12t ROL

Robotics Language Tutorial

Gabriel A.D. Lopes
Floris Gaisser
Dimitrios Chronopolous

RRC Robotics, the Netherlands
g.lopes@rrcrobotics.com

IEEE IRC 2019

mailto:g.lopes@rrcrobotics.com

Robotics Language

Languages to address the complexity
of designing robotics software
O electronics

Developer tools

Sensors

: Mechanical
Environment
body

Computation
electronics
Fault detection

Simulation

Deployment

Robotics Language

Languages to address the complexity
of designing robotics software

Lea robot:
- 70 sensors
- Autonomous Navigation

- User interface
- ROS

WePods:

- 8 cameras
- 6 lidar

- 3 radars

- Self driving bus
- ROS

Robotics Language

Languages to address the complexity
of designing robotics software

Robotics Language

Domain Specific Languages are computer languages
specialised to a particular application domain.

Abstraction languages are programming languages with the
purpose of focusing on the required information to solve a
problem. They “transcompile” into standard programming
languages.

Robotics Language

What is this tutorial about?

1. A general purpose programming language for robotics
Robotics Language

2. A general purpose compiler

° 12t ROL

Robotics Language

Robotics Language

Standard
1 ROL

Abstraction languages languages

Abstractions
Automation
Simplicity
Open

Problems In Robotics development

1. Big leap from behaviour to code
2. Reinventing the wheel

3. Developer tools

1. Big leap

Conceptual idea in estimation

“If observation is good, update estimate.
If observation is less good, predict.”

Abstract mathematical realisation (Bayesian estimation)

P(ﬂi‘k\zk) — Up(Zk\fk) /p($k\$k—1)p(£€k—1\Zk—1)d$k—1
o o

update Predict

1. Big leap

Numerical realisation (Kalman filter)

dict { f‘k\k—l — Fkik—lyk—l + Bruy
redicC
P Pk‘\k—l — FkPk—l]kz—lFZ + Q,
Vi = 2 — HiXpp 1
S, = Ry + HkPk‘k_lH;cr
K, = Py Hy S,
update { Xk = Xpk-1 + Ki

1. Big leap

Computer implementation

Q kalman Pull requests Issues Marketplace Explore

Repositories 5K 5,672 repository results Sort: Best match v

Code 804K

Commits BER TKJElectronics/KalmankFilter @C++ % 643
This is a Kalman filter used to calculate the angle,

Issues 5K rate and bias from from the input of an

accelerometer/magnetomet...
Marketplace

filter kalman
Topics 25
Updated on Mar 6, 2017
Wikis 1K
Users 223
balzer82/Kalman @ Jupyter Notebook w 322
Some Python Implementations of the Kalman
Languages Filter
C++ 3,506 .
python kalman-filter kalman
Python 487
Updated on Mar 12, 2018
MATLAB 453
Jupyter Notebook 211
C 122
mherb/kalman @ C++ % 333
Java 108 Header-only C++11 Kalman Filtering Library (EKF,
HTML 52 UKF) based on Eigen3
R 44

MIT license Updated on Oct 31, 2018

1. Big leap

Computer implementation

namespace Kalman {

/ k%

* @brief Abstract base class for all Kalman Filters

> 3

* @param StateType The vector-type of the system state (usually some type derived from Kalman::Vector)
*/

template<class StateType>

class KalmanFilterBase

{
public:
static_assert(/xStateType: :RowsAtCompileTime == Dynamic | |*/StateType::RowsAtCompileTime > 0,
"State vector must contain at least 1 element" /*x or be dynamic */);
static_assert(StateType::ColsAtCompileTime == 1, "State type must be a column vector");
//!' Numeric scalar type
typedef typename StateType::Scalar T;
//! Type of the state vector
typedef StateType State;
protected:

//' Estimated state
State x;

1. Big leap

= Conceptual idea

Abstract mathematical realisation
Numerical realisation

= Computer implementation

Big disconnect from conceptual idea to computer implementation

1. Big leap

Development process

Stakeholders

Information

arXiv:1602.07455v1 [cs.NE] 24 Feb 2016

2. Reinventing the wheel

Automatically Proving Mathematical Theorems with
Evolutionary Algorithms and Proof Assistants

