pymzML Documentation
Release 0.7.6

Till Bald
Johannes Barth
Anna Niehues
Michael Specht
Michael Hippler
Christian Fufezan

Oct 11, 2018

1 Introduction

1.1
1.2
1.3
1.4
1.5
1.6
1.7

2 Usage
2.1
2.2

3 Modu

4 Class

General information

Basicusage Lo
Advancedusage

le Run

Spectrum

5 OBO parser Class

5.1
52

Accessing specific OBO MS tags
Minimal accession set

6 Plotting functions

7 Example scripts

7.1
7.2
1.3
7.4
7.5
7.6
7.7
7.8
7.9

Findingapeak

Plotting a spectrum
Abundant precursor

8 Indices and tables

Python Module Index

Summary
Implementation
Download.
Citation e
Installation
Introduction,

Compare Spectra
Query Obofiles.
Highestpeaks.
extract a specific Ion Chromatogram (EIC, XIC)
Accessing the original XML Tree of a spectrum
WritemzML

CONTENTS

W NN NN — -

AN L

.......................... 25

CHAPTER
ONE

INTRODUCTION

The latest Documentation was generated on: Oct 11, 2018

1.1 General information

Module to parse mzML data in Python based on cElementTree
Copyright 2010-2014 by:

T. Bald,

J. Barth,

A. Niehues,
M. Specht,

M. Hippler,
C. Fufezan

1.1.1 Contact information

Please refer to:

Dr. Christian Fufezan

Institute of Plant Biology and Biotechnology
Schlossplatz 8 , R 105

University of Muenster

Germany

eMail: christian @fufezan.net

Tel: +049 251 83 24861

http://www.uni-muenster.de/Biologie.IBBP.AGFufezan

mailto:christian@fufezan.net
http://www.uni-muenster.de/Biologie.IBBP.AGFufezan

pymzML Documentation, Release 0.7.6

1.2 Summary

pymzML is an extension to Python that offers
e 1. easy access to mass spectrometry (MS) data that allows the rapid development of tools,
e 2. avery fast parser for mzML data, the standard in mass spectrometry data format and

e 3. aset of functions to compare or handle spectra.

1.3 Implementation

pymzML requires Python2.6.5+ and is fully compatible with Python3. The module is freely available on
pymzml.github.com or pypi, published under LGPL and requires no additional modules to be installed.

1.4 Download

Get the latest version via github
https://github.com/pymzml/pymzML
or the latest package at

http://pymzml.github.com/dist/pymzml.tar.bz2
http://pymzml.github.com/dist/pymzml.zip

The complete Documentation can be found as pdf

http://pymzml.github.com/dist/pymzml.pdf

1.5 Citation

Please cite us when using pymzML in your work.

Bald, T., Barth, J., Niehues, A., Specht, M., Hippler, M., and Fufezan, C. (2012) pymzML - Python module for high
throughput bioinformatics on mass spectrometry data, Bioinformatics, doi: 10.1093/bioinformatics/bts066

The original publication can be found here:

http://bioinformatics.oxfordjournals.org/content/early/2012/02/02/bioinformatics.bts066.abstract
http://bioinformatics.oxfordjournals.org/content/early/2012/02/02/bioinformatics.bts066.full.pdf

1.6 Installation

sudo python setup.py install

2 Chapter 1. Introduction

https://github.com/pymzml/pymzML
http://pymzml.github.com/dist/pymzml.tar.bz2
http://pymzml.github.com/dist/pymzml.zip
http://pymzml.github.com/dist/pymzml.pdf
http://bioinformatics.oxfordjournals.org/content/early/2012/02/02/bioinformatics.bts066.abstract
http://bioinformatics.oxfordjournals.org/content/early/2012/02/02/bioinformatics.bts066.full.pdf

pymzML Documentation, Release 0.7.6

1.7 Introduction

Mass spectrometry has evolved into a very diverse field that relies heavily on high throughput bioinformatic tools.
Due to the increasing complexity of the questions asked and biological problems addressed, standard tools might
not be sufficient and tailored tools still have to be developed. However, the development of such tools has been
hindered by proprietary data formats and the lack of an unified mass spectrometric data file standard. The latter has
been overcome by the publication of the mzML standard by the HUPO Proteomics Standards Initiative (Deutsch,
2008) (http://www.psidev.info/) and soon all manufactures will hopefully offer a way to convert their format into this
standardized one in order to stay comparable and competitive. Therefore in order to rapidly develop bioinformatic
tools that can explore mass spectrometry data one needs a portable, robust, yet quick and easy interface to mzML files.
The Python scripting language (http://python.org) is predestined for such a task.

