
Robotics Language Tutorial
Gabriel A.D. Lopes

Floris Gaisser

Dimitrios Chronopolous

RRC Robotics, the Netherlands
g.lopes@rrcrobotics.com

IEEE IRC 2019

mailto:g.lopes@rrcrobotics.com

Robotics Language
Languages to address the complexity

of designing robotics software

Sensors

Actuators

Environment Mechanical
body

IO electronics

Computation
electronics

IO software

Perception

Control

Decision making

Learning

Fault detection

Developer tools

Testing

Simulation

Deployment

Robotics Language

Lea robot:

- 70 sensors

- Autonomous Navigation

- User interface

- ROS

WePods:

- 8 cameras

- 6 lidar

- 3 radars

- Self driving bus

- ROS

Languages to address the complexity

of designing robotics software

Robotics Language
Languages to address the complexity

of designing robotics software

Robotics Language

Domain Specific Languages are computer languages
specialised to a particular application domain.

Abstraction languages are programming languages with the
purpose of focusing on the required information to solve a
problem. They “transcompile” into standard programming
languages.

Robotics Language

1. A general purpose programming language for robotics

Robotics Language

2. A general purpose compiler

rol

What is this tutorial about?

Robotics Language

Robotics Language

Abstraction languages

Standard

programming

languages

Abstractions

Automation

Simplicity

Open

Problems in Robotics development

1. Big leap from behaviour to code

2. Reinventing the wheel

3. Developer tools

1. Big leap

p(xk|zk) = �p(zk|xk)

Z
p(xk|xk�1)p(xk�1|zk�1)dxk�1

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Conceptual idea in estimation

Abstract mathematical realisation (Bayesian estimation)

“If observation is good, update estimate.

If observation is less good, predict.”

update Predict

{ {

Numerical realisation (Kalman filter)

update

predict {

{

1. Big leap

Computer implementation

1. Big leap

Computer implementation

1. Big leap

Computer implementation

Numerical realisation

Conceptual idea

Abstract mathematical realisation

Big disconnect from conceptual idea to computer implementation

1. Big leap

Information

Algorithms

Mathematical formulas

Implementation in a languageAbstraction

Stakeholders

Engineers

Programmers

1. Big leap
Development process

2. Reinventing the wheel

Algorithm 1 Flow of the adopted evolutionary algorithm
1: procedure AD-HOC EA(PopSize, MaxGen)
2: t← 0;
3: Pop(t)← Initialization(PopSize);
4: Evaluation(Pop(t));
5: repeat
6: t′ ← t+ 1;
7: Pop(t′)← ∅;
8: i← 0;
9: repeat
10: p1 ← SelectOneParent(Pop(t));
11: p2 ← SelectOneParent(Pop(t));
12: c← Crossover(p1, p2);
13: if UniformReal[0, 1] ≤MutRat then
14: c← Mutation(c);
15: end if
16: Pop(t′)← Pop(t′) ∪ {c};
17: i← i + 1;
18: until i ≥ PopSize;
19: Pop(t)← Pop(t′); ◃ Generational model
20: Evaluation(Pop(t));
21: t← t′;
22: until t ≥MaxGen;
23: end procedure

Thanks to the subtle and strong correspondence between
proofs and programs, finding proofs can now be regarded as
writing programs. In the realm of evolutionary computation,
Genetic Programming [24], [25], [26], [27] is a well known
and established branch which aims at automatically generating
computer programs fulfilling given specifications. Since Coq
tactics are similar to CPU instructions, among the variants of
Genetic Programming is Linear Genetic Programming [28],
[29] which is in particular designed for handling programs in
the form of instruction sequences.
While techniques developed for Linear Genetic Program-

ming may be a good choice to perform the role of generating
CPU instruction sequences, i.e., searching for proofs, we
employ a more rudimentary evolutionary approach in this
study, because the goal is to make a first, simplistic attempt
for linking two domains, proof assistants and evolutionary al-
gorithms, to examine whether some proof-of-principle results
can be obtained. Search methods which are highly customized
for generating programs of specific “machines/CPUs” might
not be totally adequate for the “Coq CPU,” which is yet fully
understood from the viewpoint of evolutionary algorithms.
As a consequence, in this study, we adopt a simple, GP-like

evolutionary algorithm of which the pseudo code is outlined in
Algorithm 1 to work with Coq using the standard library and
a “tactic base” consisting of 153 tactics, which is available for
download from our GitHub repository. Since the goal of this
work is to make an attempt to link evolutionary algorithms
and proof assistants, instead of aiming to find a proof of some
specific logical sentence, we use only the maximum generation