Li-An Yang, Jui-Bin Liu, Chao-Hong Chen, and Ying-ping Chen*
Department of Computer Science, National Chiao Tung University, HsinChu City, TATWAN
layang@nclab.tw, jbliu@nclab.tw, chchen@nclab.tw, ypchen@cs.nctu.edu.tw

Abstract—Mathematical theorems are human knowledge able
to be accumulated in the form of symbolic representation, and
proving theorems has been considered intelligent behavior. Based
on the BHK interpretation and the Curry-Howard isomorphism,
proof assistants, software capable of interacting with human
for constructing formal proofs, have been developed in the past
several decades. Since proofs can be considered and expressed
as programs, proof assistants simplify and verify a proof by
computationally evaluating the program corresponding to the
proof. Thanks to the transformation from logic to computation,
it is now possible to generate or search for formal proofs directly
in the realm of computation. Evolutionary algorithms, known to
be flexible and versatile, have been successfully applied to handle
a variety of scientific and engineering problems in numerous
disciplines for also several decades. Examining the feasibility
of establishing the link between evolutionary algorithms, as the
program generator, and proof assistants, as the proof verifier, in
order to automatically find formal proofs to a given logic sentence
is the primary goal of this study. In the article, we describe
in detail our first, ad-hoc attempt to fully automatically prove
theorems as well as the preliminary results. Ten simple theorems
from various branches of mathematics were proven, and most
of these theorems cannot be proven by using the tactic auto
alone in Coq, the adopted proof assistant. The implication and
potential influence of this study are discussed, and the developed
source code with the obtained experimental results are released
as open source.

Index Terms—Evolutionary algorithm, proof assistant, Coq,
automatic theorem proving.

I. INTRODUCTION

Human knowledge has been accumulated in various forms.
Among them are theorems in mathematics that are presented in
a precise fashion and can be applied to innumerous domains.
The importance of mathematics and its influence on science,
engineering, and all kinds of technologies are undoubtedly
beyond discussion. Modern mathematics are formal systems
composed of four components: an alphabet, a grammar, ax-
ioms, and inference rules. Given the alphabet and grammar,
in an information technology way of thinking, the development
of a mathematical field or branch can be viewed as the growth
of a database containing knowledge, in the form of logical
sentences considered true or proven to be true. Initially, the
database is empty. The first step is to put in the axioms,
which are logical sentences considered true, followed by a
loop: proving a new logical sentence by applying the inference
rules to the database and inserting the proven logical sentence
back to the database. The proven logical sentences are called
theorems, propositions, lemmas, or corollaries.

Before the proposal of the link between logic and computa-
tion, the principle of Propositions as Types, logic and computa-
tion were previously considered two separate fields [1]. Based
on the BHK interpretation [2], [3] and the Curry-Howard
isomorphism [4], [5], (functional) programming languages,
including Haskell [6], and proof assistants, such as Coq [7],
HOL [8], Isabelle [9], and LEGO [10] have been developed.
Due to the transformation from logic to computation, proofs
to mathematical theorems can then be expressed as programs
and verified computationally.

Mathematical theorem proving has been considered intel-
ligent behavior [11]. Even for today, while a Go computer
program, called AlphaGo, able to beat the human Go champion
of Europe by five games to zero [12], [13] exists, the ability of
computers to fully automatically prove mathematical theorems
still seems quite limited. It is probably because most of
the effort made on proof assistants aims at automated proof
checking, which ensures the correctness of the proof, and at
providing a proof development environment interacting with
human. Moreover, there seems to be a lack of effective search
mechanisms, which can “think outside of the box,” especially
randomized or stochastic ones, used for this purpose.

Evolutionary algorithms [14], as stochastic methods, have
been known for their flexility and versatility. They have been
successfully applied to handle a variety of scientific and engi-
neering problems in numerous disciplines. Hence, in this study,
we would like to make our first attempt to link evolutionary
algorithms, as the program generator, and proof assistants, as
the proof verifier, in a simplistic way. The primary goal of this
study is to assess the feasibility of establishing frameworks ca-
pable of fully automatically proving mathematical theorems by
integrating the facility of generating programs and the facility
of verifying proofs as evaluating programs. Specifically, we
will design a straightforward evolutionary algorithm without
complicated mechanisms and simply adopt Coq [7] for fitness
evaluation. The preliminary results indicate the feasibility and
demonstrate that this direction of research is promising.