Scripting languages carry several advantages compared to compiled programs and although compiled programs tend to
be faster, scripting languages can already compete successfully in some tasks. For example, XML parsing is extremely
optimized in Python due to the cElementTree module (http://effbot.org/zone/element-index.htm), which allows XML
parsing in a fraction of classical C/C++ libraries, such as libxml2 or sgmlop. Therefore it seems natural that a well
designed python mzML parser can successfully compete with C/C++ libraries currently available while offering the
advantages of a scripting language.

1.7. Introduction 3

http://www.psidev.info/
http://python.org
http://effbot.org/zone/element-index.htm

pymzML Documentation, Release 0.7.6

4 Chapter 1. Introduction

CHAPTER
TWO

USAGE

This Chapter deals with some features of pymzml and explains the basic usage.

2.1 Basic usage

The Python scripting language is extended by pymzML to enable rapid evaluation, prototyping and even complex
evaluation of large mass spectrometry datasets. The following examples are executed within the Python console
(indicated by “>>>"") but can equally be incorporated in standalone scripts.

The pymzML file object is declared as follows:

>>> import pymzml
>>> msrun = pymzml.run.Reader ("big-1.0.0.mzML")

The input files can be plain or compressed mzML files. Initialization of the Run class accepts additional keywords,
i.e. precision of MS1 or MSn runs and extra accessions (see: obo). The run object returns an iterator, hence one
can loop over all spectra and/or chromatograms using classic Python syntax. Additionally, one can retrieve a specific
spectrum by its nativeID via random access using msrun[1], msrun["TIC’] to access the chromatogram or in case of
MRM experiments as e.g. msrun[’transition_445-672’]. Note that random access requires the mzML file not to be
compressed or truncated by a conversion program.

>>> for spectrum in msrun:
>>> if spectrum['ms level'] == 2:

>>> sgspectrum_with_nativeID_100 = msrun[100]

Each iteration returns a spectrum object (spec. Spect rum) which offers basic information on the spectrum. The
information can be accessed like a Python dictionary. The keys in this dictionary are the accession numbers (e.g.
MS:1000511) or the name of the accession (e.g. “ms level”), as they are defined by the HUPO Proteomics Standards
Initiative in the mzML vocabulary, i.e. in the OBO files. Both keys of the spectrum dictionary point to the value that
has been extracted from the mzML file (see: obo). Association of MS tag to name is done on the basis of the OBO
files which are supplied in the pymzML package. The pymzML package offers a simple script (see: queryOBO) that
can be used to translate between MS tags and names. Examples for accessing MS tags by their names can be found
here: OBO parser Class. It is worth noting that the definition of MS tags and their attribute that the user wants to be
associated with the tag and the trivial name is a feature. For example, the scan time is associated with two values,
the actual time and its unit. From a programming point of view, access to the time as float by calling spectrum[’scan
time’] is desirable. Defining those attributes and their value one is interested in, facilitates live ;)

Data that is associated with the current spectrum, i.e. mass over charge (m/z) or intensity values can be accessed
by the .mz (spec. Spectrum.mz) or .intensity (spec. Spect rum. i) properties, respectively, which are iterators
themselves. The .peaks (spec. Spectrum. peaks) property also offers an iterator which returns mz and intensity
as a tuple for each peak:

pymzML Documentation, Release 0.7.6

>>> for mz, i in spectrum.peaks:
>>> print (mz, 1)

Since mass spectrometry data can be measured in profile mode, the .centroidedPeak (spec.Spectrum.
centroidedPeaks) property offers an iterator which performs a simple Gauss fit on the profiled data, thereby
returning the fitted m/z and maximum intensity of the bell shape curve as tuple. Basic visualization of spectra using
XHTML and SVG can be done using the p ot submodule.

2.2 Advanced usage

The spectrum class also offers other functions, such as deconvolution, estimation of similarity of spectra, simple noise
reduction, addition of spectra and simple arithmetics on the intensity values by multiplication or division. An averaged
spectrum can be created during parsing as follows:

>>> t = pymzml.spec.Spectrum/()

>>> for s in msrun:

>>> if s['ms level'] == 1:

>>> t += s / s['total ion current']

