaveMark() int SonFile::EditWaveMark (

uint16_t chan,

WaveMarker & Mark )

Edit a WaveMark.

Parameters

chan The channel number
Mark A WaveMarker which replaces an existing one in this channel. It must have the same tick value and

length of data as the marker to be replaced.

Returns

Error code, zero for success

5.4.3.12 EmptyFile() int SonFile::EmptyFile ( )

Mark the file as empty, ready to start sampling again.

Sets the channel pointers back to time = 0, but doesn't change the settings or overwrite any data, so we can be
quick.

Returns

Error code, zero for success

5.4.3.13 ExtendMaxTime() void SonFile::ExtendMaxTime (

int64_t t )

Extend or cancel the max time in a file.

MaxTime() can find the maximum time in the file by scanning all the channels. However, each time we write data
we update the file head to hold the last written time. This can be used to make a file appear longer than it is, so we
may wish to reset the last time.

Parameters

t Set the MaxTime to this. -1 effectively removes MaxTime, and a value larger than MaxTime(false) extends it.

Generated by Doxygen



22

5.4.3.14 FileSize() uint64_t SonFile::FileSize ( ) const

Get the offset to the next block the file would allocate.

When a file is opened for reading, the physical file size should be the same or a small amount less than this. If it is
more, the file has extra information written on the end and needs fixing. It was probably interrupted during writing.
This does not included buffered data that is not committed to disk during writing.

Returns

The (estimated) file size in bytes, usually a multiple of 64 kB.

5.4.3.15 FirstTime() int64_t SonFile::FirstTime (

uint16_t chan,

int64_t tFrom,

int64_t tUpto,

const MarkerFilter & Filter = DefFilter() )

Search forward to find the point after a given time.

WaveMark channels can be read provided there is suitable time axis information.

Parameters

chan The channel number
tFrom Time to start searching from

tUpto Time to stop searching at

Filter An optional MarkerFilter to filter the results by if the channel is AdcMark

Returns

The time of the first item in the specified time range or an error code.

5.4.3.16 FlushSysBuffers() int SonFile::FlushSysBuffers ( )

Tell the disk system to move data in disk buffers to the disk.

Where supported, this tells the OS to make sure that data written to OS buffers ends up on disk. This can be very
inefficient as it is allowed to remove all data from disk caches, resulting in very slow operation until data is reloaded.

Returns

Error code, zero for success

Generated by Doxygen



5.4 SonFile Class Reference 23

5.4.3.17 GetAppID() std::string SonFile::GetAppID ( ) const

Retrieves the AppID.

Returns

The AppID, or a string corresponding to an error code

5.4.3.18 GetChannelComment() std::string SonFile::GetChannelComment (

uint16_t chan )

Retrieves the channel comment if present.

Parameters

chan Channel number

Returns

The channel comment, or a string corresponding to an error code

5.4.3.19 GetChannelOffset() double SonFile::GetChannelOffset (

uint16_t chan ) const

Retrieves the channel offset.

See SetChannelScale().

Parameters

chan The channel to query

Returns

Error code, zero for success

5.4.3.20 GetChannelScale() double SonFile::GetChannelScale (

uint16_t chan ) const

Retrieves the channel scale.

See SetChannelScale().

Generated by Doxygen



24

Parameters

chan The channel to query

Returns

Error code, zero for success

5.4.3.21 GetChannelTitle() std::string SonFile::GetChannelTitle (

uint16_t chan )

Retrieves the channel title.

Parameters

chan Channel number

Returns

The channel title, or a string corresponding to an error code

5.4.3.22 GetChannelUnits() std::string SonFile::GetChannelUnits (

uint16_t chan )

Retrieves the channel units.

Parameters

chan The channel to query

Returns

Error code, zero for success

5.4.3.23 GetChannelYRange() std::pair< double, double > SonFile::GetChannelYRange (

uint16_t chan )

Retrieve suggested channel limits on the Y axis.

Parameters

chan The channel to query

Generated by Doxygen



5.4 SonFile Class Reference 25

Returns

An array containing the suggested low/high Y values, or an array containing an error code

5.4.3.24 GetExMarkInfo() std::vector< size_t > SonFile::GetExMarkInfo (

uint16_t chan )

Get information on extended marker data.

Parameters

chan The channel to query

Returns

An array containing either [nRows, nCols, nPre] or an error code

5.4.3.25 GetExtraData() template<typename T >

py::array_t<T> SonFile::GetExtraData (

uint32_t nItems,

uint32_t nOffset ) [inline]

Retrieve data from the user defined area.

This function calls a template which has 11 instances, with names like GetExtraDataChar, GetExtraDataSingle,
GetExtraDataUInt16, GetExtraDataInt8 etc. The help() function in Python is not good at showing this, as it shows
all int types as 'int' and all float types as 'float'.

You should only read data from this area as the type that you saved it as with SetExtraData().

Parameters

nOffset The offset to the point to read from, in bytes

nItems The number of data items to read

Returns

A 1D array containing either the data read or an error code

5.4.3.26 GetExtraDataSize() uint32_t SonFile::GetExtraDataSize ( ) const

Retrieves the size of the user defined extra data region.

Returns

The size of the user area in bytes

Generated by Doxygen



26

5.4.3.27 GetFileComment() std::string SonFile::GetFileComment (

int n )

Retrieves a file comment.

Parameters

n The comment number, can be 0 to 7

Returns

The string stored in comment n

5.4.3.28 GetFreeChannel() int SonFile::GetFreeChannel ( ) const

Get the number of the lowest channel that is Off.

Returns

Index of next free channel (zero-indexed)

5.4.3.29 GetIdealRate() double SonFile::GetIdealRate (

uint16_t chan ) const

Get the ideal rate of a channel.

Parameters

chan The channel to query

Returns

The ideal channel rate, or 0 if the channel doesn't exist

5.4.3.30 GetTimeBase() double SonFile::GetTimeBase ( ) const

Retrieves the current file timebase.

Everything in the file is quantified by the underlying clock tick (64-bit). As all values in the file are stored, set and
returned in ticks, you need to read this value to interpret times in seconds.

Returns

Timebase in seconds

Generated by Doxygen



5.4 SonFile Class Reference 27

5.4.3.31 GetTimeDate() std::vector< uint16_t > SonFile::GetTimeDate ( )

Gets the saved TimeDate.

Returns

The stored system time, or an array containing an error code. In Spike2, this is set to the time sampling
started.

5.4.3.32 GetVersion() int SonFile::GetVersion ( ) const

Get the file version.

Returns

The data file version or an error code

5.4.3.33 IsModified() bool SonFile::IsModified ( ) const

Is there unwritten data, header or channel data, in memory?

If an open data file is modified, it can have unwritten data in the file head and also in the data channels. Unwritten
data can be written to the file using Commit().

Returns

True if unwritten data present else false

5.4.3.34 IsSaving() bool SonFile::IsSaving (

uint16_t chan,

int64_t tAt ) const

Report the save state at a certain time.

See Save().

We can only say false if the data is in the circular buffer and is marked for non-saving. Once data is too old to be in
the circular buffer we assume it is saved as if it was not, it will fail to be read from disk.

Parameters

chan The channel to query

tAt The time to check the save state at

Generated by Doxygen



28

Returns

True if the state is 'save' or the channel is non-buffered. False if it is 'don't save' or there is an error

5.4.3.35 ItemSize() int SonFile::ItemSize (

uint16_t chan ) const

Get the size of the repeating item held by this channel, in bytes.

Each channel holds repeating objects, all the same size. Note that all extended marker types have sizes that are
rounded up to a multiple of 8 bytes. This routine is a convenient way to get the object sizes (though you could
calculate them).

Parameters

chan The channel to query

Returns

Error code, zero for success

5.4.3.36 LatestTime() int SonFile::LatestTime (

int chan,

int64_t t )

Tell circular buffering the latest time we have reached during data sampling.

With circular buffering in use on a channel, if no data appears for a long time and no Commit() commands are
issued, the commands to save and not save data ranges acumulate. By telling a channel the latest time for which
no new data can be expected, the channel can clean up the save/no save list by deleting/amalgamating ranges that
have no data in them.

Parameters

chan The channel number
t The time we have reached

Returns

Error code, zero for success

5.4.3.37 MaxChannels() int SonFile::MaxChannels ( ) const

How many channels can this file contain?

Generated by Doxygen



5.4 SonFile Class Reference 29

Returns

The number of channels the file can have

5.4.3.38 MaxTime() int64_t SonFile::MaxTime (

bool bReadChans = true ) const

Get the maximum time of any item in the file.

The maximum time written to disk is saved in the file head. If this is not set, the maximum time is found by scanning
all the channels for the maximum time saved in any channel. We can also force all channels to be scanned with the
bReadChans argument.

