Autolab
Release 2.0

Q. Chateiller, B. Garbin, J. Peltier and M. Jeannin

Sep 26, 2024

CONTENTS

Installation 5
Drivers (Low-level interface) 7
Devices (High-level interface) 23
Local configuration 27
Graphical User Interface (GUI) 29
OS shell 53
Doc / Reports 59
Release notes 61

About 65

Autolab, Release 2.0

“Forget your instruments, focus on your experiment!”

Autolab is a Python package dedicated to remotely controlling any laboratory instruments and automating scientific
experiments in the most user-friendly way. This package provides a set of standardized drivers for about 50 instruments
(for now) which are ready to use, and is open to inputs from the community (new drivers or upgrades of existing ones).
The configuration required to communicate with a given instrument (connection type, address, ...) can be saved locally
to avoid providing it each time. Autolab can also be used either through a Python shell, an OS shell, or a graphical
interface.

Drivers

~ 50 for now

Y

Python shell

Standard structure
able to deal with all
instrument specificities
and complexity
{connexion type,
Devices modules, etc.)

Instrument modelled Cross platform and
GUI as a hierarchy of: Collaborative
(guidelines &
Control Modules templates)
Monitoring Variables
Scan Actions + help
Plot + local driver
configuration saving

OS shell
\ 4

In this package, the interaction with a scientific instrument can be done through two different objects : the Drivers, or
the Devices.

* The Drivers (Low-level interface) provides a raw access to the package’s drivers functions.

>>> import autolab

>>> laserSource = autolab.get_driver('yenista _TUNICS',connection="'VISA',
—address="GPIBO::12::INSTR'")

>>> laserSource.set_wavelength(1550)

>>> laserSource.get_wavelength()

1550

>>> powerMeter = autolab.get_driver('newport_1918C', connection='DLL")
>>> powerMeter.get_power ()
156.89%e-6

>>> stage = autolab.get_driver('newport_XPS', connection='SOCKET")
>>> stage.go_home()

e The Devices (High-level interface), is an abstraction layer of the low-level interface that provides a
simple and straightforward way to communicate with an instrument, through a hierarchy of Modules,
Variables and Actions objects.

>>> import autolab

Create the Device 'my_tunics' defined in 'devices_config.ini'
>>> laserSource = autolab.get_device('my_tunics")
>>> laserSource.wavelength(1550) # Set the Variable

(continues on next page)

CONTENTS 1

Autolab, Release 2.0

(continued from previous page)
—»'wavelength'
>>> laserSource.wavelength() # Read the Variable
—'wavelength'
1550

>>> powerMeter = autolab.get_device('my_powermeter"') # Create the Device my_
—.powermeter'

>>> powerMeter.power() # Read the Variable
- 'power’
156.89e-6

>>> stage = autolab.get_device('my_stage') # Create the Device my_
- Stage'
>>> stage.home()
< 'home'

Execute the Action

The user can also interact even more easily with this high-level interface through a user-friendly Graphical
User Interface (GUI) which contains three panels: a Control Panel (graphical equivalent of the high-level

interface), a Monitor (to monitor the value of a Variable in time) and a Scanner (to scan a Parameter and
execute a custom Recipe).

AUTOLAB - Scanner - O *
Configuration Edit Panels
recipe_1 T T T
1.0 > b
parameter_buffer Address: system.parameter_buffer [Parameter | | |
Start | 0 ‘ Mean | 5 | Nb points
Linear
End [10 | width| 10 | step
. . 0.5
Step name Action Element address Type Value Unit
ﬁ set_ampli... Set mydummy.amplit.. st $evalnp.sin{syst.. V
&> amplitude Measu... mydummy.amplit.. st v
»» wait Do system.wait mat 0.05 5
[}
b
=2
£ 0
[=%
£
@
0.5
*
-1.0
0 1 2 3 4 5 7 9 10
. s parameter_buffer x = 0.655668, y = -1.29394
Add recipe X axis Nb traces Y axis
Start Resume Stop [Pl T e D3 Fiter data [20 plot Iil amplitude v
[continuous scan _ 79% Clear all Save all | Save scan2 [scan2 v B Scandata L Send to Plotter

All of Autolab’s features are also available through an OS shell interface (Windows and Linux) that can be used to
perform for instance a quick single-shot operation without explicitly opening a Python shell.

>>> autolab driver -D yenista_TUNICS -C VISA -A GPIBO::12::INSTR -w 1551
>>> autolab device -D my_tunics -e wavelength -v 1551

CONTENTS

Autolab, Release 2.0

p
© Note
Useful Links:
e Slides from our Autolab seminar (March 2020)
¢ Github project: github.com/autolab-project/autolab

» PyPi project: pypi.org/project/autolab/

¢ Online documentation: autolab.readthedocs.io/
g J

Table of contents:

CONTENTS 3

https://docs.google.com/presentation/d/1Uc6f0dEn6C18_0fr1pFuYSLmQ2AhIkVi9B5xTKfUIqw/edit?usp=sharing
https://github.com/autolab-project/autolab
https://pypi.org/project/autolab/
https://autolab.readthedocs.io/en/latest/

Autolab, Release 2.0

4 CONTENTS

CHAPTER
ONE

INSTALLATION

1.1 Python

This package works on Python version 3.6+.
* On Windows, we recommend installing Python through the distribution Anaconda: https://www.anaconda.com/

* On older versions of Windows (before Windows 7), we recommend installing Python manually: https://www.
python.org/

* On Linux, we recommend installing Python through the apt-get command.
Additional required packages (installed automatically with Autolab):

* numpy

* pandas

* pyvisa

* python-vxill

° qtpy

* pyqtgraph

* requests

* tqdm

¢ comtypes

1.2 Autolab package

This project is hosted in the global Python repository PyPi at the following address: https://pypi.org/project/autolab/.
To install the Autolab python package on your computer, we then advise you to use the Python package manager pip
in a Python environnement:

[pip install autolab]

If the package is already installed, you can check the current version installed and upgrade it to the latest official version
with the following commands:

pip show autolab
pip install autolab --upgrade

https://www.anaconda.com/
https://www.python.org/
https://www.python.org/
https://pypi.org/project/autolab/

Autolab, Release 2.0

Import the Autolab package in a Python shell to check that the installation is correct.

[>>> import autolab

1.3 Packages for the GUI

The GUI requires several packages to work, but depending on whether you are using Anaconda or not, the installation
is different:

With Anaconda:

conda install pyqtgraph
conda install qtpy
conda install pyqt

Without:

pip install pyqtgraph
pip install qtpy
pip install pyqt5

Note that thanks to qtpy, you can install a different Qt backend instead of pyqt5, such as pyqt6, pyside2, or pyside6

1.4 Development version

You can install the latest development version (at your own risk) directly form GitHub:

[pip install https://github.com/autolab-project/autolab/archive/master.zip

6 Chapter 1. Installation

CHAPTER
TWO

DRIVERS (LOW-LEVEL INTERFACE)

In Autolab, a Driver refers to a Python class dedicated to communicate with one particular instrument. This class
contains functions that perform particular operations, and may also contain subclasses in case some modules or channels
are present in the instrument. Autolab comes with a set of about 50 different Drivers, which are ready to use. As of
version 1.2, drivers are now in a separate GitHub repository located at github.com/autolab-project/autolab-drivers.
When installing autolab, the user is asked if they want to install all drivers from this repository.

The first part of this section explains how to configure and open a Driver, and how to use it to communicate with your
instrument. Then, we present the guidelines to follow for the creation of new driver files, to contribute to the Autolab
Python package.

Table of contents:

2.1 Load and use a Driver

The low-level interface provides a raw access to the drivers implemented in Autolab, through a Driver object, which
contains functions that perform particular operations in your instrument.

A Attention

Autolab drivers may contain internal functions, that are not dedicated to be called by the user, and some functions
requires particular types of inputs. The authors decline any responsibility for the consequences of an incorrect
use of the drivers. To avoid any problems, make sure you have a real understanding of what you are doing, or
prefer the use of the Devices (High-level interface).

To see the list of available drivers in Autolab, call the 1ist_drivers function.

>>> import autolab
>>> autolab.list_drivers()

© Note

The driver of your instrument is missing? Please contribute to Autolab by creating yourself a new driver, following
the provided guidelines : Write your own Driver

https://github.com/autolab-project/autolab-drivers

Autolab, Release 2.0

2.1.1 Load and close a Driver
The instantiation of a Driver object is done using the get_driver function of Autolab, and requires a particular
configuration:

* The name of the driver: one of the name appearing in the 1ist_drivers function (ex: ‘yenista_TUNICS’).

* The connection parameters as keywords arguments: the connection type to use to communicate with the instru-
ment (‘VISA’, ‘TELNET", ...), the address, the port, the slots, ...

>>> laserSource = autolab.get_driver('yenista TUNICS', 'VISA', address='GPIBO::12::INSTR
")

To know what is the required configuration to interact with a given instrument, call the config_help function with
the name of the driver.

[>>> autolab.config_help('yenista_TUNICS")]

To close properly the connection to the instrument, simply call the close function of the Driver.

[>>> lightSource.close()]

2.1.2 Use a Driver

You are now ready to use the functions implemented in the Driver:

>>> laserSource.set_wavelength(1550)
>>> laserSource.get_wavelength()
1550

You can get the list of the available functions by calling the autolab.explore_driver function with the instance of
your Driver. Once again, note that some of these functions are not supposed to be used directly, some of them may be
internal functions.

[>>> autolab.explore_driver(laserSource) J

2.1.3 Script example

With all these commands, you can now create your own Python script. Here is an example of a script that sweep the
wavelength of a light source, and measure the power of a power meter:

Import the package
import autolab
import pandas as pd

Open the Devices

myTunics = autolab.get_driver('yenista _TUNICS', connection='VISA', address=
— '"GPIBO::12::INSTR")

myPowerMeter = autolab.get_driver('powermeter_driver', connection='DLL")

Turn on the light source
myTunics.set_output (True)

(continues on next page)

8 Chapter 2. Drivers (Low-level interface)

Autolab, Release 2.0

(continued from previous page)

Sweep its wavelength and measure a power with a power meter
df = pd.DataFrame()

step = 0.01
start = 1550
stop = 1560

points = int(l + (stop - start)/step)
for wl in np.linspace(start, stop, points):

Set the parameter
myTunics.set_wavelength(wl)

Measures the values
wl_measured = myTunics.get_wavelength()
power = myPowerMeter.linel.get_power()

Store the values in a list
df = df.append({'wl_measured': wl_measured, 'power': power}, ignore_index=True)

Turn off the light source
myTunics.set_output (False)

Close the Devices
myTunics.close()
myPowerMeter.close()

Save data
df.to_csv('data.csv')

2.2 Write your own Driver

The goal of this tutorial is to present the general structure of the drivers of this package, in order for you to simply
create your own drivers and make them available to the community within this collaborative project. We notably
provide a fairly understandable driver structure that can handle the highest degree of instruments complexity (including:
single and multi-channels function generators, oscilloscopes, olectrical/optical frames with associated interchangeable
submodules, etc.). This provides reliable ways to add other types of connection to your driver (e.g. GPIB to Ethenet)
or other functions (e.g. get_amplitude, set_frequency, etc.).