The remainder of the paper is organized as follows. Sec-
tion II introduces the background regarding the primary goal
of the present work. Section III describes in detail the ad-hoc
attempt we adopt to investigate the feasibility of automatically
proving mathematical theorems. The preliminary results ob-
tained in our experiments are presented in section IV, followed
by section V giving a broad discussion on this work and its
potential influence. Finally, section VI concludes the paper.

Pseudo-code

Algorithm 1 Flow of the adopted evolutionary algorithm

1: procedure AD-HOC_EA(PopSize, MaxGen)

10
11
12
13
14
15
16
17
18
19

20:

21
22

t < 0;
Pop(t) < Initialization(PopSize);
Evaluation(Pop(t));
repeat
' —t+1;
Pop(t') + 0,
1 < 0;
repeat

p1 < SelectOneParent(Pop(t));

p2 < SelectOneParent(Pop(t));

¢ < Crossover(p1,p2);

if UniformReal|0, 1] < MutRat then

¢ < Mutation(c);

end if

Pop(t') <+ Pop(t') U {c};

14— 1+ 1;
until ¢ > PopStize;
Pop(t) « Pop(l');
Evaluation(Pop(t));
t—t:

until ¢ > MaxGen;

> Generational model

23: end procedure

2. Reinventing the wheel

Pseudo code

// \”\.

c++ Python Matlab Mathematica

Cc++ with templates\

c++ with ROS Python with classes

2. Reinventing the wheel

Languages
C++ 3,551
Python 500
MATLAB 455
SearCh “Kalman F||ter” |n GItHUb Jupyter Notebook 214
C 123
Java 109
HTML 52
R 47
JavaScript 39

C# 32

3. Developer tools

Used programming languages are too general purpose.
Not designed for robotics

Most middleware build on top of general purpose languages

c++: performance
python: prototyping

3. Developer tools

crr &

Going strong since

1979

Abstraction languages

Abstraction languages are programming languages
with the purpose of focusing on the required
iInformation to solve a problem.

Abstraction languages “transcompile” into standard
programming languages.

e.q.: TypeScript, CoffeeScript

Abstraction languages

Horizontal abstraction Vertical abstraction
Language A Language A Abstraction
Library || Library || Library || Library Language B Abstraction

Language C Abstraction

Abstraction languages

Correct by design

/ Model checking
Abstraction languages —— —— EXecutable code

High level representation \
Debug/Monitoring Interfaces

Documentation

Certification

Abstraction languages

Non-technical users Developers
behaviour knowledge Languages + Tools
i3 ROL

Robot

Program

Part |, The philosophy of the Robotics Language and the compiler

- Background

* The ROSIn project

* The language of robotics
- Compiler architecture

Part ll, Using the Robotics Language
* Types, variables, functions

» Abstraction languages
* Event-based vs synchronous execution

» Special constructs
» Extending the language

Program

Part lll, Tools

» Temporal Logic

* Finite State Machines
*Deep learning

* Fault Detection

Part IV, Developing abstraction languages

- Compiler architecture

A Parser for a finite state machine abstraction language
» Transformer and code generation

ROS industrial

Robotics Language Tutorial - IEEE IRC 2019

ROS-INDUSTRIAL QUALITY-ASSURED
ROBOT SOFTWARE COMPONENTS

Carlos Hernandez Corbato c.h.corbato@tudelft.nl
ROSIN Coordinator TU Delft - Robotics Institute

rosin-project.eu

mailto:c.h.corbato@tudelft.nl

ROSIN PROJECT

ROSIN: 4 years, ~8 million EUR |A H2020-ICT-2016-1

|
Speed-up the industrial uptake of advanced robotics applications.

Aims to consolidate the (many) EU-based ROS activities.
Builds upon the ROS-Industrial Europe community, to make it sustainable and leading

worldwide.

B) _ .
— Spesus Bastlan SweWonsronce (/) soEvG

3M A ADLINK UAF .. AIRBUS ﬂ

P AMOEN
UNNVIRSITY OF APPLM

AL A S GBS ST I e g
.. o] T . Boves . ' a O.’.... ® .: ‘e L .. i, (
BOSCH @ - (l»[' s TR Ml
CONAL)