The addition of spectra is done by creating Gaussian distributions around the centroided peak. This reprofiling is
done internally as part of the addition and its values can be accessed by the .reprofiledPeaks (spec. Spectrum.
reprofiledPeaks) property of the spectrum. To reduce the computational overhead one can remove noise by
calling the .removeNoise() (spec. Spectrum. removeNoise ()) method of the spectrum class. This method
accepts different modes of noise reduction. Deconvoluted peaks can be accessed for high precision spectra by calling
the .deconvolutedPeaks (spec. Spectrum.deconvolutedPeaks) property. The pymzML package contains
detailed example scripts for all these methods. (Example scripts)

6 Chapter 2. Usage

CHAPTER
THREE

MODULE RUN

The class Reader has been designed to selectively extract data from a mzML file and to expose the data as a python
object. Necessary information are read in and stored in a fast accessible format. The reader itself is an iterator, thus
looping over all spectra follows the classical pythonian syntax. Additionally one can random access spectra by their
nativelD if the file if not compressed or truncated by a conversion Program.

The class Writer is still in development.

class run.Reader

init (
pathx*
[, noiseThreshold=0.0, extraAccessions=None, MSl_ Precision=5e-6, MSn_Precision=20e-6]

)
Initializes an mzML run and returns an iterator.
Parameters
* path (string) - path to mzML file. File can be gzipped.

e extraAccessions (I1ist of tuples) - list of additional (accession,fieldName) tu-
ples.

For example, (‘MS:1000285’,[’value’]) will extract the “total ion current” and store it under
two keys in the spectrum, i.e. spectrum[”total ion current”] or spectrum[’MS:1000285’].

The translated name is extracted from the current OBO file, hence the name that is defined
by the HUPO-PSI consortium is used. (http://www.psidev.info/).

pymzML comes with an example script queryOBO.py which can be used to lookup the
names or MS tags (see: queryOBO).

The value, i.e. which xml property has to be extraced has to be provided by the user. Mul-
tiple values can be used as input, i.e. (‘MS:1000016° , [’value’, unitName’]) will extract
scan time and its unit.

* MS1_Precision (float) - measured precision of MS1 spectra
* MSn_Precision (float)— measured precision of MSn spectra
* build_index_from scratch (boolean) - build index from scratch

e file_object (File object like) — file object or any other iterable stream, this
will make path obsolete, seeking is disabled

Example:

http://www.psidev.info/

pymzML Documentation, Release 0.7.6

>>> run = pymzml.run.Reader ("../mzML_example_files/100729_t300_100729172744 .mzML.
‘HgZ",
MS1_Precision = 20e-6)

next ()
Iterator for the class Run:. Iterates over all of the spectra or chromatograms in the file.

Returns a spectrum, stored in run.spectrum.
Return type spec.Spectrum:

Example:

>>> for spectrum in run:
print (spectrum['id'], end='\zr'")

class run.Writer

__init__ (filename*, run*[, overwrite = boolean])
Initializes an mzML writer (beta stage).
Parameters
* path (string) - filename for the new mzML file.

* run (pymzml. run.Reader) — Currently a pymzml.run.Reader object is required since
we do not write the header by ourselves yet.

* overwrite (boolean) - force the re-initialization of mzML file, even if file exists.

At the moment no index is written.

Example:
>>> run = pymzml.run.Reader (
'../mzML_example_files/100729_t300_100729172744 .mzML",
MS1_Precision=5e-6,
)
>>> run2 = pymzml.run.Writer (filename='write test.mzML', run=run , overwrite=True)
>>> spec = run[1000]
>>> run2.addSpec (spec)
>>> run?2.save ()

8 Chapter 3. Module Run

CHAPTER
FOUR

CLASS SPECTRUM

The spectrum class offers a python object for mass spectrometry data. The spectrum object holds the basic information
on the spectrum and offers methods to interrogate properties of the spectrum. Data, i.e. mass over charge (m/z) and
intensity decoding is performed on demand and can be accessed via their properties, e.g. spec. Spectrum.peaks.

The Spectrum class is used in the run . Run class. There each spectrum is accessible as a spectrum object.

Theoretical spectra can also be created using the setter functions. For example, m/z values, intensities, and peaks can
be set by the corresponding properties: spec. Spectrum.mz, spec. Spectrum. 1, spec.Spectrum.peaks.

class spec.Spectrum

init__ (measuredPrecision = value*)

Initializes a pymzml.spec.Spectrum class.

Parameters measuredPrecision (float)—in ppm, i.e. Se-6 equals to 5 ppm

xmlTree

xmlTree property returns an iterator over the original xmlTree structure the spectrum was initilized with.

Example:

>>> for element in spectrum.xmlTree:
print (element, element.tag, element.items())

please refer to the xml documentation of Python and cElementTree for more details.