Algorithm 2 Initialization of the population
Output: Initialized population;
1: procedure INITIALIZATION(PopSize)
2: Pop← ∅;
3: i← 0;
4: repeat
5: c← ();
6: L← UniformInt[Lℓ, Lu];
7: j ← 0;
8: repeat
9: Tno ← UniformInt[0, Tmax];
10: Append(c, Tno);
11: j ← j + 1;
12: until j ≥ L;
13: Pop← Pop ∪ {c};
14: i← i+ 1;
15: until i ≥ PopSize;
16: return Pop;
17: end procedure

as the stopping criterion. For the experiments conducted in this
study, we use the same tactic base and set PopSize = 1000,
MaxGen = 100, and MutRat = 0.25. As explained, the
tactic base can be considered as the “Coq CPU” instruction
set. As an example, if there are 8 tactics in the tactic base, we
number them from 0 to 7 as

Tacticbase: {T0, T1, T2, T3, T4, T5, T6, T7} .

Then, the chromosome representation adopted in this work is a
variable-length integer sequence because the number of tactics
needed to complete a proof may vary in length. For example,
if there are chromosomes A and B:

Chromosome A :(5, 0, 1, 6)

Chromosome B :(1, 5, 5, 7, 3, 6, 4) ,

these two chromosomes respectively correspond to the follow-
ing Coq proofs:

Individual A Individual B
Proof. Proof.
intros. intros.
T5. T1.
T0. T5.
T1. T5.
T6. T7.
Qed. T3.

T6.
T4.
Qed.

The tactic intros is not included in the adopted tactic base
and is inserted in the front of each individual.
The procedure for initializing the population is given in

Algorithm 2. Currently, the tactic base contains 153 tactics,
and thus, Tmax is 152. We use Lℓ = 4 and Lu = 15 in all the
conducted experiments.

ar
X

iv
:1

60
2.

07
45

5v
1

 [c
s.N

E]
 2

4
Fe

b
20

16

Automatically Proving Mathematical Theorems with
Evolutionary Algorithms and Proof Assistants

Li-An Yang, Jui-Bin Liu, Chao-Hong Chen, and Ying-ping Chen∗
Department of Computer Science, National Chiao Tung University, HsinChu City, TAIWAN

layang@nclab.tw, jbliu@nclab.tw, chchen@nclab.tw, ypchen@cs.nctu.edu.tw

Abstract—Mathematical theorems are human knowledge able
to be accumulated in the form of symbolic representation, and
proving theorems has been considered intelligent behavior. Based
on the BHK interpretation and the Curry-Howard isomorphism,
proof assistants, software capable of interacting with human
for constructing formal proofs, have been developed in the past
several decades. Since proofs can be considered and expressed
as programs, proof assistants simplify and verify a proof by
computationally evaluating the program corresponding to the
proof. Thanks to the transformation from logic to computation,
it is now possible to generate or search for formal proofs directly
in the realm of computation. Evolutionary algorithms, known to
be flexible and versatile, have been successfully applied to handle
a variety of scientific and engineering problems in numerous
disciplines for also several decades. Examining the feasibility
of establishing the link between evolutionary algorithms, as the
program generator, and proof assistants, as the proof verifier, in
order to automatically find formal proofs to a given logic sentence
is the primary goal of this study. In the article, we describe
in detail our first, ad-hoc attempt to fully automatically prove
theorems as well as the preliminary results. Ten simple theorems
from various branches of mathematics were proven, and most
of these theorems cannot be proven by using the tactic auto
alone in Coq, the adopted proof assistant. The implication and
potential influence of this study are discussed, and the developed
source code with the obtained experimental results are released
as open source.
Index Terms—Evolutionary algorithm, proof assistant, Coq,

automatic theorem proving.