o . - .
. T ea® '. .. a
Py L S |
) ©
Lrie Robotcs

'..‘! "".... -.‘ | §
. e /o c“,-.o 8 . 206 . e .
. .. o',. .. /44‘;‘? .:fBOS ." ...- \ "-"'. .‘ ‘ ¢ a . g ' .
Iy SR o X AD/industrial N y Bl s N9 . W »
g e T ’& QY o "'i»'-‘.‘-“. e 0w > e =
G ™ A N AR L PN - =) =
‘ . L e N et S Y e o WS o ?. =4 Fraunhofer O"" €N QGL \ | -0)-4-4 INESC Hteligrated’
. - . ROS . I N e e «®y - FZI GKN AEROSPACE resesrch Hanwha Techwin ... LABORATORIES
o AV . -0 - o N ¥/ _ ' e fa°
@8 & Ao/mdusria & * 9oy
P T:" ’f:__ r:":rq.'.‘ o Pl by - N — ' ’ o
W RS RSy . wovotics [P #05))) Jowwoesme HEBA () [N &
* . et - \ . 2 Somvage ot s Z
o . -
.o.- .-". i - 0. e ‘._" e . 1 ¢ 3
C . PS % ‘ | S . WO NANYANG NIST o ,‘q},/ FEXAS open Plus@ne
[XA, i S/ g N ¥ IRy . @ iy = i (robotics FPILZ Robo+mcs
N o . VAN o ¢ .:?;.'. ot ‘ e
. : . ¥ \ v o A ’ { ' . A
1= P A \ ’ :':\" e laer
=, LN ‘.:I.-‘?_lvi(t nsselaer (SgREPUBLIC ©60 SIEMENS - Stratasys @l DR
Y * e I\ y .,
° y i AL
e T » . f TS N2 TON : ;;:yo % vete"
L v nsource
. ¢ Kidines [B55" (mAfamr) @ tecebs TuDelft oe® BIWOLE vaskawa

ROSIN Project

s st 1 ABB Zraunhofer tecnali)z
3 4 [N N]
T fUDelft 28

« Speed-up the industrial uptake of advanced robotics applications in EU

* Robot Operating System (ROS) for an open-source EU Digital Industrial Platform for
Robotics

 ROS-Industrial Europe community: self-sustaining and leading world-wide
3+ Million EUR funding Software Quality ROS Education

* For ROS-| devel. and Assurance
education. Community involvement » Academy for

* 4 calls a year: Continuous Integration professionals
Code scanning » School for students

Model-in-the loop

+) R This project has received funding from the European Union’s Horizon 2020 vee
A research and innovation programme under grant agreement no. 732287.

http://www.rosin-project.eu/

Grants for robot software development:
Focused Technical Projects

What ® Finance ROS open source development

service! Concrete industry need:
driver, algorithm, application template, license or code audits...

We fund |/3 of the development efforts
Up to EUR 100K ~ | year duration

also ROS education actions

Who ©® Robot software developers and users: companies, research centers...

can benefit? EU H2020 program eligible entities (small consortiums)

= Open call till 2020 at: http://rosin-project.eu/ftps

How
to apply? " Simple application template (~5 pages):

> next cut-off
April 5th

What / How / Proof of commitment

a"'
tROSINnd

http://rosin-project.eu/ftps
http://rosin-project.eu/ftps

MORE SERVICES

Quality Assurance Education

Working with the community

Training professionals in ROS to
to have better tools:

meet industry needs:
https://discourse.ros.org/c/quality

e ROS curriculum

* continuous integration e ROS-I Academy prof. trainings

* code scanning e ROS-I Schools for students
e« ROS MOOC on edX

e Train ROS trainers

* model-in-the loop

* automated test generation

Alexander Ferrein
ROSIN Education Activities
FH Aachen

wasowski@itu.dk | ferrein@fh-aachen.de

Andrzej Wasowski
ROSIN Quality Assurance
ITU University of Copenhagen

More information

Carlos Hernandez Corbato

http://rosin-project.eu/ftps

Delft University of Technology . . .
info@rosin-project.eu

c.h.corbato@tudelft.nl

http://rosindustrial.org
Mirko Bordignon
Fraunhofer IPA N,
mirko.bordignon(@ipa.fraunhofer.de : E E R O S]_I]_l

Supported by ROSIN — ROS-Industrial Quality-Assured Robot

o Software Components.
il AT V= &l More information: http://rosin-project.eu/
Fraunhofer IPA \g)

e | This project has received funding from the European Union’s
Al G e 0 Horizon 2020 research and innovation programme under grant
agreement no. 732287.