© Note

To help you with writting your own drivers a few templates are provided on the Drivers GitHub page.

We will first discuss the generalities to create a new driver or modify an existing one and share it with the community
in getting started: create a new driver, that will particularly describe the required convention (location, files and
namings) as well as the actual way to share it with the community (addition to the main package), and finally we will
detail the typical driver structure as well as the required homogeneities. Those last will ensure that all the features of
the drivers you would add are best used by autolab’s utilities (helps, gui, parser, etc.).

2.2. Write your own Driver 9

https://github.com/autolab-project/autolab-drivers/tree/master/More/Templates

Autolab, Release 2.0

2.2.1 Getting started: create a new driver

To develop your own drivers, autolab provide you with a directory named local (located at ~/autolab/drivers/local,
where ~ represents the user root) created when the package is installed. This directory is inspected by autolab to search
for locally defined drivers. This way you may modify existing drivers (addition of new functions, etc.) or create new
drivers to drive new instruments not yet supported by autolab.

© Note

Each driver name should be unique: do not define new drivers (in your local folders) with a name that already exists
in the main package.

In the local_drivers directory, as in the main package, each instrument has/should have its own directory organized
and named as follow. The name of this folder takes the form <manufacturer>_<MODEL>. The driver associated
to this instrument is a python script taking the same name as the folder: <manufacturer>_<MODEL>.py. A second
python script, allowing the parser to work properly, should be named <manufacturer>_<MODEL>_utilities.py (find
a minimal template here). Additional python scripts may be present in this folder (devices’s modules, etc.). Please see
the existing drivers of the autolab package for extensive examples.

For addition to the main package: Once you tested your driver and it is ready to be used by others, you can send the
appropriate directory to the contacts (About).

A Warning

General note

* The imports of additional modules (numpy, pandas, time, etc.) should be made in the class they are needed
so that the imports are done only if needed (e.g. import visa within the Driver_VISA class).

2.2.2 Driver structure (<manufacturery>_<MODEL>.py file)

The Driver is organized in several python class with a structure as follow. The numbers represent the way sections
appear from the top to the bottom of an actual driver file. We chose to present the sections in a different way:

10 Chapter 2. Drivers (Low-level interface)

https://github.com/autolab-project/autolab-drivers/tree/master/More/Templates
https://github.com/autolab-project/autolab-drivers/tree/master/More/Templates
https://docs.python.org/tutorial/classes.html

Autolab, Release 2.0

1 - import modules (optional)

To import possible additional modules, e.g.:

import time
from numpy import zeros,ones,linspace

3 - class Driver CONNECTION

The class Driver_ CONNECTION: establish the connection with the instrument and define the com-
munication functions.

As a reminder, communication with instruments generally occurs with strings that are set by the manu-
facturer and specific to the instrument model. To receive and send strings from and to the instrument we
first need to establish a connection. This will be done using dedicated python package such as pyvisa,
pyserial, socket and physical connections such as Ethernet, GPIB, or USB. See below for an example help
with using a VISA type of connection.

%* Caution

The connection types are referred to with capital letters in the classes names, e.g.:

class Driver_SOCKET():
class Driver_TELNET(Q):

When using the driver module (.py) the Driver_CONNECTION class is imported as the top layer, it inherits
all the attributes of the Driver class and run its __init__ function. It is the class that is used. Note that the
connection classes are located, within a driver module, below the Driver class, because they use it before
reaching their own __init__ function.

Here is a commented example of the Driver_CONNECTION class, further explained below:

2 2 2

#H#
RAHBRAHHRAHHRRA AR RARHRRA AR AAHH Connections ClaSSes ##RHHARAHHHAHHHHAHHHAHHHBRHH
##
class Driver_VISA(Driver): # Inherits all the attributes of the.
—class Driver

def __init__(self, address='GPIBO::2::INSTR', **kwargs): # 0) Definition,
—of the __init__ " function

import pyvisa as visa # 1) Connection library to use

rm = visa.ResourceManager() # Use of visa's ressource manager
self.inst = rm.get_instrument(address) # 2) Establish the.
—communication with the instrument

Driver.__init__(self) # 3) Run what is define in the Driver.__
—init__ function

Communication functions
def write(self, command): # 4) Defines a write function
self.inst.write(command) # Sends a string 'command' to the instrument

(continues on next page)

2.2. Write your own Driver 11

Autolab, Release 2.0

(continued from previous page)

def read(self): # 5) Defines a read function
rep = self.inst.read() # Receives a string 'rep' from the.
—instrument and return it
return rep
def query(self, query): # 6) Defines a query function: combine.

< your own write and read functions to send a string and ask for an answer
self.write(query)
return self.read()
def close(self): # 7) Closes the communication
self.inst.close()
HHHHHHBRRRRAR AR RRRA AR R H#HH Connections CclasSes #HHHHHBBAAHHHHHAHURBAHHHHHHHY
##

T T T T L L T A T T T L T T T T T T A T T T L T T T R A T N T T T T T T T T T T T T T T
TR TTTFTHTFTHTFTFTFTHTFTFFTTTFTTFTFTFTFTFTFFTFTFHFTFHFTFHFTHFTTTFTHFTHTFTFFTH7T

##

. J

In this case the Driver_ CONNECTION class is called Driver_VISA. To use a driver we usually create an
instance of the Driver_CONNECTION class (cf. Load and use a Driver):

>>> Instance = Driver_VISA(address='GPIBO::3::INSTR'") # Use the given ‘visa .
—address (i.e., GPIB address 3 and board_index 0)

This execute the __init__ function that (following this example labels):
1) import the connection type library

2) load the instrument (using its address and eventual other arguments)

3) run the Driver.__init__ (for everything not related with the connection to the instrument, detailed
in the Driver class section)

In general, the __init__ function should establish the connection and store the instrument Instance in a
class attribute (here: self.inst). (The communication functions that follow will use this attribute.)

Importantly, the communication functions are (re-)defined in this class including write [4)], read [5)], query
[6)] and close [7)] functions that are the bare minimum. They are the ones that must be used in all the
other classes (Driver, Module_, etc.). They must take a string as argument and return a string, without
any termination character (e.g. \n, \r, etc.). This way several connection classes can coexist and use
the same other classes allowing different possible physical connections and in general more flexibility.

%* Caution

Several points are worth noting:

* 0) The __init__ function definition should explicitely contain all the arguments that are nec-
essary to establish the communication (in this exemple address) along with a default value (for
example the one that works for you), in order for the automatic autolab help to behave properly.
The __init__ function definition should also have an extra argument **kwargs allowing to
accept and possibly pass any extra argument provided.

* 3) For more complicated instruments an additional argument **kwargs would be provided,
giving:

[Driver .__init__(self, **kwargs) }

This enables passing extra arguments (e.g. slot configuration, etc.) to the Driver
class, that will instantiate the instrument configuration, in the form of a dictionnary.

12 Chapter 2. Drivers (Low-level interface)

Autolab, Release 2.0

* 7) The close function is mandatory, even though you do not use it in any of the other classes of
the <manufacturer>_<MODEL=>.py file.

Further instrument complexity:

With further instrument and/or connection type complexity you will need to add other argu-
ments to the __init__ function of Driver_CONNECTION class. As an example to add an
argument board_index for a GPIB connection type, you would need to modify the example line
0) to:

[def __init__(self, address=19, board_index=0, **kwargs): J

You may also need to pass arguments to the class Driver (see next section), that may come from
e.g. the number of channels of an oscilloscope or the consideration of an instrument with slots,
you would need to modify line 3) of the example:

[Driver .__init__(self, **kwargs)]

Please check out existing autolab drivers for more examples and/or to reuse existing connection
classes (these would most likely need small adjustments to fit your instruments).

© Note
Help for VISA addresses

For visa module to work properly, you need to provide an address for communication, that you may be
able to get types the few next lines:

import pyvisa as visa
rm = visa.ResourceManager()
rm.list_resources()

Just execute them before and after plugging in your instrument to see which address appears. For
ethernet connections, you should know the IP address (set it to be part of your local network) and the
port (instrument documentation) of your instrument.

Examples of VISA addresses can be find online here :

TCPIP::192.168.0.5::INSTR
GPIBO®::3::INSTR

2 - class Driver

The class Driver: establishes the connection with internal modules or channels (optional as dependent
on the instrument, see next section) and defines instrument-related functions.

After the communication with your instrument is established, we need to send commands or receive
answers (to get the results of a query or a requested command). The communication part being man-
age by the class Driver CONNECTION, any time we want to send a (instrument-specific) command to
the instrument from the class Driver, we need to use the communication functions defined in the class
Driver_CONNECTION.

The class Driver_ CONNECTION inherits all the attributes of the class Driver. The __init__ function
of the class Driver is run by the class Driver CONNECTION. The Driver class will act as your main
instrument.

2.2. Write your own Driver 13

https://pyvisa.readthedocs.io/en/latest/

Autolab, Release 2.0

Here is a commented example of the class Driver, further explained below:

class Driver():
def __init__(self):
- function
import time
—ssetup additional attributes

self.write('VUNIT MV')
—instantiate the instrument (e.g. set the

def set_amplitude(self,amplitude):
—value to the instrument
self.write(£'VOLT {amplitude/")
—sspecific
def get_amplitude(self):
—value to the instrument
return float(self.query(£'VOLT?'))
—.instrument specific
def single_burst(self):
—.an action
self.write('BRST SINGLE')
—instrument specific

def idn(self):
~with all instruments
self.write('*IDN?")
—all instruments
return self.read()
<;an instrument

#

1) Definition of the *°__init__ .

2) Additional imports and/or.

#

3) Run additional commands to..

vertical unit to be used)

#

#

#

#

4) Defines a function to set a.

5) Sets the amplitude, instrument.
6) Defines a function to query a.
7) Returns the amplitude,..

8) Defines a function to perform.,

9) Triggers a single burst,..

10) This function should work.
11) '"*IDN?' should be understood by.,

12) Returns the identification of.

When the class Driver_ CONNECTION is is instantiated, the __init__ function is executed. It

does the following (following this example labels):
1) import additional libraries

2) run additional commands to instantiate the instrument (e.g. set the vertical unit to be used)

%" Caution

following examples.

For further instrument complexity, including multi-channels instruments (generators, oscilloscopes,
etc.) or instruments with slots, the instantiation of additional classes must be done here. See the

In general, the __init__ function should run instrument-related initializations. If nothing in particular

needs to be done then, one can just:

def __init__(self, nb_channels=2): # 1)

pass

Importantly, the class Driver defines all the functions that are related to the main instrument: to set
[4))/query [6)] some values (e.g. the output amplitude of a function generator) or perform actions (e.g.

trigger a single burst event).

14

Chapter 2. Drivers (Low-level interface)

Autolab, Release 2.0

%% Caution

Several points are worth noting:

1) Favor python f strings (£' ") that are more robust, especially when an argument has to be passed
to the function [5)].

2) You should explicitely convert the string returned by Driver CONNEXION.query() (or
Driver_ CONNEXION.read) to the expected variable type [7)].