I. INTRODUCTION

Human knowledge has been accumulated in various forms.
Among them are theorems in mathematics that are presented in
a precise fashion and can be applied to innumerous domains.
The importance of mathematics and its influence on science,
engineering, and all kinds of technologies are undoubtedly
beyond discussion. Modern mathematics are formal systems
composed of four components: an alphabet, a grammar, ax-
ioms, and inference rules. Given the alphabet and grammar,
in an information technology way of thinking, the development
of a mathematical field or branch can be viewed as the growth
of a database containing knowledge, in the form of logical
sentences considered true or proven to be true. Initially, the
database is empty. The first step is to put in the axioms,
which are logical sentences considered true, followed by a
loop: proving a new logical sentence by applying the inference
rules to the database and inserting the proven logical sentence
back to the database. The proven logical sentences are called
theorems, propositions, lemmas, or corollaries.

Before the proposal of the link between logic and computa-
tion, the principle of Propositions as Types, logic and computa-
tion were previously considered two separate fields [1]. Based
on the BHK interpretation [2], [3] and the Curry-Howard
isomorphism [4], [5], (functional) programming languages,
including Haskell [6], and proof assistants, such as Coq [7],
HOL [8], Isabelle [9], and LEGO [10] have been developed.
Due to the transformation from logic to computation, proofs
to mathematical theorems can then be expressed as programs
and verified computationally.

Mathematical theorem proving has been considered intel-
ligent behavior [11]. Even for today, while a Go computer
program, called AlphaGo, able to beat the human Go champion
of Europe by five games to zero [12], [13] exists, the ability of
computers to fully automatically prove mathematical theorems
still seems quite limited. It is probably because most of
the effort made on proof assistants aims at automated proof
checking, which ensures the correctness of the proof, and at
providing a proof development environment interacting with
human. Moreover, there seems to be a lack of effective search
mechanisms, which can “think outside of the box,” especially
randomized or stochastic ones, used for this purpose.

Evolutionary algorithms [14], as stochastic methods, have
been known for their flexility and versatility. They have been
successfully applied to handle a variety of scientific and engi-
neering problems in numerous disciplines. Hence, in this study,
we would like to make our first attempt to link evolutionary
algorithms, as the program generator, and proof assistants, as
the proof verifier, in a simplistic way. The primary goal of this
study is to assess the feasibility of establishing frameworks ca-
pable of fully automatically proving mathematical theorems by
integrating the facility of generating programs and the facility
of verifying proofs as evaluating programs. Specifically, we
will design a straightforward evolutionary algorithm without
complicated mechanisms and simply adopt Coq [7] for fitness
evaluation. The preliminary results indicate the feasibility and
demonstrate that this direction of research is promising.

The remainder of the paper is organized as follows. Sec-
tion II introduces the background regarding the primary goal
of the present work. Section III describes in detail the ad-hoc
attempt we adopt to investigate the feasibility of automatically
proving mathematical theorems. The preliminary results ob-
tained in our experiments are presented in section IV, followed
by section V giving a broad discussion on this work and its
potential influence. Finally, section VI concludes the paper.

Pseudo-code

Pseudo-code

2. Reinventing the wheel

Matlabc++ Python Mathematica

c++ with templates

c++ with ROS Python with classes

2. Reinventing the wheel

Search “Kalman Filter” in GitHub:

3. Developer tools

Used programming languages are too general purpose.

Not designed for robotics

c++: performance

 python: prototyping

Most middleware build on top of general purpose languages

3. Developer tools

c++
Going strong since

1979

Abstraction languages

Abstraction languages are programming languages
with the purpose of focusing on the required
information to solve a problem.