Parameters

bReadChans If this is true, if any channel has a later time than the file head, the channel time is used
instead. If false, and the file head holds a time, this is used.

Returns

The maximum time in the file, in ticks. If file is empty, this may be -1

5.4.3.39 NoSaveList() std::vector< int64_t > SonFile::NoSaveList (

uint16_t chan,

size_t nMax,

int64_t tFrom = -1,

int64_t tUpto = TSTIME64_MAX )

Get a list of times where saving is turned off and on.

See Save()

Parameters

chan The channel to query

nMax The max numbre of changes to return. 0 for all

tFrom Start time to search from
tUpto End time to search to

Returns

An array of times when the save state is saved. The save state is always assumed to start as save, so the first
point is always a turning off of the save state.

Generated by Doxygen



30

5.4.3.40 PhysicalChannel() int SonFile::PhysicalChannel (

uint16_t chan ) const

Get the physical channel number associated with a channel.

The pyhsical channel number is purely cosmetic and is not used for anything.

Parameters

chan The channel to query

Returns

The number specified when the channel was created, -1 if unset

5.4.3.41 PreviousNTime() int64_t SonFile::PreviousNTime (

uint16_t chan,

int64_t trStart,

int64_t trEnd = 0,

uint32_t n = 1,

bool bAsWave = false,

const MarkerFilter & Filter = DefFilter() ) const

Search backwards to find the Nth point before a given time.

Parameters

chan The channel to query

trStart Reverse start, i.e. the time to search backwards from
trEnd Reverse end, i.e. the time to search backwards until
n How many points to step back by

bAsWave Use true with extended marker channels to treat marker data as a wave
Filter A MarkerFilter to filter Marker channels

Returns

Error code, zero for success

5.4.3.42 ReadEvents() std::vector< int64_t > SonFile::ReadEvents (

uint16_t chan,

int nMax,

int64_t tFrom,

int64_t tUpto = TSTIME64_MAX,

const MarkerFilter & Filter = DefFilter() )

Reads events from the specified channel.

Generated by Doxygen



5.4 SonFile Class Reference 31

Parameters

chan The channel number
nMax The maximum number of events to return
tFrom The time to start searching from

tUpto The time so stop searching at

Filter An optional MarkerFilter to filter the results by

Returns

An array conatining either the times of the events found or an error code

5.4.3.43 ReadMarkers() std::vector< DigMark > SonFile::ReadMarkers (

uint16_t chan,

int nMax,

int64_t tFrom,

int64_t tUpto,

const MarkerFilter & Filter = DefFilter() )

Reads markers from marker or extended marker channels.

Parameters

chan The channel to read from
nMax The max number of markers to read
tFrom The time to start searching from

tUpto The time so stop searching at

Filter An optional MarkerFilter to filter the results by

Returns

A list containing either DigitalMarkers or an error code

5.4.3.44 ReadRealMarks() std::vector< RealMarker > SonFile::ReadRealMarks (

uint16_t chan,

int nMax,

int64_t tFrom,

int64_t tUpto = TSTIME64_MAX,

const MarkerFilter & Filter = DefFilter() )

Read RealMark data.

Parameters

chan The channel number
nMax The max number of marks to read
tFrom The time to start searching from

tUpto The time to stop searching at

Filter An optional MarkerFilter to filter the results byGenerated by Doxygen



32

Returns

An array containing either the WaveMarkers read, or a single RealMarker where the tick value is an error code

5.4.3.45 ReadTextMarks() std::vector< TextMarker > SonFile::ReadTextMarks (

uint16_t chan,

int nMax,

int64_t tFrom,

int64_t tUpto = TSTIME64_MAX,

const MarkerFilter & Filter = DefFilter() )

Read TextMark data.

Parameters

chan The channel number
nMax The max number of marks to read
tFrom The time to start searching from

tUpto The time to stop searching at

Filter An optional MarkerFilter to filter the results by

Returns

An array containing either the WaveMarkers read, or a single TextMarker where the string describes an error

5.4.3.46 ReadWave() template<typename T >

py::array_t<T> SonFile::ReadWave (

uint16_t chan,

int nMax,

int64_t tFrom,

int64_t tUpto,

const MarkerFilter & Filter ) [inline]

Reads a wave and returns it in an array of ints or floats.

This template function can be called either with ReadInts or ReadFloats, to use the channel scale and offset to
transform the data into the return type that you want (usually, this will be float).

WaveMark channels can be read provided there is suitable time axis information.

If you have been writing data sensibly, you will know the time of each of these data points, as they will be equally
spaced at known multiples of the channel divider. If this is not the case, you can try to use FirstTime() to estimate
the time of a single sata point.

If there are gaps in the Spike2 file, this will not be read as zero or NaN etc., it will simply be passed over, and you
will end up with fewer points than the channel divide would otherwise imply. In this case, you must be extremely
careful with how you treat your data.

Generated by Doxygen



5.4 SonFile Class Reference 33

Parameters

chan The channel number to read from
nMax The max number of points to read. Must not be zero.

tFrom The time to start searching from

tUpto The time so stop searching at

Filter An optional MarkerFilter to filter the results by if the channel is AdcMark

Returns

An array containing the points read, or an error code

5.4.3.47 ReadWaveMarks() std::vector< WaveMarker > SonFile::ReadWaveMarks (

uint16_t chan,

int nMax,

int64_t tFrom,

int64_t tUpto = TSTIME64_MAX,

const MarkerFilter & Filter = DefFilter() )

Read WaveMark data.

Parameters

chan The channel number
nMax The max number of marks to read
tFrom The time to start searching from

tUpto The time to stop searching at

Filter An optional MarkerFilter to filter the results by

Returns

An array containing either the WaveMarkers read, or a single WaveMarker where the tick value is an error
code

5.4.3.48 Save() void SonFile::Save (

int chan,

int64_t t,

bool bSave )

Toggle the save state for a buffered channel.

The library saves a list of times at which save state changes will occur. See SaveList().

Parameters

chan The channel number
t The time from which the state set should take effect. Can be before or after the current channel max time.
bSave True means save, false means don't save

Generated by Doxygen



34

5.4.3.49 SaveRange() void SonFile::SaveRange (

int chan,

int64_t tFrom,

int64_t tUpto )

Set a time range to be saved.

See Save().

This is expected to be used with a channel that is normally not being saved. It marks a time range for saving by
adding a Save and don't save indication to the list of save state changes. You cannot change the state before the
time of the last data sent to the write buffer.

Parameters

chan The channel number
tFrom Start of time range

tUpto End of time range

5.4.3.50 SetAppID() int SonFile::SetAppID (

const std::string & sData )

Sets the AppID.

The AppID is optional, and is purely descriptive. It consists of an 8 character string.

Parameters

sData String containing the AppID to set. Any characters after the first 8 are ignored

Returns

Error code, zero for success

5.4.3.51 SetBuffering() double SonFile::SetBuffering (

int chan,

size_t nBytes,

double dSeconds = 0. ) const

Set the buffering used with one or all channels.

Can be used for all existing channels, when it allocates buffering space and saves the buffering time, or for a single
channel at a time.

Generated by Doxygen



5.4 SonFile Class Reference 35

If you do not call this function, no circular buffering is applied so Save() and SaveRange() will have no useful effect.
In 64-bit files, you should find that this is called with some default parameters on file creation, so for simple cases
you can start sampling without worrying about this.

For chan = -1: If dSeconds > 0, this is the desired buffering time. If nBytes is non-zero, it is a limit on the space to
allow for all channels and will reduce dSeconds to fit with it. If nBytes = 0 and dSeconds > 0, the number of bytes is
calculated and not limited. If nBytes = 0 and dSeconds <= 0, all buffering is cancelled on all channels. In all cases,
the used dSeconds value is saved.

For chan > -1: If dSeconds < 0, it is replaced by any saved dSeconds. Then, if dSeconds > 0 this sets the
buffering, limited by nBytes if nBytes > 0. If dSeconds = 0, the buffering is set by nBytes or removed if nBytes is 0.

Parameters

chan The channel to set for, or -1 for all channels

nBytes Max buffer size if non-zero

dSeconds Desired buffering time

Returns

The buffering time set, or zero for read only files

5.4.3.52 SetChannelComment() int SonFile::SetChannelComment (

uint16_t chan,

std::string sComment )

Save a comment for an individual channel.

Each channel can contain a single comment.

Parameters

chan The channel to save the comment under
sComment The comment to save

Returns

Error code, zero for success

5.4.3.53 SetChannelOffset() int SonFile::SetChannelOffset (

uint16_t chan,

double dOffset )

Set the Y offset for a channel.