3) For more complex instruments (i.e. with additional classes), please refer to the next section. In
general, only the functions associated with the main instrument should be found here.

Further instrument complexity:

Here is a way to modify the __init__ function of the class Driver to deal with the case of
a multi-channel instrument. (Note: some of the lines have been removed from the previous
example for clarity.) It is further explained below:

def __init__(self, nb_channels=2): # 1) Definition of the **__init_
—_ " function

self.nb_channels = int(nb_channels) # 2) Set arguments given to.
—the class as class attributes to be re-used elsewhere (within the.
—class)

for i in range(l, self.nb_channels+1):
setattr(self, f'channel{i}', Channel(self, 1)) # 3) Set.
—additional Module_MODEL classes (called Channel here) as classes.
—attibutes

Here, the number of channels is provided as argument to the __init__ function [1)], and for
each channel [3)] an attribute of the class Driver is created by instantiating an additional class
called Channel. The line 3) is formally equivalent to (considering: i=1):

[self.channell = Channel(self, 1) J

All the channels are thus equivalent in this example as they use the same additional class
(Channel). The arguments provided to the class Channel are: all the attributes of the actual
class (Driver) and the number of the instantiated channel; both will be used in the additional
class (e.g. the connection functions, etc.)

The previous structure should be used only if the physical slot configuration is naturally fixed
by the manufacturer (a power meter with two channels for instance). In the particular case
of an instrument with “slots’, all the channels are not equivalent. They rely on different
physical modules that may be disposed differently and in different numbers for different users.
Then one class for each different module (that are inserted in a main frame) should be defined
(Module_MODEL). Here is a way to modify the __init__ function of the class Driver to deal
with the case of an instrument with slots:

def __init__(self, **kwargs):

Submodules loading
self.slot_names = {}
prefix = 'slot'

(continues on next page)

2.2. Write your own Driver 15

Autolab, Release 2.0

(continued from previous page)

for key in kwargs.keys():
if key.startswith(prefix) and not
slot_num = key[len(prefix):]
module_name = kwargs[key].strip(Q)
module_class = globals() [f'Module_{module_name;}']
if f'/key} name' in kwargs.keys(): name = kwargs[f'{key}_

_name' in key:

—name']
else: name = f'{key}_{module_name}'
setattr(self,name,module_class(self,slot_num))

self.slot_names[slot_num] = name

This will parse the arguments received by the __init__ function (of the class Driver) in the
**kwargs appropriately to instantiate the right combination Modules/Slots providing the Mod-
ules (additional classes) follow some naming conventions (explained in the next section).

© Note

For the particular case of instruments that usually returns one-dimensionnal traces (e.g.
oscilloscope, spectrum annalyzer, etc.), it is useful to add to the class Driver some user
utilities such as procedure for channel acquisitions:

User utilities
def get_data_channels(self, channels=[], single=False):
"""Get all channels or the ones specified"""

previous_trigger_state = self.get_previous_trigger_state() o
o # 1)

self.stop() o
o # 2)

if single: self.single() o
< # 3)

while not self.is_stopped(): time.sleep(0.05) o
. # 4)

if channels == []: channels = list(range(l, self.nb_channels+1))

for i in channels:
if not(getattr(self, f'channel{i}').is_active()): continue

getattr(self, f'channel{i}').get_data_raw() oo

. #5)
getattr(self, f'channel{i}').get_log_data() =

o # 6)
self.set_previous_trigger_state(previous_trigger_state) o

o #7)

def save_data_channels(self, filename, channels=[], FORCE=False):
if channels == []: channels = list(range(l, self.nb_channels+1))
for i in channels:
getattr(self, f'channel{i}').save_data_
—raw(filename=filename, FORCE=FORCE) # 8)
getattr(self, f'channel{i}').save_log_
—data(filename=filename, FORCE=FORCE) # 9)

These functions rely on some other functions that should be implemented by the user
(single, get_previous_trigger_state, etc.). The reader may find a find a full tem-
plate example here.

16 Chapter 2. Drivers (Low-level interface)

https://github.com/autolab-project/autolab-drivers/tree/master/More/Templates
https://github.com/autolab-project/autolab-drivers/tree/master/More/Templates

Autolab, Release 2.0

Overall, the function get_data_channels:
1) Store the previous trigger state
2) Stop the instrument
3) Trigger a single trigger event (if requested)
4) Wait for the scope to be stopped
5) Acquire the channels provided (all if no channel is provided)
6) Acquire the logs of the channels provided (all if no channel is provided)
7) Set the previous trigger state back
Overall, the function save_data_channels:
8) Save the channels provided (all if no channel is provided)

9) Save the logs of the channels provided (all if no channel is provided)

4 - Additional class (optional)

%" Caution

Additional classes namings

The additional classes should be named Module_ MODEL. Exceptions do occur for some oscillo-
scopes (Channel), spectrum annalyzer (Trace) or some multi-channel instruments (OQutput), In such
cases, we adhere to the terminology as specified in the Programmer Manual of the associated instru-
ment.

In the particular case of an instrument with “slots", all the channels are not equivalent. They rely on differ-
ent physical modules that may be disposed differently and in different numbers for different users. Then one
class for each different module (that are inserted in a main frame) should be defined (Module_ MODEL).
The __init__ function of the class Driver will deal with which class Module_ MODEL to instantiate
with which slot depending on the actual configuration of the user. Thus the class Module_ MODEL (or
Channel, etc.) have all a similar structure, structure that is similar to the one of the class Driver. In
other words the class Driver deal with the main instruments while the additional classes deal with the
sub-modules.

Here is an example of the class Channel of a double channel function generator:

class Channel():
def __init__(self, dev, channel):
self.channel = int(channel)
self.dev = dev

def amplitude(self, amplitude):
self.dev.write(f':VOLT{self.channel amplitude ;')

def offset(self, offset):
self.dev.write(f':VOLT{self.channel}:0FFS {offset!')

def frequency(self, frequency):
self.dev.write(f':FREQ{self.channel frequency /')

2.2. Write your own Driver

17

Autolab, Release 2.0

Here is an example of the two class Module_MODEL of a instrument with slot for which slots are non-
equivalent (strings needed to perform the same actions are different):

(class Module_TEST111(Q):

def __init__(self, driver, slot):
self.driver = driver
self.slot = slot

def set_power(self, value):
self.dev.write(f'POWER={value/")

def get_power(self):
return float(self.dev.query('POWER?'))

class Module_TEST222():
def __init__(self, driver, slot):
self.driver = driver
self.slot = slot

def set_power(self, value):
self.dev.write(f'POWER={value}")

def get_power(self):
return float(self.dev.query('POWER?"'))

One can note (for both cases):

1) Inthe __init__ function both the driver self and the channel/slot naming are passed to an attribute
of the actual class (Channel, Module_TEST111, Module_TEST222).

2) The connection functions used are the one coming from the class Driver, thus one now
call them self.dev.connection_function (for connection_function defined in the class
Driver_CONNECTION in: write, read, query, etc.).

3) Finally there is a collection of functions that are channel/slot-dependent.

© Note

For the particular case of instruments that usually returns one dimensionnal traces (e.g. oscilloscope,
spectrum annalyzer, etc.), it is useful to define functions to get and save the data. See the following
instrument dependent example:
def get_data_raw(self):

if self.autoscale:

self.do_autoscale()

self.dev.write(f'C{self.channel }:WF? DAT1'")

self.data_raw = self.dev.read_raw()

self.data_raw = self.data_raw[self.data_raw.find(b'#')+11: -1]

return self.data_raw
def get_data(self):

return frombuffer(self.get_data_raw(), int8)
def get_log_data(self):

self.log_data = self.dev.query(f"C{self.channel}:INSP? 'WAVEDESC'")

return self.log_data

def save_data_raw(self, filename, FORCE=False):
temp_filename = f'{filename} WAVEMASTERCH{self.channel}'
if os.path.exists(os.path.join(os.getcwd(),temp_filename)) and.

18 Chapter 2. Drivers (Low-level interface)

Autolab, Release 2.0

—not (FORCE) :
print('\nFile
—remove old file\n')
return
f = open(temp_filename, 'wb')# Save data
f.write(self.data_raw)
f.close()
def save_log_data(self, filename, FORCE=False):
temp_filename = f'{filename} WAVEMASTERCH{self.channel/.log'
if os.path.exists(os.path.join(os.getcwd(),temp_filename)) and.
—not (FORCE) :
print('\nFile
—remove old file\n')
return
f = open(temp_filename, 'w')
f.write(self.log_data)
f.close()

, temp_filename, already exists, change filename or.

, temp_filename, already exists, change filename or.

Those will then be attributes of the class Channel and may be called from the class Driver (depending
on the channel’s instance name in this class):

[self. channell.get_data()]

2.2.3 Additional necessary functions/files

Function get_driver_model (in each class but Driver CONNECTION)

The get_driver_model function should be present in each of the classes of the <manufacturer>_<MODEL>.py but
the class Driver_CONNECTION (including the class Driver and any optional class Module_ MODEL), in order for
many features of the package to work properly. It simply consists in a list of predefined elements that will indicate to
the package the structure of the driver and predefined variable and actions. There are three possible elements in the
get_driver_model function: Module, Variable and Action.

Shared by the three elements (Module, Variable, Action):
¢ ‘name’: nickname for your element (argument type: string)
» ‘element’: element type, exclusively in: ‘module’, ‘variable’, ‘action’ (argument type: string)
* ‘help’: quick help, optional (argument type: string)
Module:
e ‘object’: attribute of the class (argument type: Instance)
Variable:
* ‘read’: class attribute (argument type: function)
e ‘write’: class attribute (argument type: function)
* ‘type’: python type, exclusively in: int, float, bool, str, bytes, tuple, np.ndarray, pd.DataFrame
* ‘unit’: unit of the variable, optional (argument type: string)

* ‘read_init’: bool to tell Control panel to read variable on instantiation, optional

2.2. Write your own Driver 19

Autolab, Release 2.0

%" Caution

Either ‘read’ or ‘write’ key, or both of them, must be provided.

Action:
e ‘do’: class attribute (argument type: function)

e ‘param_type’: python type, exclusively in: int, float, bool, str, bytes, tuple, np.ndarray, pd.DataFrame,
optional

e ‘param_unit’: unit of the variable, optional (argument type: string. Use special param_unit ‘open-file’ to
open a open file dialog, ‘save-file’ to open a save file dialog and ‘user-input’ to open an input dialog)

Example code:

def get_driver_model(self):

model = []

model . append({'name':'linel’', 'element':'module', 'object':self.slotl, 'help':
—'Simple help for linel module'})

model . append({'name': 'amplitude', 'element':'variable', 'type':float, 'read':self.

—get_amplitude, 'write':self.set_amplitude, 'unit':'V', 'help':'Simple help for.
—amplitude variable'}

model . append({'name': 'go_home', 'element':'action', 'do':self.home, 'help':'Simple.
—help for go_home action'})
model . append({'name': 'open', 'element':'action', 'do':self.open, 'param_type':str,

< 'param_unit':'open-file', 'help':'Open data with the provided filename'})
return model

Driver utilities structure (<manufacturer>_<MODEL>_utilities.py file)

This optional file can be added to the driver directory (<manufacturer>_<MODEL>.py).