Abstraction languages “transcompile” into standard
programming languages.

e.g.: TypeScript, CoffeeScript

Abstraction languages

Abstraction

Library Library Library Abstraction

Abstraction

Library

Language A Language A

Language B

Language C

Horizontal abstraction Vertical abstraction

Abstraction languages

Abstraction languages

High level representation

Model checking

Executable code

Debug/Monitoring Interfaces

Documentation

Correct by design

Certification

Abstraction languages

Developers

Languages + Tools

Non-technical users

Robot

behaviour knowledge

Program
Part I, The philosophy of the Robotics Language and the compiler
•Background
•The ROSin project
•The language of robotics
•Compiler architecture

Part II, Using the Robotics Language
•Types, variables, functions
•Abstraction languages
•Event-based vs synchronous execution
•Special constructs
•Extending the language

Program

Part III, Tools
•Temporal Logic
•Finite State Machines
•Deep learning
•Fault Detection

Part IV, Developing abstraction languages
•Compiler architecture
•A Parser for a finite state machine abstraction language
•Transformer and code generation

ROS industrial
Robotics Language Tutorial - IEEE IRC 2019

	IEEE	IRC	2019,	February	27,	Genoa	

©	ROSIN	–	ROS-Industrial	Quality-Assured	Robot	Software	Components
This	project	is	funded	by	the	European	Union‘s	Horizon	2020	research	
and	innovation	programme	under	grant	agreement	No	732287

rosin-project.eu

ROS-INDUSTRIAL QUALITY-ASSURED 
ROBOT SOFTWARE COMPONENTS  

Carlos	Hernandez	Corbato	 c.h.corbato@tudelft.nl		
ROSIN	Coordinator	 	 TU	Delft	-	Robotics	Institute

mailto:c.h.corbato@tudelft.nl

		IEEE	IRC	2019,	February	27,	Genoa	

©	ROSIN	–	ROS-Industrial	Quality-Assured	Robot	Software	Components

ROSIN PROJECT

■ ROSIN: 4 years, ~8 million EUR IA H2020-ICT-2016-1

■ Speed-up the industrial uptake of advanced robotics applications.

■ Aims to consolidate the (many) EU-based ROS activities.

■ Builds upon the ROS-Industrial Europe community, to make it sustainable and leading
worldwide.

		IEEE	IRC	2019,	February	27,	Genoa	

©	ROSIN	–	ROS-Industrial	Quality-Assured	Robot	Software	Components

ROSIN Project  
www.rosin-project.eu 
4 years, ~8 million EUR 
 
 

ROS Education 

• Academy for
professionals

• School for students

This project has received funding from the European Union’s Horizon 2020  
research and innovation programme under grant agreement no. 732287.

Software Quality  
Assurance

• Community involvement
• Continuous Integration
• Code scanning
• Model-in-the loop

• Speed-up the industrial uptake of advanced robotics applications in EU
• Robot Operating System (ROS) for an open-source EU Digital Industrial Platform for

Robotics
• ROS-Industrial Europe community: self-sustaining and leading world-wide
3+ Million EUR funding
• For ROS-I devel. and

education.
• 4 calls a year:  

 Nov 16

http://www.rosin-project.eu/

		IEEE	IRC	2019,	February	27,	Genoa	

©	ROSIN	–	ROS-Industrial	Quality-Assured	Robot	Software	Components

Grants for robot software development:  
Focused Technical Projects

What 
service?

 

Who  
can benefit?  

How 
to apply?

■ Finance ROS open source development

■ Concrete industry need:  
driver, algorithm, application template, license or code audits…

■ We fund 1/3 of the development efforts

■ Up to EUR 100K ~ 1 year duration

☛ also ROS education actions 

■ Robot software developers and users: companies, research centers…

■ EU H2020 program eligible entities (small consortiums)

■ Open call till 2020 at: http://rosin-project.eu/ftps

■ Simple application template (~5 pages):

■ What / How / Proof of commitment > next cut-off  
 April 5th

http://rosin-project.eu/ftps
http://rosin-project.eu/ftps

		IEEE	IRC	2019,	February	27,	Genoa	

©	ROSIN	–	ROS-Industrial	Quality-Assured	Robot	Software	Components

MORE SERVICES

Quality Assurance
Working with the community
to have better tools:

https://discourse.ros.org/c/quality

• continuous integration

• code scanning
• model-in-the loop

• automated test generation

Education
Training professionals in ROS to
meet industry needs:

• ROS curriculum

• ROS-I Academy prof. trainings

• ROS-I Schools for students

• ROS MOOC on edX

• Train ROS trainers

Alexander Ferrein

ROSIN Education Activities

FH Aachen

ferrein@fh-aachen.de

Andrzej Wasowski

ROSIN Quality Assurance

ITU University of Copenhagen

wasowski@itu.dk

		IEEE	IRC	2019,	February	27,	Genoa	

©	ROSIN	–	ROS-Industrial	Quality-Assured	Robot	Software	Components

More information

http://rosin-project.eu/ftps

info@rosin-project.eu

http://rosindustrial.org

Supported by ROSIN – ROS-Industrial Quality-Assured Robot
Software Components.
More information: http://rosin-project.eu/
This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement no. 732287.

ROSIN
Consortium

Mirko Bordignon
Fraunhofer IPA
mirko.bordignon@ipa.fraunhofer.de

Carlos Hernandez Corbato
Delft University of Technology
c.h.corbato@tudelft.nl

Thilo Zimmermann
Fraunhofer IPA
thilo.zimmermann@ipa.fraunhofer.de

http://rosin-project.eu/

General purpose robotics language
Robotics Language Tutorial - IEEE IRC 2019

What is the language of robotics?

• What is the language of mathematics?

• What is the language of … life?

Deep question

What is the language of robotics?
• Physical systems modelling

• Decision making

• Learning

• Perception/Control

➡ How to describe a system and its behaviour?

➡ May need many languages

Existing tools and languages
• Hardware Description Languages (VHDL)

• Industrial scripting languages (Kuka:KRL, ABB:Rapid, Fanuc:Karel)

• Domain Specific Languages (SQL, Matlab, Excel)

• Tools for DSL (JetBrains MPS, Xtext)

• General purpose (c++, python)

• Middleware (ROS, Orocos)

Proposal
General-purpose abstraction language for robotics

• Behaviour ➙ Algorithms ➙ Mathematics:
As close to mathematics notation as possible

• High level algorithmic/language constructs

• Multiple abstraction languages

• Portability & reuse

Proposal
General-purpose abstraction language for robotics

A finite state machine
node(
 definitions: block(

 FiniteStateMachine<{
 name:machine
 initial:idle
 (idle) -start-> (running) -stop-> (idle)
 }>,

 # a topic to fire transitions
 fire ∈ Signals(Strings, rosTopic:'/fire', onNew: machine.fire(fire))
),
 events:
 when(□[3,0](machine.state(‘running’),
 machine.fire(‘stop’)
)
)

“Mini-abstraction language”

Mathematical

symbols

High level statements

• Mathematical notation (unicode)

• Time/state abstractions

	ROSIN	–	ROS-Industrial	Quality-Assured	Robot	Software	Components		

	

3	

special	symbol	“Î”	can	be	interchanged	with	the	word	“in”	or	“element	of”	and	“�”	can	be	

interchanged	with	“integers”.	Unicode	is	used	as	the	default	encoding.	Internally	the	RoL	is	a	

pure	statically	typed	functional	language.	Any	language	construct	is	converted,	or	can	be	

written,	into	a	functional	form,	e.g.:	

x Î � is	equivalent	to: element(x, integers)	

• Time	and	signals.	The	language	provides	mechanisms	for	naturally	expressing	signals.	An	explicit	

distinction	between	variables	and	signals	allows	to,	e.g.	construct	signal	processing	pipelines,	

use	of	temporal	operators,	etc.	

x Î signal(�,topic:”/some/signal”) // a ROS topic
w Î signal(�,device:”/dev/ttyUSB0”) // a serial stream
y Î signal(�) // a signal is an element of a function space
z Î �� // a variable contains elements of a set�

z = x[k] // Event-based assignment: z is set to the k’s element of x 	
z = x(t) // Time-based assignment: z is set to the value of x at time = t	
y = f(x) // A processing pipeline
z = f(x(t)) // Value of a single instance of the signal in time

• Mini-languages	enable	the	use	of	many	types	of	mathematical	notations,	text-based,	graphical,	

or	other	future	mediums.	For	example,	a	finite	state	machine	can	be	included	in	the	description	

of	the	node	using	the	following	mini-language:	