ABB = rraunhofer LeCnalia)

IPA

%
TUDelft

ROSIN
Consortium

UNIVERSITY OF APPLIED SCIENCES

FH AACHEN

2:ROS

http://rosin-project.eu/

(General purpose robotics language

Robotics Language Tutorial - IEEE IRC 2019

What is the language of robotics?

Deep question

 What is the language of mathematics?

 What is the language of ... life?

What is the language of robotics?

* Physical systems modelling
* Decision making
* |earning

* Perception/Control

= How to describe a system and its behaviour?

= May need many languages

Existing tools and languages

Hardware Description Languages (VHDL)

Industrial scripting languages (Kuka:KRL, ABB:Rapid, Fanuc:Karel)
Domain Specific Languages (SQL, Matlab, Excel)

Tools for DSL (JetBrains MPS, Xtext)

General purpose (c++, python)

Middleware (ROS, Orocos)

Proposal

General-purpose abstraction language for robotics

* Behaviour = Algorithms = Mathematics:
As close to mathematics notation as possible

* High level algorithmic/language constructs
* Multiple abstraction languages

* Portability & reuse

Proposal

General-purpose abstraction language for robotics

A finite state machine
node (
definitions: block(

“Mini-abstraction language”

"m
"a
u
"
a
"
-
ta
.,..
]
L]
.
L]
.
-
-
.
.
.
-
.
.
*

name:machine
initial:idle

.
.
o*

Mathematical

symbols s\\“~\\\ﬁif;fopic to fire transitions

fire e Signals(Strings, rosTopic: , onNew: machine.fire(fire))
) 1

events:
when(o[3,0] (machine.state() s
machine.fire()

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
s
.
st
s
nn®
un®
aunt®
nnn®
unn®
...........

)

High level statements

Manifesto

 Mathematical notation (unicode)

x e 7 Isequivalentto: element (x, integers)

e Time/state abstractions

x € signal (Z,topic:”/some/signal”) // a ROS topilc
w € signal (Z,device:”/dev/ttyUSB0”) // a serial stream

v € signal(Z) // a signal is an element of a function space
z € 4 // a variable contains elements of a set

Manifesto

 Abstract objects v.s. representation

Using 16 bits to represent integer number

X € & // Abstract mathematical object. Compiler needs to decide how to

represent the object

 Event driven / synchronous

when(o[5,0](¢[1,0](x) A ©[1,0]1(x)),
print('oscillating faster then 1Hz for at least 5 seconds'))

Manifesto

Mini-abstraction languages

FiniteStateMachine<{ sta
name:machine ‘am, rasel idle
initial:i1dle

. . .\ reset
(running) -error-> (fault) -reset-> (1dle) calibration

(1dle) -start-> (running) -stop-> (idle)
(1dle) -calibration-> (calibrate) -reset-> (1idle)

}>

Manifesto

High-level algorithmic library

Algorithm Pseudo code
Filtering Linear Kalman Kalman
Filtering Extended Kalman Smith et al.

Filtering Unsented Kalman Juliet et al.

Manifesto

Maximise portability

Computation nodes Graphical interfaces Documentation

@ § 87

Syntax definition

Function composition

function(arguments, optional:value)

Special pre/post/infix operators

X + Y plus(x, y)

—X not(x)

{a, b, c} set(a, b, c)
Alternatives

X € Reals X 1nh Reals element(x,Reals)

Syntax definition

Minimal syntax, avoid ambiguity!

node(
name:’hello world’,
ihitialise: print(’hello world’)

)

Function composition

Textual code one-to-one Abstract syntax tree

<node>
<option name="name">
<string>hello world</string>
</option>
<option name="1nitialise">
<print>
<string>hello world</string>
</print>
</option>
</node>

node(
name: ’hello world’,
initialise: print(’hello world’)

)

Complete node example
node (

name: "example Fibonacci',
definitions: block(

incoming and outgoing signals
question € Signals (N, rosTopic: ‘/fibonacci/question’,
onNew: answer = Fibonacci(guestion)),

answer € Signals (N, rosTopic: '/fibonacci/answer'),

Definition of a function
define Fibonacci(n € N) N
if(n=0VvVn=1,
return(n),
return (Fibonacci(n-1)+Fibonacci(n-2))