Here is a commented example of the file <manufacturer>_<MODEL>_utilities.py, further explained below:

category = 'Optical source' #
class Driver_parser(): #
def __init__(self, Instance, name, **kwargs): #
self.name = name #
self.Instance = Instance #

def add_parser_usage(self, message): #
"""Usage to be used by the parser""" #

usage = f""" #
{message } #
#

———————————————— Examples: -------—----——-—- #
#

usage: autolab driver [options] args #
#

autolab driver -D {self.name} -A GPIBO®::2::INSTR -C VISA -a 0.2
load {self.name} driver using VISA communication protocol with address GPIB... and.
(continues on next page)

20 Chapter 2. Drivers (Low-level interface)

Autolab, Release 2.0

(continued from previous page)

—set the laser pump current to 200mA.

return usage #

def add_parser_arguments(self, parser): #
"""Add arguments to the parser passed as input""" #
parser.add_argument("-a", "--amplitude", type=str, dest="amplitude",.

—default=None, help="Set the pump current value in Ampere.")

return parser #
def do_something(self, args): #
if args.amplitude: #

next line equivalent to: self.Instance.amplitude = args.amplitude
getattr(self.Instance, 'amplitude')(args.amplitude)

def exit(self): #
self.Instance.close() #

It contains:

* The category of the instrument (see autolab. infos (from python shell) or autolab infos for (OS shell) for
examples of identified categories).

¢ A class Driver_parser with 5 functions:
1) __init__: defines class attributes
2) add_parser_usage: adds help to the parser in order to help the user

3) add_parser_arguments: configures options to be used from the OS shell (e.g. autolab driver
-D nickname -a 2). See Command driver for full usage.

4) do_something: configures action to perform/variable to set (here: modify the amplitude to the
the provided argument value), and link them to the values of the argument added with 3).

5) exit: closes properly the connection

O Note

Please do consider, keeping each line ending with a # character in the example as is. This way you would need to
modify 3 main parts to configure options, associated actions and help: 3), 4) and 2) (respectively).

2.2. Write your own Driver 21

Autolab, Release 2.0

22 Chapter 2. Drivers (Low-level interface)

CHAPTER
THREE

DEVICES (HIGH-LEVEL INTERFACE)

3.1 What is a Device?

The high-level interface of Autolab is an abstraction layer of its low-level interface, which allows easy and safe com-
munication with laboratory instruments without knowing the structure of their associated Driver.

In this approach, an instrument is fully described with a hierarchy of three particular Elements: the Modules, the
Variables and the Actions.

* A Module is an Element that consists in a group of Variables, Actions, and sub-Modules. The top-level
Module of an instrument is called a Device.

* A Variable is an Element that refers to a physical quantity, whose value can be either set and/or read from an
instrument (wavelength of an optical source, position of a linear stage, optical power measured with a power
meter, spectrum measured with a spectrometer...). Depending on the nature of the physical quantity, it may
have a unit.

* An Action is an Element that refers to a particular operation that can be performed by an instrument. (homing
of a linear stage, zeroing of a power meter, acquisition of a spectrum with a spectrometer, etc.). An Action may
have a parameter.

The Device of a simple instrument is usually represented by only one Module, and a few Variables and Actions
attached to it.

-- Tunics (Module/Device)
|-- Wavelength (Variable)
|-- Output state (Variable)

Some instruments are a bit more complex, in the sense that they can host several different modules. Their representation
in this interface generally consists of one top level Module (the frame) and several others sub-Modules containing the
Variables and Actions of each associated module.

-- XPS Controller (Module/Device)

|-- ND Filter (Module)
|-- Angle (Variable)
| -- Transmission (Variable)
| -- Homing (Action)

|-- Linear stage (Module)
| -- Position (Variable)
| -- Homing (Action)

This hierarchy of Elements is implemented for each instrument in its driver files, and is thus ready to use.

23

Autolab, Release 2.0

3.2 Load and close a Device

The procedure to load a Device is almost the same as for the Driver, but with the get_device function. You need to
provide the nickname of a driver defined in the devices_config.ini (see Local configuration).

[>>> lightSource = autolab.get_device('my_tunics")]

© Note

You can temporarily overwrite some of the parameters values of a configuration by simply providing them as
keywords arguments in the get_device function:

[>>> laserSource = autolab.get_device('my_tunics', address='GPIB::9::INSTR') }

To properly close the connection to the instrument, simply call the close function of the Device. This object will no
longer be usable.

[>>> lightSource.close()]

To close the connection to all instruments (devices, not drivers) at once, you can use Autolab’s close function.

[>>> autolab.close() J

3.3 Navigation and help in a Device

Navigation in the hierarchy of Elements of a given Device is based on relative attributes. For instance, to access the
Variable wavelength of the Module (Device) my_tunics, simply execute the following command:

[>>> lightSource.wavelength J

In the case of a more complex Device, for instance a power meter named my_power_meter that has several channels,
you can access the Variable power of the first channel channell with the following command:

>>> powerMeter.channell.power

>>> powerMeter = autolab.get_device('my_power_meter") ’

Every Element in Autolab is provided with a help function that can be called to obtain some information about it,
but also to know which further Elements can be accessed through it, in the case of a Module. For a Variable, it will
display its read and/or write functions (from the driver), its Python type, and its unit if provided in the driver. For an
Action, il will display the associated function in the driver, and its parameter (Python type and unit) if it has one. You
can also print () the object to display this help.

>>> lightSource.help()

>>> print(lightSource.wavelength)
>>> powerMeter.help()

>>> print(powerMeter.channell)

>>> powerMeter.channell.power.help()

24 Chapter 3. Devices (High-level interface)

Autolab, Release 2.0

3.4 Use a Variable

If a Variable is readable (read function provided in the driver), its current value can be read by calling its attribute:

>>> lightSource.wavelength()
1550.55

>>> lightSource.output ()
False

If a Variable is writable (write function provided in the driver), its current value can be set by calling its attribute with
the desired value:

>>> lightSource.wavelength(1549)
>>> lightSource.output(True)

To save the value of a readable Variable locally, use its save function with the path of the desired output directory
(default filename), or file:

>>> lightSource.wavelength.save('.\mesures\')
>>> lightSource.wavelength.save('.\mesures\power.txt")

3.5 Use an Action

You can execute an Action simply by calling its attribute:

>>> linearStage = autolab.get_device('my_linear_stage')
>>> linearStage.goHome ()

3.6 Script example

With all these commands, you can now create your own Python script. Here is an example of a script that sweeps the
wavelength of a light source, and measures the power of a power meter:

Import the package
import autolab
import pandas as pd

Open the Devices
myTunics = autolab.get_device('my_tunics')
myPowerMeter = autolab.get_device('my_power_meter")

Turn on the light source
myTunics.output (True)

Sweep its wavelength and measure a power with a power meter
df = pd.DataFrame()

step = 0.01
start = 1550
stop = 1560

(continues on next page)

3.4. Use a Variable 25

Autolab, Release 2.0

(continued from previous page)
points = int(l + (stop - start)/step)
for wl in np.linspace(start, stop, points):

Set the parameter
myTunics.wavelength(wl)

Measures the values
wl_measured = myTunics.wavelength()
power = myPowerMeter.linel.power ()

Store the values in a list
df = df.append({'wl_measured': wl_measured, 'power': power}, ignore_index=True)

Turn off the light source
myTunics.output (False)

Close the Devices
myTunics.close()
myPowerMeter.close()

Or use autolab.close()

Save data
df.to_csv('data.csv')

26 Chapter 3. Devices (High-level interface)

CHAPTER
FOUR

LOCAL CONFIGURATION

To avoid having to provide the full configuration of an instrument (connection type, address, port, slots, etc.) each time
to load a Device, Autolab proposes storing it locally for further use.

More precisely, this configuration is stored in a local configuration file named devices_config.ini, which is located
in the local directory of Autolab. Both this directory and this file are created automatically in your home directory the
first time you use the package (the following messages will be displayed, indicating their exact paths).

The local directory of AUTOLAB has been created: C:\Users\<USER>\autolab.

It contains the configuration files devices_config.ini, autolab_config.ini and plotter.
—ini.

It also contains the 'driver' directory with 'official' and 'local' sub-directories.

A Warning

Do not move or rename the local directory nor the configuration file.

A device configuration is composed of several parameters:
¢ The name of the device, which is usually the nickname of your instrument in Autolab.
* The name of the associated Autolab driver.
 All the connection parameters (connection, address, port, slots, ...)

To see the list of the available device configurations, call the 1ist_devices function.

[>>> autolab.list_devices()]

To know what parameters have to be provided for a particular Device, use the config_help function with the name of
the corresponding driver.

[>>> autolab.config_help('yenista_TUNICS")]

27

Autolab, Release 2.0

4.1 Edit the configuration file

You can manually edit the devices configuration file devices_config.ini.

This file is structured in blocks, each of them containing the configuration of an instrument. Each block contains a
header (the configuration name / nickname of the instrument in square brackets []). The parameters and values are
then listed below line by line, separated by an equal sign =.

[<NICKNAME_OF_YOUR_DEVICE>]
driver = <DRIVER_NAME>
connection = <CONNECTION_TYPE>
address = <ADDRESS>

slotl = <MODULE_NAME>
slotl_name = <MY_MODULE_NAME>

To see a concrete example of the block you have to append in the configuration file for a given driver, call the
config_help function with the name of the driver. You can then directly copy and paste this exemple into the con-
figuration file, and customize the value of the parameters to suit those of your instrument. Here is an example for the
Yenista Tunics light source:

[my_tunics]

driver = yenista_TUNICS
connection = VISA

address = GPIBO::2::INSTR

Save the configuration file, and go back to Autolab. You don’t need to restart Autolab, the configuration file will be
read automatically at the next request.

[>>> laserSource = autolab.get_device('my_tunics') J

You can also use Autolab’s add_device function to open up a minimalist graphical interface, allowing you to configure
an instrument in a more user-friendly way.

[>>> autolab.add_device() J

28 Chapter 4. Local configuration

CHAPTER
FIVE

GRAPHICAL USER INTERFACE (GUI)

Autolab is provided with a user-friendly graphical interface based on the Device interface, that allows the user to interact
even more easily with its instruments. It can only be used for local configurations (see Local configuration).

The GUI has four panels:

¢ a Control Panel that allows to see visually the architecture of a Device, and to interact with an instrument through
the Variables and Actions.

¢ The Monitoring Panel allows the user to monitor a Variable over time.

* The Scanning Panel allows the user to configure the scan of a parameter and execute a custom recipe for each
value of the parameter.

* The Plotting Panel allows the user to plot data.

To start the GUI from a Python shell, call the gui function of the package:

>>> import autolab
>>> autolab.gui()

To start the GUI from an OS shell, use:

[>>> autolab gui

5.1 Control panel

The Control Panel provides an easy way to control your instruments. From it, you can visualize and set the value of its
Variables, and execute its Action through graphical widgets.