Returns the list of m/z values. If the m/z values are encoded, the function _decode () is used to decode
the encoded data.

The mz property can also be setted, e.g. for theoretical data. However, it is recommended to use the peaks
property to set mz and intesity tuples at same time.

Return type list

Returns Returns a list of mz from the actual analysed spectrum

Returns the list of the intensity values. If the intensity values are encoded, the function _decode () is
used to decode the encoded data.

The i property can also be setted, e.g. for theoretical data.However, it is recommended to use the peaks
property to set mz and intesity tuples at same time.

Return type list

Returns Returns a list of intensity values from the actual analysed spectrum.

pymzML Documentation, Release 0.7.6

peaks
Returns the list of peaks of the spectrum as tuples (m/z, intensity).

Return type list of tuples
Returns Returns list of tuples (m/z, intensity)

Example:

>>> import pymzml
>>> run = pymzml.run.Reader (spectra.mzMl.gz, MS1_Precision
—Precision = 20e-6)
>>> for spectrum in run:
for mz, i in spectrum.peaks:
print (mz, 1)

5e-6, MSn_

Note: The peaks property can also be setted, e.g. for theoretical data. It requires a list of mz/intensity
tuples.

centroidedPeaks
Returns the centroided version of a profile spectrum. Performs a Gauss fit to determine centroided mz
and intensities, if the spectrum is in measured profile mode. Returns a list of tuples of fitted m/z-intesity
values. If the spectrum peaks are already centroided, these peaks are returned.

Return type list of tuples
Returns Returns list of tuples (m/z, intensity)

Example:

>>> import pymzml
>>> run = pymzml.run.Reader (spectra.mzMl.gz, MS1_Precision
—Precision = 20e-6)
>>> for spectrum in run:
for mz, i in spectrum.centroidedPeaks:
print (mz, 1)

5e-6, MSn_

reprofiledPeaks
Returns the reprofiled version of a centroided spectrum.

Return type list of reprofiled mz,i tuples
Returns Reprofiled peaks as tuple list

Example:

>>> import pymzml
>>> run = pymzml.run.Reader (spectra.mzMl.gz, MS1l_Precision = 5e-6, MSn_
—Precision = 20e-6)
>>> for spectrum in run:
for mz, i in spectrum.reprofiledPeaks:

print (mz, i)

reprofiledPeaks
Returns the reprofiled version of a centroided spectrum.

Return type list of reprofiled mz,i tuples

Returns Reprofiled peaks as tuple list

10 Chapter 4. Class Spectrum

pymzML Documentation, Release 0.7.6

Example:

>>> import pymzml
>>> run = pymzml.run.Reader (spectra.mzMl.gz, MS1l_Precision = 5e-6, MSn_
—~Precision = 20e-6)
>>> for spectrum in run:
for mz, i in spectrum.reprofiledPeaks:
print (mz, 1)

measuredPrecision
Sets the measured and internal precision

Parameters value (float)— measured precision (e.g. 5e-6)

__add___ (otherSpec)
Adds two pymzml spectra together.

Parameters otherSpec (object) — Spectrum object

Example:
>>> import pymzml
>>> s = pymzml.spec.Spectrum(measuredPrescision = 20e-6)
>>> file_to_read "../mzML_example_files/xy.mzML.gz"
>>> run = pymzml.run.Reader (file_to_read , MS1l_Precision = 5e-6 , MSn_
—Precision = 20e-6)
>>> for spec in run:
s += spec
_ mul__ (value)
Multiplies each intensity with a float, i.e. scales the spectrum.
Parameters value (f1loat)— Value to multiply the spectrum
__truediv__ (value)
Divides each intensity by a float, i.e. scales the spectrum.
Parameters value (float, int)- Value to divide the spectrum
strip (scope="all’)
Reduces the size of the spectrum. Interesting if specs need to be added or stored.
Parameters scope (string)— accepts currently [’all”]
“all” will remove the raw and profiled data and some internal lookup tables as well.
extremeValues (key)
Find extreme values, minimal and maximum mz and intensity
Parameters key (string)-—m/z: “mz” or intensity : “i”’
Return type tuple
Returns tuple of minimal and maximum m/z or intensity
reduce (mzRange=(None, None))
Works on peaks and reduces spectrum to a m/z range.
Example:
>>> run = pymzml.run.Reader (file_to_read, MS1l_Precision = 5e-6, MSn_Precision_
—= 20e-6)
>>> for spec in run:
spec.reduce (mzRange = (100,200))

11

pymzML Documentation, Release 0.7.6

deRef ()
Strip some heavy data and return deepcopy of spectrum.