See SetChannelScale().

Generated by Doxygen



36

Parameters

chan The channel number to set the offset of
dOffset The new offset

Returns

Error code, zero for success

5.4.3.54 SetChannelScale() int SonFile::SetChannelScale (

uint16_t chan,

double dScale )

Set the Y scale for a channel.

The channel scale and offset are used to translate between integer representations of values and real units. They
are used for Adc, RealWave and AdcMark channels. When a channel is expressed in user units:

user units = integer ∗ scale / 6553.6 + offset

For a RealWave channel, where the channel is already in user units, the scale and offset values tell us how to
convert the channel back into integers:

integer = (user units - offset)∗6553.6/scale

The factor of 6553.6 comes about because a scale value of 1.0 converts between an input range of 10 Volts and an
ADC range of 65536. In most cases, you should not need to worry about this, just remember to use the equations.

Parameters

chan The channel number to set the scale of
dScale The new scale

Returns

Error code, zero for success

5.4.3.55 SetChannelTitle() int SonFile::SetChannelTitle (

uint16_t chan,

std::string sComment )

Set a channel title.

Parameters

chan The channel to title
sComment The title

Generated by Doxygen



5.4 SonFile Class Reference 37

Returns

Error code, zero for success

5.4.3.56 SetChannelUnits() int SonFile::SetChannelUnits (

uint16_t chan,

std::string sUnits )

Set the channel units.

Parameters

chan The channel to set units for
sUnits The units to set

Returns

Error code, zero for success

5.4.3.57 SetChannelYRange() int SonFile::SetChannelYRange (

uint16_t chan,

double dLow,

double dHigh )

Set the suggested Y range for a channel.

Parameters

chan The channel to query

dLow The suggested low limit for Y

dHigh The suggested high limit for Y

Returns

Error code, zero for success

5.4.3.58 SetEventChannel() int SonFile::SetEventChannel (

uint16_t chan,

double dRate,

DataType evtKind = DataType::EventFall,

int iPhysChan = -1 )

Designate a channel to hold event data.

Generated by Doxygen



38

Parameters

chan The channel to set
dRate The expected max event rate that may be sustained over several seconds

evtKind Channel type, one of DataType::EventFall, DataType::EventRise or DataType::EventBoth

iPhysChan Physical channel number associated with the channel, purely cosmetic

Returns

Error code, zero for success

5.4.3.59 SetExtraData() template<typename T >

int SonFile::SetExtraData (

const std::vector< T > & aData,

uint32_t nOffset ) [inline]

Save the binary representation of an array in the user defined area.

This function is a template, so the type that the saved data is interpreted as will be determined by the dtype of the
array you pass in. Only 11 types are allowed, each of them plain old data types. These are char, single, double,
and eight int types corresponding to 1, 2, 4 or 8 bytes, and signed or unsigned.

Parameters

aData A 1D array of data to write

nOffset How far from the start of the user defined area to start writing from, in bytes

Returns

Error code, zero for success

5.4.3.60 SetFileComment() int SonFile::SetFileComment (

int n,

const std::string & sComment )

Sets a file comment.

Parameters

n The comment number, 0 to 7

sComment The comment to set

Returns

Error code

Generated by Doxygen



5.4 SonFile Class Reference 39

5.4.3.61 SetIdealRate() int SonFile::SetIdealRate (

uint16_t chan,

double dRate )

Set a new target channel rate.

The ideal sample rate of a channel is an exact, set value. The actual rate (from ChannelDivide() ) may differ,
depending on the combination of desired sample rates in other channels, and the hardware available.

Parameters

chan Channel number to set rate for
dRate The new rate to set, in Hertz

Returns

Error code, zero for success

5.4.3.62 SetInitialLevel() int SonFile::SetInitialLevel (

uint16_t chan,

bool bLevel )

Set the initial level of a DataType::EventBoth channel.

All events in an EventBoth channel are assumed to be alternating, but we need to known what the first one is. In
64-bit files, the default is rising, whereas in 32-bit files it is falling.

Parameters

chan The channel number
bLevel True to set the initial event as falling, False for rising

Returns

Error code, zero for success

5.4.3.63 SetMarkerChannel() int SonFile::SetMarkerChannel (

uint16_t chan,

double dRate,

int iPhysChan = -1 )

Designate a channel to hold markers.

Generated by Doxygen



40

Parameters

chan The channel to set
dRate The expected max event rate that may be sustained over several seconds

iPhysChan Physical channel number associated with the channel, purely cosmetic

Returns

Error code, zero for success

5.4.3.64 SetRealMarkChannel() int SonFile::SetRealMarkChannel (

uint16_t chan,

double dRate,

size_t nRows,

int iPhysChan = -1 )

Designate a channel to hold RealMark data.

Parameters

chan The channel to set
dRate The expected max event rate that may be sustained over several seconds

nRows The number of rows of attached items
iPhysChan Physical channel number associated with the channel, purely cosmetic

Returns

Error code, zero for success

5.4.3.65 SetTextMarkChannel() int SonFile::SetTextMarkChannel (

uint16_t chan,

double dRate,

size_t nMax,

int iPhysChan = -1 )

Designate a channel to hold TextMark data.

Parameters

chan The channel to set
dRate The expected max event rate that may be sustained over several seconds

nMax The maximum number of characters that can be attached
iPhysChan Physical channel number associated with the channel, purely cosmetic

Generated by Doxygen



5.4 SonFile Class Reference 41

Returns

Error code, zero for success

5.4.3.66 SetTimeBase() void SonFile::SetTimeBase (

double dSecPerTick )

Set a new timebase.

If you change this value the file header is marked as modified and the next Commit() will save it to the file. As all
times are saved in terms of ticks of this period, nothing else in the file changes, but the entire time base of the file is
scaled.

Parameters

dSecPerTick New timebase in seconds

5.4.3.67 SetTimeDate() int SonFile::SetTimeDate (

py::list lData )

Sets the time and date of the file.

We do not check the dtype so you must check it yourself. All values are stored as 8 bit unisgned ints, except the
year, which is stored as a 16-bit unsigned int.

Parameters

lData A list of exactly 7 values which must be interpretable as integers

Returns

Error code, zero for success

5.4.3.68 SetWaveChannel() int SonFile::SetWaveChannel (

uint16_t chan,

int64_t tDivide,

DataType eKind,

double dRate = 0.,

int iPhysChan = -1 )

Designate a channel to hold Wavemark or RealWave data.

Parameters

chan The channel number

Generated by Doxygen



42

Parameters

tDivide The spacing (divide) for the channel in timebase units; must be greater than zero

eKind Channel kind, either Adc or RealWave

dRate The desired sampling rate in Hz. The rate you end up with may be slightly different (see
IdealRate()). If <= 0, calculated as 1/(tDivide ∗ GetTimeBase())

iPhysChan Physical channel number associated with the channel, purely cosmetic

Returns

Error code, zero for success

5.4.3.69 SetWaveMarkChannel() int SonFile::SetWaveMarkChannel (

uint16_t chan,

double dRate,

size_t nRows,

size_t nCols,

int iPhysChan = -1,

uint64_t tSubDvd = 0,

int nPre = 0 )

Designate a channel to hold WaveMark data.

Parameters

chan The channel to set
dRate The expected max event rate that may be sustained over several seconds

nRows The number of rows of attached items
nCols The number of columns of attached items
iPhysChan Physical channel number associated with the channel, purely cosmetic

tSubDvd If > 0, this implies the attached data has a time axis, and this is used as the channel divider in
units of timebase, as with wave channels. To retrieve this after setting, using ChannelDivide().

nPre If tSubDvd <= 0, this is ignored. Otherwise, it sets the index into the rows of data at which the
alignment point was located.

Returns

Error code, zero for success

5.4.3.70 WriteEvents() int SonFile::WriteEvents (

uint16_t chan,

std::vector< int64_t > aData )

Writes events to an event channel.

Generated by Doxygen



5.4 SonFile Class Reference 43

Parameters

chan The channel number to write to
aData A 1D array of monotonically increasing values to use as times. The dtype MUST be 64-bit signed ints,

e.g. np.int64

Returns

Error code, zero for success

5.4.3.71 WriteFloats() int64_t SonFile::WriteFloats (

uint16_t chan,

std::vector< float > aData,

int64_t tFrom )

Write float data to a RealWave channel.

Unlike event-based channel types where all data must be written after any data already present, Waveform and
RealWave data can be overwritten. This is to remain compatible with the 32-bit SON library but it could be argued
that it should not be allowed. You cannot fill in gaps in the orignal data in this manner. It is imagined that you would
use this to fix glitches or remove transients.