// The mini-language allows for a simpler representation of a finite state
machine description, rather then using c++ constructs. Graphical elements
show side-by-side with the textual description using web technologies
present in modern editors such as Atom (http://atom.io).
my_machine = language FiniteStateMachine
<{

 start(init)
 init –[a]-> calibrate –[b]-> idle
 idle <-> run -> error
 error -> calibrate

}>

// Function-based operations outside the mini language
setState(my_machine,”calibrate”) // set the state to calibrate
fireTransition(my_machine,”b”) // fire b, ending in the idle state
previous_state Î states(my_machine) // create new variable
previous_state = state(my_machine) // assign current state to variable
	

• Event	driven.	Expressions	are	automatically	updated	on	a	need	basis.	The	compiler	identifies	the	

relevant	signals/objects	for	an	expression	and	generates	the	necessary	code	on	the	call-back	

functions.	Consider	the	example:	

if �[0,30](¬signal(“/robot/active”)	 ¬state(emergency))
then signal(“/robot/sleep”)=true

This	compact	expression	translates	literally	to:	if	it	is	always	the	case	in	the	last	30	second	
interval	that	there	is	no	activity	and	that	the	robot	is	not	in	emergency	then	it	should	go	to	sleep.	
In	this	example	the	compiler	identifies	the	signal	“/robot/active”	and	the	state	“emergency”	as	

conditions	of	the	temporal	logic	“always”	operator	“�”	and	adds	the	necessary	code	to	the	call-

back	functions	of	the	signal	and	the	finite	state	machine	to	check	the	logical	condition	and	

execute	the	result	of	the	expression	if	needed.	

• An	explicit	separation	between	abstract	mathematical	objects	and	their	computer	

representation.	When	abstract	objects	are	used	the	compiler	has	to	inform	the	user	about	its	

	ROSIN	–	ROS-Industrial	Quality-Assured	Robot	Software	Components		

	

3	

special	symbol	“Î”	can	be	interchanged	with	the	word	“in”	or	“element	of”	and	“�”	can	be	

interchanged	with	“integers”.	Unicode	is	used	as	the	default	encoding.	Internally	the	RoL	is	a	

pure	statically	typed	functional	language.	Any	language	construct	is	converted,	or	can	be	

written,	into	a	functional	form,	e.g.:	

x Î � is	equivalent	to: element(x, integers)	

• Time	and	signals.	The	language	provides	mechanisms	for	naturally	expressing	signals.	An	explicit	

distinction	between	variables	and	signals	allows	to,	e.g.	construct	signal	processing	pipelines,	

use	of	temporal	operators,	etc.	

x Î signal(�,topic:”/some/signal”) // a ROS topic
w Î signal(�,device:”/dev/ttyUSB0”) // a serial stream
y Î signal(�) // a signal is an element of a function space
z Î �� // a variable contains elements of a set�

z = x[k] // Event-based assignment: z is set to the k’s element of x 	
z = x(t) // Time-based assignment: z is set to the value of x at time = t	
y = f(x) // A processing pipeline
z = f(x(t)) // Value of a single instance of the signal in time

• Mini-languages	enable	the	use	of	many	types	of	mathematical	notations,	text-based,	graphical,	

or	other	future	mediums.	For	example,	a	finite	state	machine	can	be	included	in	the	description	

of	the	node	using	the	following	mini-language:	

// The mini-language allows for a simpler representation of a finite state
machine description, rather then using c++ constructs. Graphical elements
show side-by-side with the textual description using web technologies
present in modern editors such as Atom (http://atom.io).
my_machine = language FiniteStateMachine
<{

 start(init)
 init –[a]-> calibrate –[b]-> idle
 idle <-> run -> error
 error -> calibrate

}>

// Function-based operations outside the mini language
setState(my_machine,”calibrate”) // set the state to calibrate
fireTransition(my_machine,”b”) // fire b, ending in the idle state
previous_state Î states(my_machine) // create new variable
previous_state = state(my_machine) // assign current state to variable
	

• Event	driven.	Expressions	are	automatically	updated	on	a	need	basis.	The	compiler	identifies	the	

relevant	signals/objects	for	an	expression	and	generates	the	necessary	code	on	the	call-back	

functions.	Consider	the	example:	

if �[0,30](¬signal(“/robot/active”)	 ¬state(emergency))
then signal(“/robot/sleep”)=true