5.1.1 Devices tree
By default, the name of each local configuration is represented in a tree widget. Click on one of them to load the
associated Device. Then, the corresponding Element hierarchy appears. Right-click to bring up the close options.

The help of a given Element (see Devices (High-level interface)) can be displayed through a tooltip by passing the
mouse over it (if provided in the driver files).

29

Autolab, Release 2.0

AUTOLAE - Control Panel

Panels Settings Help

Objects

exposure_time (s}
auto_exposure_time
auto_background_remaoval
spectrum

temperature (*C)
main_peak_wavelength (...
main_peak_peak_fwhm (...
max_power
integrated_power

acquire

Vs Dediee

¥ NSR1_TOC
velocity
acceleration
angle
transmission
set_min
set_max

go_home

Type Actions Values

Variable Read

Variable Read O
Variable Read -~
variable [| Fead |

Variable | Read |

Variable | Read |

Variable | Read |

Variable | Read |

Variable | Read | 5.0586e+06

Module

Variable | Read |
Variable | Read |
Variable | Read |
Variable | Read |

[] Disconnect devices on exit

Fig. 1: Control panel

30

Chapter 5. Graphical User Interface (GUI)

Autolab, Release 2.0

WS AUTOLAB - Monitor: mydummy.amplitude

— O *

10 _ *—

8
>
@
L]
2 6
a
5 e e e ey
©
:E:-. ____________ o e o ——————————————————— e o T ——————————————————
£ ¢
=0
o
=
&

2

0 —* *

0 1 2 3 4 5 6 7]]
Time(s) x = 0.974061, y = 0.673496
Window length [s] : Resume Save Clear
999 1 Min Mean Max

[1 Pause on scan start [] Start on scan end

Fig. 2: Monitoring panel

5.1. Control panel

31

Autolab, Release 2.0

AUTOLAB - Scanner - O x
Configuration Edit Panels
recipe_1
1.0
parameter_buffer Address: system.parameter_buffer [] Parameter
Start | [1] ‘ Mean | 5 | Nb points
Linear ~
end | 10 | width| 10 | step
. - 05
Step name Action Element address Type Value Unit
2 setampli... Set mydummy.amplit.. = Sevalnp.sin(syst.. V
« amplitude Measu... mydummy.amplit... s v
> wait Do system.wait mat 0,05 5
@
he
3
= 0
(o8
£
@
-0.5
*
-1.0
0 1 2 3 4 5 T 9 10
i = paramelet_buﬁet x = 0.655668, y = -1.20304
Add recipe X axis Nb traces Y axis
Start Resume Stop [Pl v| Difiter data [J20plot [5 | ampltue >
[continuous scan _ 79% Clear all Save all | |Save scan2 { scan2 v E Scandata L Send to Plotter

Fig. 3: Scanning panel

32

Chapter 5. Graphical User Interface (GUI)

Autolab, Release 2.0

|# AUTOLAB - Plotter - m] X
Plugin: =
Y=-1h\90
Plugin Actions Values {\ /‘\ {\ [\ (\ q /\
v plotter =20 A Nt 1"\ f\ A
info yE-19:39
min
max 25
mean
std
bandwidth /\
cursor_movable Read -30
displayCursor Read
data [JRead _
open (open-file) Execute -3
set_data Execute /
-40 ‘I | ’ l
45 x=1540.774
1547.846
50 = !
1510 1520 1530 1540 1550 1560 1570 1580 1590 1600 1610
L x = 1501.74, y = -40.8587
Open Save Variable: X axis Y axis
Delete all Delete Address: |Ct400‘scan.data‘ ‘ Get data L ~ 1 -
: Nb traces
Dataset : | TE_MZ 2000t v || Delyisl: [Auto get data C o
Overwrite data

Fig. 4: Plotting panel

Actions

A button Execute is present in each Action line. Clicking the button executes the associated action. If the Action has a
parameter, fill its value in the associated widget.

Variables

The value of a Variable can be set or read if its type is numerical (integer, float or boolean).

If the Variable is readable (read function provided in the driver), a Read button is available on its line. When clicking
on this button, the Variable’s value is read and displayed in a line edit widget (integer / float values) or in a checkbox
(boolean).

If the Variable is writable (write function provided in the driver), its value can be edited and sent to the instrument
(return pressed for integer/float values, check box checked or unchecked for boolean values). If the Variable is readable,
a Read operation will be executed automatically after that.

To read and save the value of a Variable, right click on its line and select Read and save as.... You will be prompted
to select the path of the output file.

The colored displayed at the end of a line corresponds to the state of the displayed value:

» The orange color means that the currently displayed value is not necessarily the current value of the Variable in
the instrument. The user should click the Read button to update the value in the interface.

* The yellow color indicates that the currently displayed value is the last value written to the instrument, but it has
not been read back to verify.

5.1. Control panel 33

Autolab, Release 2.0

AUTOLAE - Control Panel

Panels Settings Help

Objects

exposure_time (s}
auto_exposure_time
auto_background_remaoval
spectrum

temperature (*C)
main_peak_wavelength (...
main_peak_peak_fwhm (...
max_power
integrated_power

acquire

Vs Dediee

¥ NSR1_TOC
velocity
acceleration
angle
transmission
set_min
set_max

go_home

Type Actions Values

Variable Read

Variable Read O
Variable Read -~
variable [| Fead |

Variable | Read |

Variable | Read |

Variable | Read |

Variable | Read |

Variable | Read | 5.0586e+06

Module

Variable | Read |
Variable | Read |
Variable | Read |
Variable | Read |

[] Disconnect devices on exit

Fig. 5: Control panel

34

Chapter 5. Graphical User Interface (GUI)

Autolab, Release 2.0

* The green color means that the currently displayed value is up to date (except if the user modified its value directly
on the instrument. In that case, click the Read button to update the value in the interface).

5.1.2 Monitoring
A readable and numerical Variable can be monitored in time (single point, 1D and 2D array versus time, 3D array repre-

sented as an image versus time). To start the monitoring of this Variable, right click on it and select Start monitoring.
Please visit the section Monitoring.

5.1.3 Slider

A readable and numerical Variable can be controled by a slider for convenient setting. To open the slider of this
Variable, right click on it and select Create a slider.

¢ ctd00.laserl.wavelength — O x

Instant value | 1544 |

4] 3

Fig. 6: Slider

5.1.4 Scanning

You can open the scanning panel with the associated Scanner button under the Panels sub-menu of the control panel
menu bar. To configure a scan, please visit the section Scanning.

5.1.5 Plotting

You can open the plotting panel with the associated Plotter button under the Panels sub-menu of the control panel
menu bar. See section Plotting for more details.

5.1.6 Other features

Logger

A logger can be added to the control center using the variable logger = True in the section [control_center] of
autolab_config.ini. It monitors every print functions coming from autolab GUI or drivers to keep track of
bugs/errors. It is inside a pyqtgraph docker, allowing to detached it from the control panel and place it somewhere
visible.

5.1. Control panel 35

Autolab, Release 2.0

Console

A Python console can be added to the control center using the variable console = True in the section [control_center]
of autolab_config.ini. It allows to inspect autolab or drivers while using the GUI for debugging purposes.

Executing Python codes in GUI

A function for executing python code directly in the GUI can be used to change a variable based on other device
variables or purely mathematical equations.

To use this function both in the control panel and in a scan recipe, use the special $eval: tag before defining your
code in the corresponding edit box. This name was chosen in reference to the python eval function used to perform the
operation and also to be complex enough not to be used by mistake, thereby preventing unexpected results. The eval
function only has access to all instantiated devices and to the pandas and numpy packages.

>>> # Usefull to set the value of a parameter in a recipe step
>>> eval :system.parameter_buffer()

>>> # Useful to define a step according to a measured data
>>> [§eval:laser.wavelength()

>>> # Useful to define a step according to an analyzed value
>>> [§eval:plotter.bandwitdh.x_left()
>>> eval :np .max (mydummy . array_1D())

>>> # Usefull to define a filename that changes during an analysis
>>> eval:f"data_wavelength: laser.wavelength() /. txt"

>>> # Usefull to add a dataframe to a device variable (for example to add data using the.
—action ‘plotter.data.add _data’)
>>> $leval :mydummy . array_1D()

It can also be useful in a scan for example to set the central frequency of a spectral analyzer according to the frequency
of a signal generator. Here is an example to realize this measurement using $eval:.

Autocompletion

To simplify the usage of codes in GUI, an autocompletion feature is accesible by pressing Tab after writing $eval:
in any text widget.

5.2 Monitoring

The Monitor allows you to monitor a Variable in time.

To start a monitoring, right click on the desired Variable in the control panel, and click Start monitoring. This Variable
has to be readable (read function provided in the driver) and numerical (integer, float value or 1 to 3D array).

In the Monitoring window, you can set the Window length in seconds. Any points older than this value is removed.
You can also set a Delay in seconds, which corresponds to a sleep delay between each measure.

You can pause the monitoring with the Pause button, and save the current graph and data with the Save button. You
will be prompted to give a folder path where the data will be saved.

You can clear the displayed data with the Clear button.

36 Chapter 5. Graphical User Interface (GUI)

Autolab, Release 2.0

single_sweep Do action

Parameter :
Mame: frequency
Address: signal_generator.frequency
Recipe :
Step name Type Element address Yalue
set_frequency Setvariable signal_analyzer.frequency Seval:signal_generatorfrequency()
wait Do action system.wait 1

signal_analyzer.single_sweep

Power(dE] Measure variable signal_analyzer.power]

Fig. 7: Recipe using eval example

You can display a bar showing the Min or Max value reached since the beginning of the monitoring. Use the Clear
button to start back with new min and max value.

The Mean option display the mean value of the currently displayed data (not from the beginning).

The Pause on scan start checkbox allows to pause a monitor during a scan to prevent multiple communication with
an instrument (prevent bug and speed up execution).

The start on scan end checkbox allows to start back the monitoring after a scan.

Thanks to the pyqtgraph package, it is possible to monitor images.

5.3 Scanning

The Scanner interface allows the user to sweep parameters over a certain range of values, and execute for each of them

a custom recipe.

5.3. Scanning

37

Autolab, Release 2.0

AUTOLAB - Control Panel - O X

Panels Settings Help

Objects Type Actions Values ~

> slotl Maodule

> slotz Module
bytes Variable | | |
amplitude (V) Variable | Read | feval:
phrase Variable | | | dummy
phase variable | Read | ;F;
option Variable | Read | b
dataframe variable] | Read |
dataframe_custom Variable | Read |
array_1D Variable 7] | Read |
array_2D Variable 7] | Read |
array_3D Variable] Read v

DUMMY DEVICE INSTAMTIATED with address GPIBO:5:INSTR

Lo

Packages imported: autolabk, numpy as np, pandas as pd.

n History Exceptions..