In normal use, all Waveform/RealWave data will be aligned at times that are at integer multiples of the channel
divider. We do not prevent you writing data at other times, but programs like Spike2 may experience subtle problems
if you do.

Parameters

chan The channel number
aData A 1D array of 2 byte ints

tFrom The time (in file ticks) of the first point to write

Returns

The next time to write or an error code

5.4.3.72 WriteInts() int64_t SonFile::WriteInts (

uint16_t chan,

std::vector< short > aData,

int64_t tFrom )

Write int data to an Adc channel.

Unlike event-based channel types where all data must be written after any data already present, Waveform and
RealWave data can be overwritten. This is to remain compatible with the 32-bit SON library but it could be argued
that it should not be allowed. You cannot fill in gaps in the orignal data in this manner. It is imagined that you would
use this to fix glitches or remove transients.

In normal use, all Waveform/RealWave data will be aligned at times that are at integer multiples of the channel
divider. We do not prevent you writing data at other times, but programs like Spike2 may experience subtle problems
if you do.

Generated by Doxygen



44

Parameters

chan The channel number
aData A 1D array of 4 byte floats

tFrom The time (in file ticks) of the first point to write

Returns

The next time to write or an error code

5.4.3.73 WriteMarkers() int SonFile::WriteMarkers (

uint16_t chan,

const std::vector< DigMark > & aData )

Write a series of simple markers.

Parameters

chan The channel to write to
aData A 1D array of DigMarks

Returns

Error code, zero for success

5.4.3.74 WriteRealMarks() int SonFile::WriteRealMarks (

uint16_t chan,

const std::vector< RealMarker > & aData )

Write RealMarks to the file.

Parameters

chan The channel number
aData An array of RealMarkers. The data must be nRows long, where nRows can be found with

GetExMarkInfo()

Returns

Error code, zero for success

Generated by Doxygen



5.5 TextMarker Struct Reference 45

5.4.3.75 WriteTextMarks() int SonFile::WriteTextMarks (

uint16_t chan,

const std::vector< TextMarker > & aData )

Write TextMarks to the file.

Parameters

chan The channel number
aData An array of TextMarkers. The maximum length of any of the strings must not exceed nRows, which

can be found with GetExMarkInfo().

Returns

Error code, zero for success

5.4.3.76 WriteWaveMarks() int SonFile::WriteWaveMarks (

uint16_t chan,

const std::vector< WaveMarker > & aData )

Write WaveMarks to the file.

Parameters

chan The channel number
aData An array of WaveMarkers. The data must have dimensions of nRows x nCols. You can find these with

GetExMarkInfo().

Returns

Error code, zero for success

The documentation for this class was generated from the following files:

• D:/hgwork/sonpy/psonfile.h

• D:/hgwork/sonpy/psonfile.cpp

5.5 TextMarker Struct Reference

#include <ptextmark.h>

Generated by Doxygen



46

Inheritance diagram for TextMarker:

TextMarker

DigMark

Collaboration diagram for TextMarker:

TextMarker

DigMark

Public Member Functions

• TextMarker (int64_t nTick=0, uint8_t nCode1=0, uint8_t nCode2=0, uint8_t nCode3=0, uint8_t nCode4=0)

Create a TextMarker with empty data and the marker codes and tick value.

• TextMarker (const DigMark &mark)

Create a TextMarker with empty data and an existing DigMark.

• TextMarker (std::string &vData, int64_t nTick=0, uint8_t nCode1=0, uint8_t nCode2=0, uint8_t nCode3=0,
uint8_t nCode4=0)

Create a TextMarker from existing data and the marker codes and tick value.

• TextMarker (std::string &vData, const DigMark &mark)

Create a TextMarker from existing data and an existing DigMark.

• size_t Size () const

Retrieve the length of the stored string.

• DigMark GetMark ()

Retrieve the underlying marker and codes.

• void SetString (std::string sData)
• std::string GetString () const

Get the stored string data.

Generated by Doxygen



5.6 WaveMarker Struct Reference 47

Public Attributes

• std::string Text

The encapsulated data.

5.5.1 Detailed Description

You can store a string of any length in this object, but remember that you will get an error if you try to save it in a
channel that doesn't have enough space. See GetExMarkInfo().

The access operator in Python is overloaded, so you can call mark[i] on a WaveMarker to get or set the ith char in
the string. It may be prefereable however, to use the GetString() and SetString() functions.

5.5.2 Member Function Documentation

5.5.2.1 GetMark() DigMark TextMarker::GetMark ( ) [inline]

Retrieve the underlying marker and codes.

Set the stored string data

5.5.2.2 SetString() void TextMarker::SetString (

std::string sData ) [inline]

This will let you store a string of any length, so be careful that when you save a marker to a channel, the stored
string contains fewer than nRows characters. See GetExMarkInfo(), Size().

The documentation for this struct was generated from the following file:

• D:/hgwork/sonpy/ptextmark.h

5.6 WaveMarker Struct Reference

#include <pwavemark.h>

Inheritance diagram for WaveMarker:

WaveMarker

DigMark

Generated by Doxygen



48

Collaboration diagram for WaveMarker:

WaveMarker

DigMark

Public Member Functions

• WaveMarker (size_t nRows, size_t nCols, int64_t nTick=0, uint8_t nCode1=0, uint8_t nCode2=0, uint8_t
nCode3=0, uint8_t nCode4=0)

Create a WaveMarker with empty data of a known length and the marker codes and tick value.

• WaveMarker (size_t nRows, size_t nCols, const DigMark &mark)

Create a WaveMarker with empty data of a known length and an existing DigMark.

• WaveMarker (std::vector< std::vector< short > > &vData, int64_t nTick=0, uint8_t nCode1=0, uint8_t n←↩

Code2=0, uint8_t nCode3=0, uint8_t nCode4=0)

Create a WaveMarker from existing data and the marker codes and tick value.

• WaveMarker (std::vector< std::vector< short > > &vData, const DigMark &mark)

Create a WaveMarker from existing data and an existing DigMark.

• std::pair< size_t, size_t > Size () const

Retrieve the length of the attached data.

• DigMark GetMark ()

Retrieve the underlying marker and codes.

Public Attributes

• std::vector< std::vector< short > > Data

The encapsulated data.

5.6.1 Detailed Description

The size of the array is determined on construction, and should correspond to the nRows value of a RealMark
channel that you wish to submit this data to.

The access operator in Python is overloaded, so you can call mark[i,j] on a WaveMarker to set the (i, j)th data value,
and you can use either mark[i,j] or mark[i][j] to get a value. Unfortunately, you cann't use mark[i][j] to set values, so
for consistency, it is advised to stick to the tuple form (mark[i, j]) for both getting and setting.

The documentation for this struct was generated from the following file:

• D:/hgwork/sonpy/pwavemark.h

Generated by Doxygen



6 File Documentation 49

6 File Documentation

6.1 D:/hgwork/sonpy/doc.h File Reference

Documentation file containing no source code.

#include "psonfile.h"
Include dependency graph for doc.h:

D:/hgwork/sonpy/doc.h

psonfile.h

string

machine.h

s64priv.h s32priv.h pfilter.hprealmark.h pwavemark.h ptextmark.h

pmarker.h s64filt.h

s64.h pybind11/pybind11.h pybind11/stl.h pybind11/numpy.h

6.1.1 Detailed Description

Documentation file containing no source code.

6.2 D:/hgwork/sonpy/pfilter.cpp File Reference

Implements the MarkerFilter class.

#include "pfilter.h"
Include dependency graph for pfilter.cpp:

D:/hgwork/sonpy/pfilter.cpp

pfilter.h

pmarker.h s64filt.h

machine.h s64.h pybind11/pybind11.h pybind11/stl.h pybind11/numpy.h

Generated by Doxygen



50

6.2.1 Detailed Description

Implements the MarkerFilter class.

6.3 D:/hgwork/sonpy/pfilter.h File Reference

Declares the MarkerFilter class.

#include "pmarker.h"
#include "s64filt.h"
Include dependency graph for pfilter.h:

D:/hgwork/sonpy/pfilter.h

pmarker.h s64filt.h

machine.h s64.h pybind11/pybind11.h pybind11/stl.h pybind11/numpy.h

This graph shows which files directly or indirectly include this file:

D:/hgwork/sonpy/pfilter.h

D:/hgwork/sonpy/psonfile.h D:/hgwork/sonpy/pfilter.cpp D:/hgwork/sonpy/pfilterbind.cpp

D:/hgwork/sonpy/doc.h D:/hgwork/sonpy/psonfile.cpp D:/hgwork/sonpy/psonfilebind.cpp

Classes

• class MarkerFilter

A class for filtering markers.