This	compact	expression	translates	literally	to:	if	it	is	always	the	case	in	the	last	30	second	
interval	that	there	is	no	activity	and	that	the	robot	is	not	in	emergency	then	it	should	go	to	sleep.	
In	this	example	the	compiler	identifies	the	signal	“/robot/active”	and	the	state	“emergency”	as	

conditions	of	the	temporal	logic	“always”	operator	“�”	and	adds	the	necessary	code	to	the	call-

back	functions	of	the	signal	and	the	finite	state	machine	to	check	the	logical	condition	and	

execute	the	result	of	the	expression	if	needed.	

• An	explicit	separation	between	abstract	mathematical	objects	and	their	computer	

representation.	When	abstract	objects	are	used	the	compiler	has	to	inform	the	user	about	its	

Manifesto

• Abstract objects v.s. representation

• Event driven / synchronous

	ROSIN	–	ROS-Industrial	Quality-Assured	Robot	Software	Components		

	

4	

internal	representation.	The	intention	is	to	completely	eliminate	ambiguity	in	the	language.	For	
example,	an	integer	variable	can	be	defined	in	many	forms:	

X Î � // Abstract mathematical object. Compiler needs to decide how to
represent the object

y Î �(bits:16) // explicit declaration of the representation of the object

The	compiler	then	pre-processes	the	Robotics	Language	and	explicitly	informs	the	user	of	the	
choices	made	by	directly	annotating	the	code	(e.g.	using	Atom’s	linter):	

Using 16 bits to represent integer number

X Î � // Abstract mathematical object. Compiler needs to decide how to
represent the object

• Language	localisation.	Mathematics	is	a	universal	language,	but	spoken	language	is	not.	The	RoL	
provides	support	for	language	localisation	so	that	users	can	program	in	their	native	language.	
Internally,	words	in	different	languages	are	converted	to	English	tags.	

if x>0 then y=1 // English
se x>0 então y=1 // Portuguese
αν x>0 τότε y=1 // Greek

if(larger(x,0),set(y,1)) // all previous expressions converted internally to
functional representation

• Package	based	language	with	facilities	for	users	to	easily	define	new	packages	and	new	mini-
languages.	We	will	use	the	subdomain	taxonomy	proposed	in	[1].	Each	package	by	definition	
must	provide	examples,	documentation,	testing,	etc.	

• Multiple	outputs	for	the	language:	ROS	nodes,	unit	testing,	debugging,	profiling,	model	
checking,	documentation	generation,	user	defined	outputs.	

• A	web	portal	with	(see	‘Accessibility	and	Documentation’	in	[1]):	

◦ Documentation,	tutorials,	examples,	use	cases.	
◦ Facilities	to	develop	new	packages	and	mini	languages,	tutorials.	
◦ A	“shop”	to	enable	a	professional	market	beyond	open	source,	where	other	companies	sell	

their	own	packages	(beyond	the	scope	of	this	project).	

• Development	IDE	based	on	Atom	(http://atom.io)	with	syntax	highlight,	linter,	auto-complete,	
building	(beyond	the	scope	of	this	project).	All	graphics	based	on	web	technologies	via	ROS	
bridge/roslibjs.	

4. Objectives	
The	main	objective	of	this	project	is	to	lay	the	base	for	the	RoL	by	developing	the	necessary	
infrastructure:	

• Define	the	syntax	of	the	base	robotics	language,	and	the	rules	for	creating	new	mini-languages	
• Define	 and	 implement	 the	 architecture	 for	 the	 base	 compiler	 structure:	 mini-languages,	

packages,	and	outputs	
• Write	example	mini-languages,	packages,	and	outputs	as	the	base	for	a	working	system.	Users	

will	be	able	to	create	ROS	nodes	that	can	subscribe	or	publish	signals	and	perform	logic	and	
math	operations.		