[] Disconnect devices on exit

Fig. 8: Autocompletion, console and logger example

38 Chapter 5. Graphical User Interface (GUI)

Autolab, Release 2.0

WS AUTOLAB - Monitor: mydummy.amplitude

— O *

10 _ *—

8
>
@
L]
2 6
a
5 e e e ey
©
:E:-. ____________ o e o ——————————————————— e o T ——————————————————
£ ¢
=0
o
=
&

2

0 —* *

0 1 2 3 4 5 6 7]]
Time(s) x = 0.974061, y = 0.673496
Window length [s] : Resume Save Clear
999 1 Min Mean Max

[1 Pause on scan start [] Start on scan end

Fig. 9: Monitoring panel

5.3. Scanning

39

Autolab, Release 2.0

AUTOLAB - Monitor: mydummy.array_30 - O d
=
2
oF
L
ne
61
. RO Menu
| Resume | | Save | | Clear |
[1 Pause on scan start [Start on scan end

Fig. 10: Monitoring images

40 Chapter 5. Graphical User Interface (GUI)

Autolab, Release 2.0

=1 AUTOLAB - Scanner

- O x
Configuration Edit Panels
recipe_1
1.0
parameter_buffer Address: _
stat| o | Mean| 5 | Nbpoints
end | 10 | width| 10 | step
. - 05
Step name Action Element address Type Value Unit
Set mydummy.amplit.. = Sevalnp.sin(syst.. V
Measu... mydummy.amplit... s v
Do system.wait mat 0,05 5
@
he
3
= 0
(o8
£
@
-0.5
-1.0
0 1 3 4 5 T 9 10
i = paramelet_buﬁet x = 0.655668, y = -1.20304
X axis Nb traces Y axis
[Filter data [2D plot =
Start | e | ‘ stop | parameter_buffer ~ P | 5 | ‘amplrlude ~
[continuous scan _ 79% Clear all | Save all ‘ |Save saan2| { |scan2 V‘ |i Scan data| ‘lASendlo Plutler|

Fig. 11: Scanning panel

5.3. Scanning

41

Autolab, Release 2.0

5.3.1 Scan configuration

A scan can be composed of several recipes. Click on Add recipe at the bottom of the scanner to add an extra recipe.

A recipe represents a list of steps that are executed for each value of one or multiple parameters.

Parameters

The first step to do is to configure a scan parameter. A parameter is a Variable which is writable (write function provided
in the driver) and numerical (integer or float value). To set a Variable as scan parameter, right click on it on the control
panel window, and select Set as scan parameter.

The user can change the name of the parameter using the line edit widget. This name will be used in the data files. It is
possible to add extra parameters to a recipe by right-clicking on the top of a recipe and selecting Add Parameter This
feature allows to realize 2D scan or ND-scan. A parameter can be removed by right-clicking on its frame and selecting
Remove <parameter>. A parameter is optional, a recipe is executed once if no parameter is given.

42 Chapter 5. Graphical User Interface (GUI)

Autolab, Release 2.0

Parameter range

The second step is to configure the range of the values that will be applied to the parameter during the scan. The user
can set the start value, the end value, the mean value, the range width, the number of points of the scan or the step
between two values. The user can also space the points following a logarithmic scale by selecting the Log option. It is
also possible to use a custom array for the parameter using the Custom option.

Steps

The third step is to configure recipe steps, that will be executed for each value of parameters. There are four kinds of
recipe steps:

* Measure the value of a Variable. Right click on the desired Variable in the control panel and select Measure in
scan recipe to append this step to the recipe.

* Set the value of a Variable. Right click on the desired Variable in the control panel and select Set value in scan
recipe to append this step to the recipe. The variable must be numerical (integer, float or boolean value). To set
the value, right click on the recipe step and click Set value. The user can also directly double click on the value
to change it.

» Execute an Action. Right click on the desired Action in the control panel and select Do in scan recipe to append
this step to the recipe.

Each recipe step must have a unique name. To change the name of a recipe step, right click on it and select Rename,
or directly double click on the name to change it. This name will be used in the data files.

Recipe steps can be dragged and dropped to modify their relative order inside a recipe, to move them between multiple
recipes, or to add them from the control panel. They can also be removed from the recipe using the right click menu
Remove.

Right-clicking on a recipe gives several options: Disable, Rename, Remove, Add Parameter, Move up and Move
down.

All changes made to the scan configuration are kept in a history, allowing changes to be undone or restored using the
Undo and Redo buttons. These buttons are accessible using the Edit button in the menu bar of the scanner window.

5.3. Scanning 43

Autolab, Release 2.0

Store the configuration

Once the configuration of a scan is finished, the user can save it locally in a file for future use by opening the Con-
figuration menu and selecting Export current configuration. The user will be prompted for a file path in which the
current scan configuration (parameter, parameter range, recipe) will be saved.

To load a previously exported scan configuration, open the menu Configuration and select Import configuration. The
user will be prompted for the path of the configuration file. Use the Append option to append the selected configuration
as an extra recipe to the existing scan. Alternatively, recently opened configuration files can be accessed via the Import
recent configuration menu.

5.3.2 Scan execution

e Start button: start the scan.

* Pause button: pause / resume the scan.

Stop button: stop the scan.

* Continuous scan check box: if checked, start automatically a new scan when the previous one is finished. The
state of this check box can be changed at any time.

© Note

The scan configuration cannot be modified or loaded when a scan is started. Stop it first.

© Note

During a scan, the background color of each item (parameter or recipe step) indicates its current state. An orange
item is being processed, a green one is finished.

5.3.3 Figure

The user can interact with the figure at any time (during a scan or not).

After the first loop of a recipe has been processed, the user can select the Variable displayed in x and y axes of the
figure.

A data filtering option is available below the figure to select the desired data, allowing for example to plot a slice of a
2D scan.

A 2D plot option allows to display scan data as a colormap with x, y as axies and z as values, usuful to represent
ND-scan.

Scan data can be clear or saved with the buttons bellow the figure.
* Clear all button: delete any previous datapoint recorded.

« Save all button: save all the data of all the executed scans. The user will be prompted for a folder path, that will
be used to save the data of all the scans.

 Save button: save the data of the selected scan. The user will be prompted for a folder path, that will be used to
save the data of the scan.

44 Chapter 5. Graphical User Interface (GUI)

Autolab, Release 2.0

The user can display the previous scan results using the combobox below the scanner figure containing the scan name
(scanl, scan2, ...).

If the user has created several recipes in a scan, a combobox below the scanner figure contaning the recipe names
(recipe, recipe_1, ...) allows to change the displayed recipe results.

A combobox below the scanner figure containing the dataframe name or ‘Scan’ for the main scan result allows to display
arrays and images.

The button Scan data display the scan data in a table.

The button Send to plotter send the scan data of the selected recipe to the Plorting.

=1 AUTOLAB - Scanner - m} X x

Configuration Edit Panels

recipe_1 (o)
stat| 1 | Mean| 7 | Nbpoints| 4 |
Linear
end [13 | width[12 | sep [& |
Step name Action Element address Type Value Unit
«> amplitude Measu.. mydummy.amplit... me v

«> array 1D Measu.. mydummy.array_.. [{]]

recipe_2
Start| 0 ‘ Mean| 5 | Nb pointslIl
Linear ~
end [10 | wish[10 | step
Step name Action Element address Type Value Unit
« array 3D Measu.. mydummy.array_.. [§]]
+= phase Measu.. mvdummy.ohase s e
l—‘ T T T T
AddrECpo Edn:rempe—zv\|w|w|w||wI||w|\|||w\|w|w|ww|||w|w|||w|||w T
0 0.5 1 15 2 2.5 3 3.5 :
Start Pause Stop Slice

O continuous scan _ 100% ‘ Clear all Save all | |Save scanl | I |sran1 V| ‘recipe_; V‘ |array_3l V‘ |i Scan da|a| |L£Send to Plot‘ler|

Fig. 12: Multiple recipe example

5.4 Plotting

© Note

The plotter still needs some work, feed-back is more than welcome.

The Plotter panel is accessible in the Plotter action of the Panels sub-menu of the control panel menubar, or by code
with autolab.plotter(). Data can directly be plotted by passing them as argument autolab.plotter(data).

5.4. Plotting 45

Autolab, Release 2.0

|# AUTOLAB - Plotter - m] X
Plugin:
Plugin Actions Values {\ /‘\ {\ [\ (\:ﬂgc /\
v plotter =20 A Nt 1"\ f\ A
info yE-19
min
max 25
mean
std
bandwidth /\
cursor_movable Read 30
displayCursor Read
data [JRead _
open (openfile) |Execute -3
set_data Execute /
-40 ‘I | ’ l
45 x=1540.774
1547.846
50 = i
1510 1520 1530 1540 1550 1560 1570 1580 1590 1600 1610
L x = 1501.74, y = -40.8587
Open Save Variable: X axis Y axis
Delete all Delete Address: |Ct400‘scan.data‘ ‘ Get data ~ 1 -
: Nb traces
Dataset : | TE_MZ 2000t v || Delyisl: [Auto get data C o
Overwrite data

5.4.1 Import data

Fig. 13: Plotting panel

It is currently possible to plot data from previous experiments or any supported data type using the Open button.

5.4.2 Device connection

It is also possible to get and plot data from a device variable with an automatic plot refresh option.

To do this, you need to provide a device variable, e.g. mydummy.array_1D to create a link between the plotter and

the array_1D variable of the mydummy device (based on the dummy driver).

Once the variable is linked, use the Get data button to call the variable that returns the array to be plotted (will execute

the mydummy.array_1D() command).

To automatically update the plot, check the Auto get data option.

5.4.3 Plugin tree

The Plugin tree can be used to connect any device to the plotter, either by dragging a device from the Control panel
and dropping it the plugin tree, either using the configuration file plotter_config.ini to link a plugin to a device

defined in device_config.ini.

[plugin]

<PLUGIN_NAME> = <DEVICE_NAME>

46

Chapter 5. Graphical User Interface (GUI)

Autolab, Release 2.0

A plugin do not share the same instance as the original device in the controlcenter, meaning that variables of a device
will not affect variables of a plugin and vice versa. Because a new instance is created for each plugin, you can add as
many plugin from the same device as you want.

If a device uses the the argument gui in its __init__ method, it will be able to access the plotter instance to get its
data or to modify the plot itself.

If a plugin has a method called refresh, the plotter will call it with the argument data containing the plot data
everytime the figure is updated, allowing for each plugin to get the latest available data and do operations on it.

The plugin plotter can be added to the Plotter, allowing to do basic analyses on the plotted data. Among them, getting
the min, max values, but also computing the bandwidth around a local extremum. Note that this plugin can be used as
a device to process data in the control panel or directly in a scan recipe.

5.5 Miscellaneous

5.5.1 Preferences

The preferences panel allows to change the main settings saved in the autolab_config.ini and plotter_config.ini files. It
is accessible in the Settings action of the control panel menubar, or in code with autolab.preferences().

5.5.2 Driver installer

The driver installer allows to select individual drivers or all drivers from the main driver github repository. It is acces-
sible in the Settings action of the control panel menubar, or in code with autolab.driver_installer().

5.5.3 About

The about window display the versions the autolab version in-used as well as the main necessary packages. It is
accessible in the Help action of the control panel menubar, or in code with autolab.about().