Enumerations

• enum FilterMode { FilterMode::All = ceds64::CSFilter::eMode::eM_and, FilterMode::First = ceds64::CS←↩

Filter::eMode::eM_or }

How a filter determines which layer to sort with.
• enum FilterSet { FilterSet::Clear = ceds64::CSFilter::eSet::eS_clr, FilterSet::Invert = ceds64::CSFilter::eSet←↩

::eS_inv, FilterSet::Set = ceds64::CSFilter::eSet::eS_set }

Used to query or set the item states in filter layers.
• enum FilterState { FilterState::All = ceds64::CSFilter::eActive::eA_all, FilterState::None = ceds64::CSFilter←↩

::eActive::eA_none, FilterState::Some = ceds64::CSFilter::eActive::eA_some, FilterState::Unset = ceds64←↩

::CSFilter::eActive::eA_unset }

Used internally to save some time on calculations, or to get a general description of what the filter does.

Generated by Doxygen



6.3 D:/hgwork/sonpy/pfilter.h File Reference 51

6.3.1 Detailed Description

Declares the MarkerFilter class.

6.3.2 Enumeration Type Documentation

6.3.2.1 FilterMode enum FilterMode [strong]

How a filter determines which layer to sort with.

Enumerator

All Compare all four marker codes against their respective filter layer.

First Only check the first filter layer for the first marker code.

6.3.2.2 FilterSet enum FilterSet [strong]

Used to query or set the item states in filter layers.

Enumerator

Clear Markers with this code will not pass the filter.

Invert Only used with SetItem(). Inverts the current state, whichever it may be.

Set Markers with this code will pass the filter.

6.3.2.3 FilterState enum FilterState [strong]

Used internally to save some time on calculations, or to get a general description of what the filter does.

Enumerator

All This filter will pass all markers.

None this filter will pass no markers

Some this filter will pass only some markers

Unset the state has not yet been determined (you should never see this, as if you call GetState() this
attribute will be calculated)

Generated by Doxygen



52

6.4 D:/hgwork/sonpy/pfilterbind.cpp File Reference

Binds the MarkerFilter class.

#include "pfilter.h"
Include dependency graph for pfilterbind.cpp:

D:/hgwork/sonpy/pfilterbind.cpp

pfilter.h

pmarker.h s64filt.h

machine.h s64.h pybind11/pybind11.h pybind11/stl.h pybind11/numpy.h

6.4.1 Detailed Description

Binds the MarkerFilter class.

6.5 D:/hgwork/sonpy/pmarker.cpp File Reference

Implements DigMark.

#include "pmarker.h"
Include dependency graph for pmarker.cpp:

D:/hgwork/sonpy/pmarker.cpp

pmarker.h

machine.h s64.h pybind11/pybind11.h pybind11/stl.h pybind11/numpy.h

6.5.1 Detailed Description

Implements DigMark.

Generated by Doxygen



6.6 D:/hgwork/sonpy/pmarker.h File Reference 53

6.6 D:/hgwork/sonpy/pmarker.h File Reference

Declares the DigMark struct.

#include "machine.h"
#include "s64.h"
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <pybind11/numpy.h>
Include dependency graph for pmarker.h:

D:/hgwork/sonpy/pmarker.h

machine.h s64.h pybind11/pybind11.h pybind11/stl.h pybind11/numpy.h

This graph shows which files directly or indirectly include this file:

D:/hgwork/sonpy/pmarker.h

D:/hgwork/sonpy/pfilter.hD:/hgwork/sonpy/prealmark.h D:/hgwork/sonpy/pwavemark.h D:/hgwork/sonpy/ptextmark.h D:/hgwork/sonpy/pmarker.cpp D:/hgwork/sonpy/pmarkerbind.cpp

D:/hgwork/sonpy/psonfile.h D:/hgwork/sonpy/pfilter.cpp D:/hgwork/sonpy/pfilterbind.cpp

D:/hgwork/sonpy/doc.h D:/hgwork/sonpy/psonfile.cpp D:/hgwork/sonpy/psonfilebind.cpp

D:/hgwork/sonpy/prealmarkbind.cpp D:/hgwork/sonpy/pwavemarkbind.cpp D:/hgwork/sonpy/ptextmarkbind.cpp

Classes

• struct DigMark

A simple digital marker.

6.6.1 Detailed Description

Declares the DigMark struct.

6.7 D:/hgwork/sonpy/pmarkerbind.cpp File Reference

Binds the DigMark struct.

Generated by Doxygen



54

#include "pmarker.h"
Include dependency graph for pmarkerbind.cpp:

D:/hgwork/sonpy/pmarkerbind.cpp

pmarker.h

machine.h s64.h pybind11/pybind11.h pybind11/stl.h pybind11/numpy.h

6.7.1 Detailed Description

Binds the DigMark struct.

6.8 D:/hgwork/sonpy/prealmark.h File Reference

Declares the RealMarker struct.

#include "pmarker.h"
Include dependency graph for prealmark.h:

D:/hgwork/sonpy/prealmark.h

pmarker.h

machine.h s64.h pybind11/pybind11.h pybind11/stl.h pybind11/numpy.h

This graph shows which files directly or indirectly include this file:

D:/hgwork/sonpy/prealmark.h

D:/hgwork/sonpy/psonfile.h D:/hgwork/sonpy/prealmarkbind.cpp

D:/hgwork/sonpy/doc.h D:/hgwork/sonpy/psonfile.cpp D:/hgwork/sonpy/psonfilebind.cpp

Generated by Doxygen



6.9 D:/hgwork/sonpy/prealmarkbind.cpp File Reference 55

Classes

• struct RealMarker

6.8.1 Detailed Description

Declares the RealMarker struct.

6.9 D:/hgwork/sonpy/prealmarkbind.cpp File Reference

Binds the RealMarker struct.

#include "prealmark.h"
Include dependency graph for prealmarkbind.cpp:

D:/hgwork/sonpy/prealmarkbind.cpp

prealmark.h

pmarker.h

machine.h s64.h pybind11/pybind11.h pybind11/stl.h pybind11/numpy.h

6.9.1 Detailed Description

Binds the RealMarker struct.

6.10 D:/hgwork/sonpy/psonfile.cpp File Reference

Implements the SonFile class.

#include "psonfile.h"
Include dependency graph for psonfile.cpp:

D:/hgwork/sonpy/psonfile.cpp

psonfile.h

string

machine.h

s64priv.h s32priv.h pfilter.hprealmark.h pwavemark.h ptextmark.h

pmarker.h s64filt.h

s64.h pybind11/pybind11.h pybind11/stl.h pybind11/numpy.h

Generated by Doxygen



56

Functions

• std::string GetErrorString (int iErr)

Converts an error code to a string describing the error.

• int64_t MaxTime64 ()

Gets the maximum time allowed in a 64-bit SON file.

6.10.1 Detailed Description

Implements the SonFile class.

6.10.2 Function Documentation

6.10.2.1 GetErrorString() std::string GetErrorString (

int iErr )

Converts an error code to a string describing the error.

Parameters

iErr Error code corresponding to a SonError

Returns

The error code described as a string

6.10.2.2 MaxTime64() int64_t MaxTime64 ( )

Gets the maximum time allowed in a 64-bit SON file.

Returns

The value of the largest possible number of (usable) ticks in a 64-bit SON file.

6.11 D:/hgwork/sonpy/psonfile.h File Reference

Declares the SonFile class.

#include <string>
#include "machine.h"
#include "s64priv.h"
#include "s32priv.h"
#include "pfilter.h"

Generated by Doxygen



6.11 D:/hgwork/sonpy/psonfile.h File Reference 57

#include "prealmark.h"
#include "pwavemark.h"
#include "ptextmark.h"
Include dependency graph for psonfile.h:

D:/hgwork/sonpy/psonfile.h

string

machine.h

s64priv.h s32priv.h pfilter.hprealmark.h pwavemark.h ptextmark.h

pmarker.h s64filt.h

s64.h pybind11/pybind11.h pybind11/stl.h pybind11/numpy.h

This graph shows which files directly or indirectly include this file:

D:/hgwork/sonpy/psonfile.h

D:/hgwork/sonpy/doc.h D:/hgwork/sonpy/psonfile.cpp D:/hgwork/sonpy/psonfilebind.cpp

Classes

• class SonFile

Wraps either a 64- or 32-bit File and passes function calls to it in a tidy way.