Complete node example

Brief command-line examples

The rol compiller

Robotics Language Tutorial - IEEE IRC 2019

parameters

code
(text)

rol compiler

rol processes two types of

IN three steps:

information: * Input
e code transformations
e parameters e outputs
Inputs Transformations Qutputs
» parameters
T A A T A A T A A
v code v code \
(xml) (xml)
RoL parser transformer ROS C++ » text
l l l
v v | xml v
mini-language \ 4
parser transformer HTML GUI » text
I 1 1
\ 4 v | xml v
mini-language v
parser transformer Documentation » text

rol compiler

Code: textual or abstract syntax tree representation of a program

Parameters: code-independent information that changes the
behaviour of the compiler

rol compiler

Inputs:
Language parsers

Transformations:

Annotations on abstract syntax tree,
computations, decision making, file copying/creating

Outputs:
Serialisation, code generators

rol compiler

Brief command-line examples

Remarks

Robotics Language Tutorial - IEEE IRC 2019

 Decision making

 Temporal logic, Finite state machines
 Petri nets, behaviour trees

 Physical systems modelling and control

 Lagrangian mechanics
* (Control/observer design
e Filtering and estimation

Abstraction languages

Roadmap

* Learning

Deep learning
Reinforcement learning

* Industry applications

Fault tolerance
Model checking
Deployment
Developer tools

Robotics Language

The team behind

- Combined 40+ years robotics
 Faculty, PhDs, MSc

* RoboCup

* Industry

* ROS contributors

Robotics Language

Sponsors

Q~.

RE RIT ::ROSINd

Robot Care Systems Industrial Quality-Assured
RRC Robotics Robot Software Components

Horizon 2020 framework

Robotics Language

Reception

“The Robotics Language has the potential to improve the
way we program robots. We look forward to its future
development.”

Roger Barga, General Manager, AWS Robotics and Autonomous Services at Amazon Web Services

Q&A

1. Do | need to learn a new language”
2. How about performance?

3. How many users”?

https://github.com/robotcaresystems/RoboticsLanguage

Robotics Language

& github.com

Pull requests Issues Marketplace Explore

] robotcaresystems / RoboticsLanguage ® Unwatch~- 6 « Unstar 19 yFork 2
- . - ' <> Code Issues 0 Pull requests 0 Projects O Insights Settings
O O I n g 0 I c o n I I u I O n S [] The Robotics Language is an open compiler where users can develop languages to generate ROS Edit
code
ros-industrial ros compiler robotics-language ros-node Manage topics

©® 433 commits iz 7 branches o> 0 releases . 1environment g2 3 contributors : Apache-2.0

||
Branch: development - = New pull request Create new file = Upload files Clone or download -

Find file

"8 gadlopes docker Latest commit 817164 10 hours ago
m Development/Editors/atom fixed comment 6 months ago
m m m RoboticsLanguage docker 10 hours ago
. I m r V t h m I I r n I n g .gitignore fixed some issues with pip 2 days ago
B .gitlab-ci.yml initial commit 11 months ago
2 ACKNOWLEDGEMENTS.md initial commit 11 months ago

£ BUGS.md initial 5 months ago

u u 2 LICENSE initial commit 11 months ago

. e I I l e e O O I ‘ S al l l | a e =) README.md docker file 18 hours ago
g TODO.md todo 6 months ago

B setup.cfg testing 8 months ago

B setup.py version 10 hours ago

» Create plugins ,

pypi package 0.3.8 m,-_'_,}_:_?_;_‘;_; python 2.7 J docker build repo not found

12t ROL

News

https.//github.com/robotcaresystems/RoboticsLanguage

e We will be present at IEEE IRC 2019 to give a day-long tutorial on the Robotics Language.
e We presented recently at the AWS re:invent conference 2018

What is the language of Robotics?

This is a very deep question with difficult answers. If robotics is meant to equal or even surpass
human capabilities, then the language of robotics should be able to describe human behaviour, all
the way from muscle activation to intelligence. Achieving this on a single programming language
seems like an impossible task. This project proposes a new framework where multiple domain
specific languages are used together to describe the behaviour of a robot. Specifically, the
Robotics Language (RoL) is a high level robotics programming language that generates ROS c++

https://github.com/robotcaresystems/RoboticsLanguage

Abstraction languages

c++, python are development tools rol makes the development tool you need

3D printer

Preparations

Linux/mac with ROS installed:

pip 1nstall RoboticslLanguage

Docker installed

docker pull roboticslanguage/rol

Otherwise:

https://github.com/robotcaresystems/RoboticsLanguage