5.5.4 Add device

The add device window allows to add a device to the device_config.ini file. It is accessible by right clicking on the
empty area of the control panel tree, or in code with autolab.add_device().

5.5.5 Variables menu

The variables menu allows to add, modify or monitor variables usable in the GUL. When a scan recipe is executed,
each measured step creates a variable usable by the recipe, allowing to set a value based on the previous measured step
without interacting with the instrument twice. It is accessible in the Variables action of both the control panel and
scanner menubar, or in code with autolab.variables_menu().

5.5. Miscellaneous 47

Autolab, Release 2.0

£ AUTOLAE - Preferences

Autolab Plotter

Gl
qt_api default

theme default -

font_size

image_background |w

image_foreground |k

control_center
precision
print

logger
console

monitor

precision

save_figure

scanner
precision IEI
save_config
save_figure
save_temp

Cancel Apply

Fig. 14: Preference panel

48

Chapter 5. Graphical User Interface (GUI)

Autolab, Release 2.0

AUTOLAB - Driver Installer — O >

L] From https://github.com/autolab-project/autolab-drivers:

[| More ~

[1 agilent_332204

[1 agilent_811504

[1 agilent_DSAG1304A
[agilent_DS054853A
[agilent_DS0O812048
[1 agilent_E8244A

[1 agilent_MXANZ0204
[agilent_N52774

[aimtti_TGA12104

[1 aimtti_TGF3162

[| anapico_APULN

[1 ando_aQ6315A

[anritsu_MG363xC

[1 anritsu_MS28304

[anritsu_MS97404

[] arduino_CUSTOMSHUTTERS
[1 dummy

[1 exfo_CT440

[] exfo_IQS605P

exfo LTE1 =

Cownload

Fig. 15: Driver installer

5.5. Miscellaneous

49

Autolab, Release 2.0

Autolab 2.0

bl AUTOLAB - About

Overview Legal

Autolab

Python package for scientific experiments

automation

Windows 10
Python 3.12.5 - 64-bit

2.2.2

Project | Drivers | Documentation

Fig. 16: About panel

AL AUTOLAB - Add Device — O x

Device |my_device

Driver |agilent_332204 ~

Connection VISA

address |GPIE=IZI::2::]]'~JSTR

Available connections ~
Awailable connections
ASEL3::INSTR

Add dhﬁgﬁL‘l::]ZNSTR

=+ Add argument

Fig. 17: Add device panel

50

Chapter 5. Graphical User Interface (GUI)

PySidet 6.7.2 | PyQtGraph 0.13.7 | Numpy 2.1.0rc1 | Pandas

Autolab, Release 2.0

() AUTOLAB - Variables Menu — O >

Wariables Devices

Mame Value Evaluated value Type Action

var 0 0 int

varl [1,2] [1,2] numpy.ndarray

var2 fevalvari() [1,2] numpy.ndarray Update valueé
Add Remaove

Refresh Manager

Fig. 18: Variables menu

5.6 Experimental features

5.6.1 Plot from driver

When creating a plot from a driver inside the GUI, Python usually crashes because the created plot isn’t connected to
the GUI thread. To avoid this issue, a driver can put gui=None as an argument and use the command gui.createWidget
to ask the GUI to create the widget and send back the instance. This solution can be used to create and plot data in a
custom widget while using the GUI.

5.6. Experimental features 51

Autolab, Release 2.0

52 Chapter 5. Graphical User Interface (GUI)

CHAPTER
SIX

OS SHELL

Most of the Autolab functions can also be used directly from a Windows or Linux terminal without opening explicitly
a Python shell.

Just execute the command autolab or autolab -h or autolab --help in your terminal to see the available sub-
commands.

C:\Users\gchat> autolab
C:\Users\qchat> autolab -h
Hostname: /home/User$ autolab --help

The subcommands are:
e autolab gui: a shortcut of the python function autolab.gui() to start the graphical interface of Autolab.

e autolab install_drivers: a shortcut of the python function autolab.install_drivers() to install drivers from
GitHub

* autolab driver: a shortcut of the python interface Driver (see Command driver)

e autolab device: a shortcut of the python interface Device (see Command device)

* autolab doc: a shortcut of the python function autolab.doc() to open the present online documentation.

e autolab report: a shortcut of the python function autolab.report() to open the present online documentation.

e autolab infos: ashortcut of the python function autolab.infos() to list the drivers and the local configurations
available on your system.

Table of contents:

The two sections that follow are equivalent for the commands autolab driver and autolab device (unless speci-
fied). They will guide you through getting basic help and minimal formatting of command lines (minimal arguments
to pass) to instantiate your instrument (set up the connection with it, etc.).

6.1 Getting help

Three helps are configured (device or driver may be used equally in the lines below):

1) Basic help of the commands autolab driver/device:

[>>> autolab driver -h }

It includes arguments and options formatting, definition of the available options, associated help, and
information to retrieve the list of available drivers and local configurations (command: autolab infos).

2) Basic help about the particular name driver/device you provided:

53

Autolab, Release 2.0

[>>> autolab driver -h -D driver_name]

It includes the category of the driver/device (e.g. Function generator, Oscilloscope, etc.), a list of the
implemented connections (-C option), personnalized usage example (automatically generated from
the driver.py file), and examples to use and set up a local configuration using command lines (see
Local configuration for more informations about local configurations).

3) Full help message for the driver/device:

>>> autolab driver -D driver_name -C connection -A address -h
>>> autolab device -D nickname -h

For driver:

It includes the list of the implemented connections (-C option), the list of the available ad-
ditional modules (classes Channel, Trace, Module_ MODEL, etc.; see Write your own
Driver), the list of all the methods that are instantiated with the driver (for direct use with
the command: autolab driver; see Command driver), and an extensive help for the usage of
the pre-defined options.

For device:

It includes the hierarchy of the device and all the defined Modules, Variables and Actions
(see Function get_driver_model (in each class but Driver_CONNECTION) and Command
device for more informations on the definition and usage respectively).

Note that this help requires the instantiation of your instrument to be done, in other words it requires
valid arguments for options -D, -C and -A (that you can get from previous helps) and a working
physical link.

6.2 Instantiate a driver/device

The commands autolab driver/device will set up a connection to your instrument, perform the requested operation(s),
and finally close properly the connection. To set up the connection you need to give valid arguments as requested by
the driver (build to suit the physical instrument requirements).

A typical command line structure is:

>>> autolab driver -D <driver_name> -C <CONNECTION> -A <address> (optional)
>>> autolab device -D <config_name> (optional)

To set up the connection for the first time, we recommend following the different help states (see Getting help),
that usually guide you through filling the arguments corresponding to the above options. To use one of Autolab’s
driver to drive an instrument you need to provide its name. This is done with the option -D. -D option accepts a
driver_name for a driver (e.g. agilent_33220A, etc) and a config_name for a device (nickname as defined in your
device_config.ini, e.g. my_agilent). A full list of the available driver names and config names may be found using the
command autolab infos. Due to Autolab’s drivers structure you also need to provide a -C option for the connection
type (corresponding to a class to use for the communication, see Write your own Driver for more informations) when
instantiating your device. The available connection types (arguments for -C option) are driver dependent (you need to
provide a valid -D option) and may be accessed with a second stage help (see Gerting help). Lately you will need to
provide additional options/arguments to set up the communication. One of the most common is the address for which
we cannot help much. At this stage you need to make sure of the instrument address/set the address (on the physical
instrument) and format it the way that the connection type is expecting it (e.g. for an ethernet connection with address
192.168.0.1 using VISA connection type: TCPIP::192.168.0.1::INSTR). You will find in the second stage help

54 Chapter 6. OS shell

Autolab, Release 2.0

automatically generated example of a minimal command line (as defined in the driver) that should be able to instantiate
your instrument (providing you modify arguments to fit your conditions).

Other arguments may be necessary for the driver to work properly. In particular, additional connection argument may
be passed through the option -O, such as the port number (for SOCKET connection type), the gpib board index (for
GPIB connection) or the path to the dll library (for DLL connection type). In addition, for complex instruments (such
as instruments with ‘slots’), this options provides you with a reliable way to indicate the physical configuration of your
instrument [e.g. Module_TEST111 is physically inserted in slot 1, Module_TEST222 is physically inserted in slot 5
(-O slot1=Module_TEST111 slot5=Module_TEST222); see 4 - Additional class (optional) for more informations].

6.3 Command driver

See Instantiate a driver/device for more information about the connection. Once your driver is instantiated you will be
able to perform pre-configured operations (see Driver utilities structure (<manufacturer>_<MODEL>_utilities.py
file) for how to configure operations) as well as raw operations (-m option). We will discuss both of them here as well
as a quick (bash) scripting example. In the rest of this sections we will assume that you have a driver (not device)
named instrument that needs a connection named CONN.

6.3.1 Usage of pre-configured operations

You may access an extensive driver help, that will particularly list the pre-defined options, using:

[>>> autolab driver -D instrument -C CONN -h]

It includes the list of the implemented connections, the list of the available additional modules (classes Channel, Trace,
Module_ MODEL, etc.; see Write your own Driver), the list of all the methods that are instantiated with the driver (for
direct use with the command: autolab driver; see Command driver), and an extensive help for the usage of the pre-
defined options. For instance, if an option -a has been defined in the driver_utilities.py file (see Driver utilities structure
(<manufacturer>_<MODEL>_utilities.py file)), one may use it to perform the associated action, such as to modify the
amplitude, this way:

[>>> autolab driver -D instrument -C CONN -a 2]

This modifies the amplitude to 2 Volts (if the unit is set to Volt).

In addition, if the instrument has several channels, an channel option is most likely implemented and one can modify
the amplitude of channel 4 and 6 to 2 Volts using:

[>>> autolab driver -D instrument -C CONN -a 2 -c 4,6]

A Warning

No space must be present within an argument or option (e.g. do not write - cor -c 4, 6).

Furthermore, several operations may be performed in a single and compact script line. One can modify the amplitude
of channel 4 and 6 to 2 Volts and the frequencies (of the same channel) to 50 Hz using:

[>>> autolab driver -D instrument -C CONN -a 2 -c 4,6 -f 50]

6.3. Command driver 55

Autolab, Release 2.0

© Note

The arguments are non-positional, which means that the previous line is formally equivalent to:

>>> autolab driver -D instrument -C CONN -c 4,6 -f 50 -a 2
>>> autolab driver -D instrument -C CONN -f 50 -a 2 -c 4,6

6.3.2 Raw operations (-m option)

Regardless of the user’s definition of options in the driver_utilities.py file, you may access any methods that are instan-
tiated with the driver using the -m option.

Important
This is not a safe environment, but it allows you to access all the functionnalities of a driver and doesn’t rely on a

user configuration.

You may access the full list of instantiated methods along with their argument definition, using:

[>>> autolab driver -D instrument -C CONN -h]

This allow you to simply copy and paste the method you want to use from the list into the following command, directly
as python code:

>>> autolab driver -D instrument -C CONN -m get_amplitude()
>>> autolab driver -D instrument -C CONN -m set_amplitude(value)

One may also call several methods separated by a space after the -m option:

>>> autolab driver -D instrument -C CONN -m get_amplitude() set_amplitude(2) slotl.get_
—power ()

© Note

It is possible to combine pre-defined options and -m option in a single script line.