Enumerations

• enum OpenFlags { OpenFlags::None = ceds64::eOpenFlags::eOF_none, OpenFlags::Shared = ceds64::e←↩

OpenFlags::eOF_shared, OpenFlags::Test = ceds64::eOpenFlags::eOF_test }

Options for file opening.
• enum SonError {

SonError::Son_OK = ceds64::S64_ERROR::S64_OK, SonError::No_File = ceds64::S64_ERROR::NO_FILE,
SonError::No_Block = ceds64::S64_ERROR::NO_BLOCK, SonError::Call_Again = ceds64::S64_ERROR←↩

::CALL_AGAIN,
SonError::No_Access = ceds64::S64_ERROR::NO_ACCESS, SonError::No_Memory = ceds64::S64_ER←↩

ROR::NO_MEMORY, SonError::No_Channel = ceds64::S64_ERROR::NO_CHANNEL, SonError::Channel_Used
= ceds64::S64_ERROR::CHANNEL_USED,
SonError::Channel_Type = ceds64::S64_ERROR::CHANNEL_TYPE, SonError::Past_EOF = ceds64::S64←↩

_ERROR::PAST_EOF, SonError::Wrong_File = ceds64::S64_ERROR::WRONG_FILE, SonError::No_Extra
= ceds64::S64_ERROR::NO_EXTRA,
SonError::Bad_Read = ceds64::S64_ERROR::BAD_READ, SonError::Bad_Write = ceds64::S64_ERROR←↩

::BAD_WRITE, SonError::Corrupt_File = ceds64::S64_ERROR::CORRUPT_FILE, SonError::Past_SOF =
ceds64::S64_ERROR::PAST_SOF,
SonError::Read_Only = ceds64::S64_ERROR::READ_ONLY, SonError::Bad_Param = ceds64::S64_ERR←↩

OR::BAD_PARAM, SonError::Over_Write = ceds64::S64_ERROR::OVER_WRITE, SonError::More_Data =
ceds64::S64_ERROR::MORE_DATA }

Generated by Doxygen



58

Possible errors that may be returned by Son64 library functions.

• enum DataType {
DataType::Off = ceds64::TDataKind::ChanOff, DataType::Adc = ceds64::TDataKind::Adc, DataType::EventFall
= ceds64::TDataKind::EventFall, DataType::EventRise = ceds64::TDataKind::EventRise,
DataType::EventBoth = ceds64::TDataKind::EventBoth, DataType::Marker = ceds64::TDataKind::Marker,
DataType::AdcMark = ceds64::TDataKind::AdcMark, DataType::RealMark = ceds64::TDataKind::RealMark,
DataType::TextMark = ceds64::TDataKind::TextMark, DataType::RealWave = ceds64::TDataKind::RealWave
}

The different possible data types a channel can be set to hold.

• enum CommitFlags { CommitFlags::None = 0, CommitFlags::FlushSystem = ceds64::eCommitFlags::eCF_←↩

flushSys, CommitFlags::HeaderOnly = ceds64::eCommitFlags::eCF_headerOnly, CommitFlags::DeleteBuffer
= ceds64::eCommitFlags::eCF_delBuffer }

Flags for commiting data to disk (see SonFile::Commit() )

Functions

• std::string GetErrorString (int iErr)

Converts an error code to a string describing the error.

• int64_t MaxTime64 ()

Gets the maximum time allowed in a 64-bit SON file.

6.11.1 Detailed Description

Declares the SonFile class.

6.11.2 Enumeration Type Documentation

6.11.2.1 CommitFlags enum CommitFlags [strong]

Flags for commiting data to disk (see SonFile::Commit() )

Enumerator

None No extra behaviour
FlushSystem After writing data, tell system to ensure it is physically on the disk. This can be VERY slow

(several seconds). Only use this if you are certain you can tolerate the disk system becoming
inaccessible for several seconds. You might use this just before closing a newly created file to
be certain that it is safely saved. Beware that on Windows systems this flag has been
observed to cause the system to become unresponsive for several seconds while all dirty data
buffered on the disk is written. We suspect that this is because modern disks may implement
very large data buffers. They know which blocks in the buffers are dirty (need writing), but may
not know which file each block belongs to. When we tell the OS to commit a file with
FlushSystem, the system tells the disk to write all dirty blocks, and this can be a lot of data.
Ironically, older disks that rely on the OS to handle all buffering work better for a commit as the
OS can write only dirty blocks belonging to the data file.

HeaderOnly Only commit the file header, not buffered channel data. You might use this if you added or
deleted a channel or changed any file information and wanted to be certain that the file header
was committed with the change. The file header also holds all text strings used in the file (even
channel comments, titles and units)

DeleteBuffer Kill off channel buffering after committing data. This will set any circular buffer set for the
channel to have 0 size. If you use this flag with HeaderOnly you will lose any data that was in
the circular buffer.

Generated by Doxygen



6.11 D:/hgwork/sonpy/psonfile.h File Reference 59

6.11.2.2 DataType enum DataType [strong]

The different possible data types a channel can be set to hold.

There are two wave type, three event types and four marker types. Any marker type that is not the standard marker
is also known as an extended marker type.

There is a hierarchy to the non-wave types. At the bottom are the event types. All are essentially the same thing for
the purposes of data storage, it is only in their interpretation that they differ. These are built upon by markers, which
in turn are build upon by any of the extended markers. For details on how this works, see the description of each
type.

Wave type channels can have data overwritten, although this is not intended behaviour. It is expected that the only
use of this would be to fix holes in corrupt data. In normal use, all data for a wave type channel will be aligned at
times that are exact multiples of the channel divide after the first data point. We do not prevent you writing data
where the alignment is not the same after a gap, but Spike2 will experience subtle problems if you do this.

All other (event/marker based) channels must be time ordered (monotonically increasing) or the file will be corrupted.
You cannot write events or markers to a point in time earlier than any already existing items.

Enumerator

Off This channel is not used and has no data associated with it.
Adc Sometimes known as WaveForm data. This consists of time-continuous data stored as short

integers (i.e. 16-bits long). This is the most fundamental type of channel to Spike2. Each Adc
channel contains a scale and an offset, so that data in the 16-bit range (-32768 to 32767) can be
transformed onto any required range according to y=mx+c. For more details about how the scale
and offset are used, see SetChannelScale()

EventFall Essentially a list of points at which a signal has passed from high to low. Each item constists of a
single 64-bit integer which contains the time value, in ticks, at which the event occured.

EventRise As for EventFall, but corresponds to rising, rather than falling, triggers.

EventBoth As with other event channels, a list of times, this time, when a signal passes either direction, high
to low or low to high.

Marker This type builds on events by having 4 8-bit codes in addition to the 64-bit time stamp. There are
also 32 bits of reserved space after these codes, so the whole structure is 16 bytes long.

AdcMark Also called WaveMark data, this extended marker type augments the standard marker with a
series of short integers (16-bit). If you set up a channel of this type with multiple columns, each
column represents a different 'trace'. Each trace is essentially a wave fragment that is associated
with its marker. If you associate a timebase with the channel, it can be interpreted in context of
the timebase of the entire file, and Spike2 can plot the data as isolated snippets of Adc data. If
you use multiple traces, the data is stored interleaved.

RealMark Similar to AdcMark, this exteneded marker augments the standard marker with a series of 4 byte
floating point data. Unlike AdcMark however, only a single column of data is supported, as this
type is not used to draw multiple waves, rather to store multiple single measurements.

TextMark This extended marker augments the standard marker with a zero-terminated series of characters.
You can store a string of any length in each, but Spike2 has a limit of 79 characters, so anything
longer than this will be truncated if you open the file in Spike2.

RealWave Similar to Adc data, this consists of a contiguous stream of 4 byte float data. There is a scale and
offset associated with these channels, but it is most often entirely redundant. For more details
about how the scale and offset are used, see SetChannelScale().

Generated by Doxygen



60

6.11.2.3 OpenFlags enum OpenFlags [strong]

Options for file opening.

The file open constructor uses None by default, so you never have to worry about these.

Enumerator

None Business as usual.
Shared Currently redundant.

Test Open file even if header can't be verified.

6.11.2.4 SonError enum SonError [strong]

Possible errors that may be returned by Son64 library functions.

To get descriptions of one of these error from within Pyhon, see GetErrorString().

Enumerator

Son_OK No error.
No_File This object does not own a file handle or any resources.

No_Block Failed to allocate a disk block.
Call_Again Long operation, call again (this should only be visible internally!)

No_Access No access: bad operation or file in use.

No_Memory Out of memory reading 32-bit file.

No_Channel Channel doesn't exist.
Channel_Used Channel already in use.

Channel_Type Channel has wrong type.

Past_EOF Tried to access past the end of the file.

Wrong_File Tried to open wrong file type.

No_Extra Request is outside the extra data region.

Bad_Read Read error.
Bad_Write Write error.

Corrupt_File File is bad or tired to write corrupt data.

Past_SOF Tried to access before the start of the file.
Read_Only Tried to write to a read only file.