• Write	tutorials	and	documentation	on	using,	and	extending,	the	RoL.	
	

when(□[5,0](◇[1,0](x) ∧ ◇[1,0](¬x)),
 print('oscillating faster then 1Hz for at least 5 seconds'))

Manifesto

Mini-abstraction languages

FiniteStateMachine<{

 name:machine
 initial:idle

 (running) -error-> (fault) -reset-> (idle)
 (idle) -start-> (running) -stop-> (idle)
 (idle) -calibration-> (calibrate) -reset-> (idle)

 }>,

Manifesto

High-level algorithmic library

Manifesto

Domain Algorithm Author Pseudo code

Filtering Linear Kalman Kalman …

Filtering Extended Kalman Smith et al. …

Filtering Unsented Kalman Juliet et al. …

….

Maximise portability

Manifesto

Computation nodes Graphical interfaces Documentation

Syntax definition
Function composition

function(arguments, optional:value)

Special pre/post/infix operators

x + y plus(x, y)
¬x not(x)
{a, b, c} set(a, b, c)

Alternatives
x ∈ Reals x in Reals element(x,Reals)

Syntax definition

node(
 name:’hello world’,
 initialise: print(’hello world’)
)

Minimal syntax, avoid ambiguity!

Function composition

node(
 name:’hello world’,
 initialise: print(’hello world’)
)

<node>
 <option name="name">
 <string>hello world</string>
 </option>
 <option name="initialise">
 <print>
 <string>hello world</string>
 </print>
 </option>
</node>

Textual code one-to-one Abstract syntax tree

Complete node example
node(
 name:"example Fibonacci",
 definitions: block(

 # incoming and outgoing signals
 question ∈ Signals(ℕ, rosTopic: ‘/fibonacci/question',
 onNew: answer = Fibonacci(question)),

 answer ∈ Signals(ℕ, rosTopic: '/fibonacci/answer'),

 # Definition of a function
 define Fibonacci(n ∈ ℕ) -> ℕ:
 if(n ≡ 0 ∨ n ≡ 1,
 return(n),
 return(Fibonacci(n-1)+Fibonacci(n-2))
)
)
)

Complete node example

Brief command-line examples

The rol compiler
Robotics Language Tutorial - IEEE IRC 2019

rol compiler
rol processes two types of
information:

• code

• parameters

in three steps:

• input
• transformations
• outputs

rol compiler

Code: textual or abstract syntax tree representation of a program

Parameters: code-independent information that changes the
behaviour of the compiler

rol compiler
Inputs:

Language parsers

Transformations:
Annotations on abstract syntax tree,

computations, decision making, file copying/creating

Outputs:
Serialisation, code generators

rol compiler

Brief command-line examples

Remarks
Robotics Language Tutorial - IEEE IRC 2019

Abstraction languages
Roadmap

• Decision making
• Temporal logic, Finite state machines

• Petri nets, behaviour trees

• Physical systems modelling and control
• Lagrangian mechanics

• Control/observer design

• Filtering and estimation

• Learning
• Deep learning

• Reinforcement learning

• Industry applications
• Fault tolerance

• Model checking

• Deployment

• Developer tools

Robotics Language
The team behind

• Combined 40+ years robotics

• Faculty, PhDs, MSc

• RoboCup

• Industry

• ROS contributors

Robotics Language
Sponsors

Horizon 2020 frameworkIndustrial Quality-Assured

Robot Software Components

Robot Care Systems

RRC Robotics

Robotics Language
Reception

Roger Barga, General Manager, AWS Robotics and Autonomous Services at Amazon Web Services

“The Robotics Language has the potential to improve the
way we program robots. We look forward to its future
development.”

Q&A

1. Do I need to learn a new language?

2. How about performance?

3. How many users?

https://github.com/robotcaresystems/RoboticsLanguage

Robotics Language

Looking for contributions!

• Improve the compiler engine

• Define the Robotics Language

• Create plugins

https://github.com/robotcaresystems/RoboticsLanguage

https://github.com/robotcaresystems/RoboticsLanguage

Abstraction languages

c++, python are development tools rol makes the development tool you need

3D printer

Preparations

pip install RoboticsLanguage

Linux/mac with ROS installed:

Otherwise:

https://github.com/robotcaresystems/RoboticsLanguage

docker pull roboticslanguage/rol

Docker installed