6.3.3 Script example

One may stack several script lines in a single file in order to perform custom measurements (modify several control
parameters, etc.). This is a bash counterpart to the Python scripting example provided there Script example.

#!/bin/bash # Very first line of the file (this is bash code)
i=1 # Definition of a variable
for volts in $(seq 0 0.1 5) # Definition of a loop (variable volts goes from 0 to 5.

—with steps of 0.1)
do

(continues on next page)

56 Chapter 6. OS shell

Autolab, Release 2.0

(continued from previous page)

echo $volts # Print the value of the volts variable

autolab driver -D function_generator -C CONN -a $volts # Increase the amplitude of..
—function_generator

autolab driver -D oscilloscope -C CONN -c 1,2,4 -o $i # Get channels 1, 2 and 4 from.
—,0scilloscope and save the according files with a name starting with the number of.
—.iteration of the loop (i)

i=$(($i+1)) # Increment i variable of 1 at each loop iteration
done # End of the for loop
© Note

1) Any time the command autolab driver is called it sets up the connection. It is then inherently slightly
slower (instrument dependant for the amount of time that usually range from 0.1 to 0.5 seconds) than scripting
in python.

2) The whole script looks sightly simpler and shorter than its python counterpart.

6.4 Command device

To read, write or save the value of a Variable, or to execute an Action, use the command autolab device in your
terminal with the following general format:

[autolab device -D <CONFIG_NAME> -e <ELEMENT_ADDRESS> <OPTIONS>

The Element address indicates the address of the desired Variable or Action in the Autolab Device hierarchy, using
a point separator. This command will establish a connection to your instrument, perform the requested operation, and
finally close properly the connection. See Instantiate a driver/device for more informations about the connection.

The available operations are listed below:

* To read and print the value of a readable Variable in the terminal, provide its address without any
other options:

>>> autolab device -D myTunics -e wavelength
1550.00

* To read and save the value of a readable Variable in a file, provide its address with the option -p or
--path with the desired output file or folder path:

£>>> autolab device -D myPowerMeter -e linel.power -p .\data\power.txt }

 To set the value of a writable Variable, provide its address and the option -v or --value with the
desired value:

£>>> autolab device -D myTunics -e wavelength -v 1551 }

* To execute an Action, provide its address without any options (or with the option -v or --value
with the desired value if the Action has a parameter):

6.4. Command device 57

Autolab, Release 2.0

[>>> autolab device -D myLinearStage -e goHome }

* To display the help of any Element, provide its address with the option -h or --help:

[>>> autolab device -D myLinearStage -e goHome -h }

58 Chapter 6. OS shell

CHAPTER
SEVEN

DOC / REPORTS

7.1 Documentation

You can directly open this documentation from Python by calling the doc function of the package:

[>>> autolab.doc()

[>>> autolab doc

7.2 Bugs & suggestions reports

If you encounter any problems or bugs, or if you have any suggestion to improve this package, or one of its drivers,
please open an Issue on the GitHub page of this project https://github.com/autolab-project/autolab/issues/new

You can also directly call the report function of the package, which will open this page in your web browser:

[>>> autolab.report()

[>>> autolab report

Alternatively, you can send an email to the authors (see About).

59

https://github.com/autolab-project/autolab/issues/new

Autolab, Release 2.0

60 Chapter 7. Doc / Reports

CHAPTER
EIGHT

RELEASE NOTES

8.1 2.0

Autolab 2.0 released in 2024 is the first major release since 2020.

8.1.1 General Features

* Configuration Enhancements:

— Enhanced configuration options for driver management in autolab_config.ini, including extra paths and
URLs for driver downloads.

— Added install_driver() to download drivers.
— Improved handling of temporary folders and data saving options.
* Driver Management:
— Moved drivers to a dedicated GitHub repository: https://github.com/autolab-project/autolab-drivers.

— Drivers are now located in the local “<username>/autolab/drivers/official” folder instead of the main pack-
age.

— Added the ability to download drivers from GitHub using the GUI, allowing selective driver installation.
* Documentation:

— Added documentation for new features and changes.

8.1.2 GUI Enhancements

* General Improvements:

Switched from matplotlib to pyqtgraph for better performance and compatibility.

Enhanced plotting capabilities in the monitor and scanner, including support for 1D and 2D arrays and
images.

Added $eval: special tag to execute Python code in the GUI to perform custom operations.

Added autocompletion for variables using tabulation.

Added sliders to variables to tune values.
¢ Control Panel:

— Added the ability to display and set arrays and dataframes in the control panel.

61

https://github.com/autolab-project/autolab-drivers

Autolab, Release 2.0

Added possibility to use variable with type bytes and action that have parameters with type bool, bytes,
tuple, array or dataframe.

Added yellow indicator for written but not read elements.

Introduced a checkbox option to optionally display arrays and dataframes in the control panel.
Added sub-menus for selecting recipes and parameters.

Improved device connection management with options to modify or cancel connections.

Added right-click options for modifying device connections.

¢ Scanner:

Implemented multi-parameter and multi-recipe scanning, allowing for more complex scan configurations.
Enhanced recipe management with right-click options for enabling/disabling, renaming, and deleting.
Enabled plotting of scan data as an image, useful for 2D scans.

Added support for custom arrays and parameters in scans.

Enabled use of a default scan parameter not linked to any device.

Added data display filtering option.

Added scan config history with the last 10 configurations.

Added variables to be used in the scan, allowing on-the-fly analysis inside a recipe.

Changed the scan configuration file format from ConfigParser to json to handle new scan features.

Add shortcut for copy paste, undo redo, delete in scanner for recipe steps.

¢ Plotter:

Implementation of a plotter to open previous scan data, connect to instrument variables and perform data
analysis.

 Usability Improvements:

Enabled drag-and-drop functionality in the GUIL.
Added icons and various UI tweaks for better usability.

Enabled opening configuration files from the GUL

¢ Standalone GUI Utilities:

Added autolab.about() for autolab information.

Added autolab.slider(variable) to change a variable value.

Added autolab.variables_menu() to control variables, monitor or use slider.
Added autolab.add_device() for adding devices to the config file.

Added autolab.monitor(variable) for monitoring variables.

Added autolab.plotter() to open the plotter directly.

62

Chapter 8. Release notes

Autolab, Release 2.0

8.1.3 Device and Variable Management

* Variable and Parameter Handling:
— Added new action units (‘user-input’, ‘open-file’, ‘save-file’) to open dialog boxes.
— Added ‘read_init’ argument to variable allowing to read a value on device instantiation in the control panel.

— Added new type ‘tuple’ to create a combobox in the control panel.

8.1.4 Miscellaneous Improvements

* Code Quality and Compatibility:

Numerous bug fixes to ensure stability and usability across different modules and functionalities.

Compeatibility from Python 3.6 up to 3.12.

Switched from PyQt5 to qtpy to enable extensive compatibility (Qt5, Qt6, PySide2, PySide6).

Extensive code cleanup, PEPS compliance, and added type hints.
* Logger and Console Outputs:
— Added an optional logger in the control center to display console outputs.
— Added an optional console in the control center for debug/dev purposes.
* Miscellaneous:
— Added an “About” window showing versions, authors, license, and project URLs.
— Implemented various fixes for thread handling and error prevention.

— Add dark theme option for GUI.

8.2 1.1.12

Last version developed by the original authors.

8.2. 1.1.12 63

Autolab, Release 2.0

64 Chapter 8. Release notes

CHAPTER
NINE

ABOUT

This Python package has been created in 2019 by Quentin Chateiller (PhD student) and Bruno Garbin (post-doc
researcher) from the ToniQ team of the C2N-CNRS laboratory (Center for Nanosciences and Nanotechnologies,
Palaiseau, France).

The first developments of the core, the GUI, and the drivers started initially in 2017 by Quentin. Bruno arrived in
the team in 2019, providing a new set of Python drivers from its previous laboratory. In order to propose a Python
alternative for the automation of scientific experiments in our research team, we finally merged our works in a Python
package based on a standardized and robust driver architecture, that makes drivers easy to use and to write by the
community.

From 2020 onwards, development was pursued by Jonathan Peltier (PhD Student) from the Minaphot team. In 2023,
Mathieu Jeannin from the Odin team joined the adventure.

Thanks to Maxime, Giuseppe, Guilhem, Victor and Hamza for their contributions.

You find this package useful? We would be really grateful if you could help us to improve its visibility! You can:
* Add a star on the GitHub page of this project
 Spread the word around you
* Mention this package in your research publications

Contacts: Autolab discussion, autolab-project@googlegroups.com

université

.» I g IO @UANI@ W
universite g HYPNOTIC
a. MARIE CURIE

qUN]VERSITE I6 (V)]
PARIS . & <
i 0

2 ;

= g

Last edit: Sep 26, 2024 for the version 2.0

65

https://www.linkedin.com/in/quentinchateiller/
https://toniq.c2n.universite-paris-saclay.fr/fr/
https://www.c2n.universite-paris-saclay.fr/fr/
https://minaphot.c2n.universite-paris-saclay.fr/en/
https://https://odin.c2n.universite-paris-saclay.fr/en/
https://github.com/autolab-project/autolab
https://github.com/autolab-project/autolab/discussions
mailto:autolab-project@googlegroups.com

	Installation
	Python
	Autolab package
	Packages for the GUI
	Development version

	Drivers (Low-level interface)
	Load and use a Driver
	Load and close a Driver
	Use a Driver
	Script example

	Write your own Driver
	Getting started: create a new driver
	Driver structure (<manufacturer>_<MODEL>.py file)
	1 - import modules (optional)
	3 - class Driver_CONNECTION
	2 - class Driver
	4 - Additional class (optional)

	Additional necessary functions/files
	Function get_driver_model (in each class but Driver_CONNECTION)
	Driver utilities structure (<manufacturer>_<MODEL>_utilities.py file)

	Devices (High-level interface)
	What is a Device?
	Load and close a Device
	Navigation and help in a Device
	Use a Variable
	Use an Action
	Script example

	Local configuration
	Edit the configuration file

	Graphical User Interface (GUI)
	Control panel
	Devices tree
	Actions
	Variables

	Monitoring
	Slider
	Scanning
	Plotting
	Other features
	Logger
	Console
	Executing Python codes in GUI
	Autocompletion

	Monitoring
	Scanning
	Scan configuration
	Parameters
	Parameter range
	Steps
	Store the configuration

	Scan execution
	Figure

	Plotting
	Import data
	Device connection
	Plugin tree

	Miscellaneous
	Preferences
	Driver installer
	About
	Add device
	Variables menu

	Experimental features
	Plot from driver

	OS shell
	Getting help
	Instantiate a driver/device
	Command driver
	Usage of pre-configured operations
	Raw operations (-m option)
	Script example

	Command device

	Doc / Reports
	Documentation
	Bugs & suggestions reports

	Release notes
	2.0
	General Features
	GUI Enhancements
	Device and Variable Management
	Miscellaneous Improvements

	1.1.12

	About