Bad_Param A parameter is bad (check type, dimensions and sizes)

Over_Write Tried to over-write data when not allowed.
More_Data The file is bigger than the header says; it may not have closed properly.

6.11.3 Function Documentation

Generated by Doxygen



6.12 D:/hgwork/sonpy/psonfilebind.cpp File Reference 61

6.11.3.1 GetErrorString() std::string GetErrorString (

int iErr )

Converts an error code to a string describing the error.

Parameters

iErr Error code corresponding to a SonError

Returns

The error code described as a string

6.11.3.2 MaxTime64() int64_t MaxTime64 ( )

Gets the maximum time allowed in a 64-bit SON file.

Returns

The value of the largest possible number of (usable) ticks in a 64-bit SON file.

6.12 D:/hgwork/sonpy/psonfilebind.cpp File Reference

Binds the SonFile class.

#include "psonfile.h"
Include dependency graph for psonfilebind.cpp:

D:/hgwork/sonpy/psonfilebind.cpp

psonfile.h

string

machine.h

s64priv.h s32priv.h pfilter.hprealmark.h pwavemark.h ptextmark.h

pmarker.h s64filt.h

s64.h pybind11/pybind11.h pybind11/stl.h pybind11/numpy.h

6.12.1 Detailed Description

Binds the SonFile class.

Generated by Doxygen



62

6.13 D:/hgwork/sonpy/ptextmark.h File Reference

Declares the TextMarker struct.

#include "pmarker.h"
Include dependency graph for ptextmark.h:

D:/hgwork/sonpy/ptextmark.h

pmarker.h

machine.h s64.h pybind11/pybind11.h pybind11/stl.h pybind11/numpy.h

This graph shows which files directly or indirectly include this file:

D:/hgwork/sonpy/ptextmark.h

D:/hgwork/sonpy/psonfile.h D:/hgwork/sonpy/ptextmarkbind.cpp

D:/hgwork/sonpy/doc.h D:/hgwork/sonpy/psonfile.cpp D:/hgwork/sonpy/psonfilebind.cpp

Classes

• struct TextMarker

6.13.1 Detailed Description

Declares the TextMarker struct.

6.14 D:/hgwork/sonpy/ptextmarkbind.cpp File Reference

Binds the TextMarker struct.

Generated by Doxygen



6.15 D:/hgwork/sonpy/pwavemark.h File Reference 63

#include "ptextmark.h"
Include dependency graph for ptextmarkbind.cpp:

D:/hgwork/sonpy/ptextmarkbind.cpp

ptextmark.h

pmarker.h

machine.h s64.h pybind11/pybind11.h pybind11/stl.h pybind11/numpy.h

6.14.1 Detailed Description

Binds the TextMarker struct.

6.15 D:/hgwork/sonpy/pwavemark.h File Reference

Declares the WaveMarker struct.

#include "pmarker.h"
Include dependency graph for pwavemark.h:

D:/hgwork/sonpy/pwavemark.h

pmarker.h

machine.h s64.h pybind11/pybind11.h pybind11/stl.h pybind11/numpy.h

Generated by Doxygen



64

This graph shows which files directly or indirectly include this file:

D:/hgwork/sonpy/pwavemark.h

D:/hgwork/sonpy/psonfile.h D:/hgwork/sonpy/pwavemarkbind.cpp

D:/hgwork/sonpy/doc.h D:/hgwork/sonpy/psonfile.cpp D:/hgwork/sonpy/psonfilebind.cpp

Classes

• struct WaveMarker

6.15.1 Detailed Description

Declares the WaveMarker struct.

6.16 D:/hgwork/sonpy/pwavemarkbind.cpp File Reference

Binds the WaveMarker struct.

#include "pwavemark.h"
Include dependency graph for pwavemarkbind.cpp:

D:/hgwork/sonpy/pwavemarkbind.cpp

pwavemark.h

pmarker.h

machine.h s64.h pybind11/pybind11.h pybind11/stl.h pybind11/numpy.h

6.16.1 Detailed Description

Binds the WaveMarker struct.

Generated by Doxygen



Index

Adc
psonfile.h, 59

AdcMark
psonfile.h, 59

All
pfilter.h, 51

Bad_Param
psonfile.h, 60

Bad_Read
psonfile.h, 60

Bad_Write
psonfile.h, 60

Call_Again
psonfile.h, 60

Channel_Type
psonfile.h, 60

Channel_Used
psonfile.h, 60

ChannelBytes
SonFile, 16

ChannelDelete
SonFile, 16

ChannelDivide
SonFile, 18

ChannelMaxTime
SonFile, 18

ChannelType
SonFile, 18

ChannelUndelete
SonFile, 19

Clear
pfilter.h, 51

Commit
SonFile, 19

CommitFlags
psonfile.h, 58

Corrupt_File
psonfile.h, 60

D:/hgwork/sonpy/doc.h, 49
D:/hgwork/sonpy/pfilter.cpp, 49
D:/hgwork/sonpy/pfilter.h, 50
D:/hgwork/sonpy/pfilterbind.cpp, 52
D:/hgwork/sonpy/pmarker.cpp, 52
D:/hgwork/sonpy/pmarker.h, 53
D:/hgwork/sonpy/pmarkerbind.cpp, 53
D:/hgwork/sonpy/prealmark.h, 54
D:/hgwork/sonpy/prealmarkbind.cpp, 55
D:/hgwork/sonpy/psonfile.cpp, 55
D:/hgwork/sonpy/psonfile.h, 56
D:/hgwork/sonpy/psonfilebind.cpp, 61
D:/hgwork/sonpy/ptextmark.h, 62
D:/hgwork/sonpy/ptextmarkbind.cpp, 62
D:/hgwork/sonpy/pwavemark.h, 63

D:/hgwork/sonpy/pwavemarkbind.cpp, 64
DataType

psonfile.h, 59
DeleteBuffer

psonfile.h, 58
DigMark, 4

EditMarker
SonFile, 19

EditRealMark
SonFile, 20

EditTextMark
SonFile, 20

EditWaveMark
SonFile, 21

EmptyFile
SonFile, 21

EventBoth
psonfile.h, 59

EventFall
psonfile.h, 59

EventRise
psonfile.h, 59

ExtendMaxTime
SonFile, 21

FileSize
SonFile, 22

Filter
MarkerFilter, 6

FilterMode
pfilter.h, 51

FilterSet
pfilter.h, 51

FilterState
pfilter.h, 51

First
pfilter.h, 51

FirstTime
SonFile, 22

FlushSysBuffers
SonFile, 22

FlushSystem
psonfile.h, 58

GetAppID
SonFile, 22

GetChannelComment
SonFile, 23

GetChannelOffset
SonFile, 23

GetChannelScale
SonFile, 23

GetChannelTitle
SonFile, 24

GetChannelUnits



66 INDEX

SonFile, 24
GetChannelYRange

SonFile, 24
GetColumn

MarkerFilter, 6
GetErrorString

psonfile.cpp, 56
psonfile.h, 60

GetExMarkInfo
SonFile, 25

GetExtraData
SonFile, 25

GetExtraDataSize
SonFile, 25

GetFileComment
SonFile, 25

GetFreeChannel
SonFile, 26

GetIdealRate
SonFile, 26

GetItem
MarkerFilter, 7

GetLayer
MarkerFilter, 7

GetMark
TextMarker, 47

GetMode
MarkerFilter, 7

GetState
MarkerFilter, 7

GetTimeBase
SonFile, 26

GetTimeDate
SonFile, 26

GetVersion
SonFile, 27

HeaderOnly
psonfile.h, 58

Invert
pfilter.h, 51

IsModified
SonFile, 27

IsSaving
SonFile, 27

ItemSize
SonFile, 28

LatestTime
SonFile, 28

Marker
psonfile.h, 59

MarkerFilter, 5
Filter, 6
GetColumn, 6
GetItem, 7
GetLayer, 7

GetMode, 7
GetState, 7
operator==, 8
SetColumn, 8
SetItem, 8
SetLayer, 9
SetMode, 9

MaxChannels
SonFile, 28

MaxTime
SonFile, 29

MaxTime64
psonfile.cpp, 56
psonfile.h, 61

More_Data
psonfile.h, 60

No_Access
psonfile.h, 60

No_Block
psonfile.h, 60

No_Channel
psonfile.h, 60

No_Extra
psonfile.h, 60

No_File
psonfile.h, 60

No_Memory
psonfile.h, 60

None
pfilter.h, 51
psonfile.h, 58, 60

NoSaveList
SonFile, 29

Off
psonfile.h, 59

OpenFlags
psonfile.h, 59

operator==
MarkerFilter, 8

Over_Write
psonfile.h, 60

Past_EOF
psonfile.h, 60

Past_SOF
psonfile.h, 60

pfilter.h
All, 51
Clear, 51
FilterMode, 51
FilterSet, 51
FilterState, 51
First, 51
Invert, 51
None, 51
Set, 51
Some, 51

Generated by Doxygen



INDEX 67

Unset, 51
PhysicalChannel

SonFile, 29
PreviousNTime

SonFile, 30
psonfile.cpp

GetErrorString, 56
MaxTime64, 56

psonfile.h
Adc, 59
AdcMark, 59
Bad_Param, 60
Bad_Read, 60
Bad_Write, 60
Call_Again, 60
Channel_Type, 60
Channel_Used, 60
CommitFlags, 58
Corrupt_File, 60
DataType, 59
DeleteBuffer, 58
EventBoth, 59
EventFall, 59
EventRise, 59
FlushSystem, 58
GetErrorString, 60
HeaderOnly, 58
Marker, 59
MaxTime64, 61
More_Data, 60
No_Access, 60
No_Block, 60
No_Channel, 60
No_Extra, 60
No_File, 60
No_Memory, 60
None, 58, 60
Off, 59
OpenFlags, 59
Over_Write, 60
Past_EOF, 60
Past_SOF, 60
Read_Only, 60
RealMark, 59
RealWave, 59
Shared, 60
Son_OK, 60
SonError, 60
Test, 60
TextMark, 59
Wrong_File, 60

Read_Only
psonfile.h, 60

ReadEvents
SonFile, 30

ReadMarkers
SonFile, 31

ReadRealMarks

SonFile, 31
ReadTextMarks

SonFile, 32
ReadWave

SonFile, 32
ReadWaveMarks

SonFile, 33
RealMark

psonfile.h, 59
RealMarker, 10
RealWave

psonfile.h, 59

Save
SonFile, 33

SaveRange
SonFile, 34

Set
pfilter.h, 51

SetAppID
SonFile, 34

SetBuffering
SonFile, 34

SetChannelComment
SonFile, 35

SetChannelOffset
SonFile, 35

SetChannelScale
SonFile, 36

SetChannelTitle
SonFile, 36

SetChannelUnits
SonFile, 37

SetChannelYRange
SonFile, 37

SetColumn
MarkerFilter, 8

SetEventChannel
SonFile, 37

SetExtraData
SonFile, 38

SetFileComment
SonFile, 38

SetIdealRate
SonFile, 39

SetInitialLevel
SonFile, 39

SetItem
MarkerFilter, 8

SetLayer
MarkerFilter, 9

SetMarkerChannel
SonFile, 39

SetMode
MarkerFilter, 9

SetRealMarkChannel
SonFile, 40

SetString
TextMarker, 47

Generated by Doxygen



68 INDEX

SetTextMarkChannel
SonFile, 40

SetTimeBase
SonFile, 41

SetTimeDate
SonFile, 41

SetWaveChannel
SonFile, 41

SetWaveMarkChannel
SonFile, 42

Shared
psonfile.h, 60

Some
pfilter.h, 51

Son_OK
psonfile.h, 60

SonError
psonfile.h, 60

SonFile, 11
ChannelBytes, 16
ChannelDelete, 16
ChannelDivide, 18
ChannelMaxTime, 18
ChannelType, 18
ChannelUndelete, 19
Commit, 19
EditMarker, 19
EditRealMark, 20
EditTextMark, 20
EditWaveMark, 21
EmptyFile, 21
ExtendMaxTime, 21
FileSize, 22
FirstTime, 22
FlushSysBuffers, 22
GetAppID, 22
GetChannelComment, 23
GetChannelOffset, 23
GetChannelScale, 23
GetChannelTitle, 24
GetChannelUnits, 24
GetChannelYRange, 24
GetExMarkInfo, 25
GetExtraData, 25
GetExtraDataSize, 25
GetFileComment, 25
GetFreeChannel, 26
GetIdealRate, 26
GetTimeBase, 26
GetTimeDate, 26
GetVersion, 27
IsModified, 27
IsSaving, 27
ItemSize, 28
LatestTime, 28
MaxChannels, 28
MaxTime, 29
NoSaveList, 29

PhysicalChannel, 29
PreviousNTime, 30
ReadEvents, 30
ReadMarkers, 31
ReadRealMarks, 31
ReadTextMarks, 32
ReadWave, 32
ReadWaveMarks, 33
Save, 33
SaveRange, 34
SetAppID, 34
SetBuffering, 34
SetChannelComment, 35
SetChannelOffset, 35
SetChannelScale, 36
SetChannelTitle, 36
SetChannelUnits, 37
SetChannelYRange, 37
SetEventChannel, 37
SetExtraData, 38
SetFileComment, 38
SetIdealRate, 39
SetInitialLevel, 39
SetMarkerChannel, 39
SetRealMarkChannel, 40
SetTextMarkChannel, 40
SetTimeBase, 41
SetTimeDate, 41
SetWaveChannel, 41
SetWaveMarkChannel, 42
SonFile, 15
WriteEvents, 42
WriteFloats, 43
WriteInts, 43
WriteMarkers, 44
WriteRealMarks, 44
WriteTextMarks, 44
WriteWaveMarks, 45

Test
psonfile.h, 60

TextMark
psonfile.h, 59

TextMarker, 45
GetMark, 47
SetString, 47

Unset
pfilter.h, 51

WaveMarker, 47
WriteEvents

SonFile, 42
WriteFloats

SonFile, 43
WriteInts

SonFile, 43
WriteMarkers

SonFile, 44

Generated by Doxygen



INDEX 69

WriteRealMarks
SonFile, 44

WriteTextMarks
SonFile, 44

WriteWaveMarks
SonFile, 45

Wrong_File
psonfile.h, 60

Generated by Doxygen


	1 Python interface to the SON64 library
	1.1 Introduction
	1.1.1 Installation
	1.1.2 Package layout
	1.1.3 Testing
	1.1.4 Documentation
	1.1.5 Contact CED


	2 Hierarchical Index
	2.1 Class Hierarchy

	3 Class Index
	3.1 Class List

	4 File Index
	4.1 File List

	5 Class Documentation
	5.1 DigMark Struct Reference
	5.1.1 Detailed Description

	5.2 MarkerFilter Class Reference
	5.2.1 Detailed Description
	5.2.2 Member Function Documentation

	5.3 RealMarker Struct Reference
	5.3.1 Detailed Description

	5.4 SonFile Class Reference
	5.4.1 Detailed Description
	5.4.2 Constructor & Destructor Documentation
	5.4.3 Member Function Documentation

	5.5 TextMarker Struct Reference
	5.5.1 Detailed Description
	5.5.2 Member Function Documentation

	5.6 WaveMarker Struct Reference
	5.6.1 Detailed Description


	6 File Documentation
	6.1 D:/hgwork/sonpy/doc.h File Reference
	6.1.1 Detailed Description

	6.2 D:/hgwork/sonpy/pfilter.cpp File Reference
	6.2.1 Detailed Description

	6.3 D:/hgwork/sonpy/pfilter.h File Reference
	6.3.1 Detailed Description
	6.3.2 Enumeration Type Documentation

	6.4 D:/hgwork/sonpy/pfilterbind.cpp File Reference
	6.4.1 Detailed Description

	6.5 D:/hgwork/sonpy/pmarker.cpp File Reference
	6.5.1 Detailed Description

	6.6 D:/hgwork/sonpy/pmarker.h File Reference
	6.6.1 Detailed Description

	6.7 D:/hgwork/sonpy/pmarkerbind.cpp File Reference
	6.7.1 Detailed Description

	6.8 D:/hgwork/sonpy/prealmark.h File Reference
	6.8.1 Detailed Description

	6.9 D:/hgwork/sonpy/prealmarkbind.cpp File Reference
	6.9.1 Detailed Description

	6.10 D:/hgwork/sonpy/psonfile.cpp File Reference
	6.10.1 Detailed Description
	6.10.2 Function Documentation

	6.11 D:/hgwork/sonpy/psonfile.h File Reference
	6.11.1 Detailed Description
	6.11.2 Enumeration Type Documentation
	6.11.3 Function Documentation

	6.12 D:/hgwork/sonpy/psonfilebind.cpp File Reference
	6.12.1 Detailed Description

	6.13 D:/hgwork/sonpy/ptextmark.h File Reference
	6.13.1 Detailed Description

	6.14 D:/hgwork/sonpy/ptextmarkbind.cpp File Reference
	6.14.1 Detailed Description

	6.15 D:/hgwork/sonpy/pwavemark.h File Reference
	6.15.1 Detailed Description

	6.16 D:/hgwork/sonpy/pwavemarkbind.cpp File Reference
	6.16.1 Detailed Description


	Index