Example:

>>> run
—= 20e-6)
>>> for spec in run:

tmp spec.deRef ()

pymzml.run.Reader (file_to_read, MS1l_Precision = 5e-6, MSn_Precision,

removeNoise (mode="median’, noiseLevel=None)
Function to remove noise from peaks, centroided peaks and reprofiled peaks.

Parameters mode (string) — define mode for removing noise. Default = “median” (other
modes: “mean”, “mad”)

Return type list of tuples
Returns Returns a list with tuples of m/z-intensity pairs above the noise threshold

mad < median < mean

Threshold is calculated over the mad/median/mean of all intensity values. (mad = mean absolute deviation)

Example:

>>> import pymzml
>>> run

pymzml.run.Reader (spectra.mzML.gz, MS1l_Precision = 5e-6, MSn_
—Precision = 20e-6)
>>> for spectrum in run:
for mz, i1 in spectrum.removeNoise(mode = 'mean'):
print (mz, 1)

highestPeaks (n)
Function to retrieve the n-highest centroided peaks of the spectrum.

Parameters n (int)— Number of n-highest peaks
Return type list

Returns list of centroided peaks (mz, intensity tuples)

Example:
>>> run = pymzml.run.Reader ("../mzML_example_files/deconvolution.mzML.gz", |
—MS1_Precision = 5e-6, MSn_Precision 20e-06)
>>> for spectrum in run:
if spectrum["ms level"] == 2:
if spectrum["id"] == 1770:

for mz,i in spectrum.highestPeaks (5):
print (mz, i)

estimatedNoiseLevel (mode="median’)
Calculates noise threshold for function removeNoise ()

hasOverlappingPeak (mz)
Checks if a spetrum has more than one peak for a given m/z value and within the measured precision

Parameters mz (f1oat)— m/z value which should be checked
Returns Returns True if a nearby peak is detected, otherwise False

Return type bool

12 Chapter 4. Class Spectrum

pymzML Documentation, Release 0.7.6

hasPeak (mz2find)
Checks if a Spectrum has a certain peak. Needs a certain mz value as input and returns a list of peaks if a
peak is found in the spectrum, otherwise [] is returned. Every peak is a tuple of m/z and intensity.

Parameters mz2find (f1oat)— mz value which should be found
Return type list
Returns m/z and intensity as tuple in list

Example:

>>> import pymzml, get_example_ file
>>> example_file = get_example_file.open_example ('deconvolution.mzML.gz")
>>> run = pymzml.run.Reader (example_file, MS1_Precision = 5e-6, MSn_Precision,,
—= 20e-06)
>>> for spectrum in run:
if spectrum["ms level"] ==
Ce peak_to_find = spectrum.hasPeak (1016.5404)
. print (peak_to_find)
[(1016.5404, 19141.735187697403)]

hasDeconvolutedPeak (mass2find)
Checks if a deconvoluted spectrum contains a certain peak. Needs a mass value as input and returns a list
of peaks if a peak is found in the spectrum. If the mass is not found [] is returned. Every peak is a tuple
of m/z and intensity.

Parameters mass2find (f1oat)— mass value which should be found
Return type list
Returns mass and intensity as tuple in list if mass is found, otherwise []

Example:

>>> import pymzml, get_example_ file

>>> example_file = get_example_file.open_example ('deconvolution.mzML.gz")
>>> run = pymzml.run.Reader (example_file, MS1_Precision = 5e-6, MSn_Precision,
—= 20e-6)
>>> for spectrum in run:
if spectrum["ms level"] == 2:

peak_to_find = spectrum.hasDeconvolutedPeak (1044.5804)
. print (peak_to_find)
[(1044.5596, 3809.4356300564586)]

similarityTo (spec2, round_precision=0)
Compares two spectra and returns cosine

Parameters

* spec2 (pymzml. spec.Spectrum) — another pymzml spectrum that is compated to
the current spectrum.

* round_precision — precision mzs are rounded to, ie round(mz, round_precision)
Returns value between 0 and 1, i.e. the cosine between the two spectra.

Return type float

Note: Spectra data is transformed into an n-dimensional vector, whereas mz values are binned in bins
of 10 m/z and the intensities are added up. Then the cosine is calculated between those two vectors. The

13

pymzML Documentation, Release 0.7.6

more similar the specs are, the closer the value is to 1.

tmzSet
Create set out of transformed m/z values (including all values in the defined imprecision).

Return type set

tmassSet
create a set out of transformed mass values (including all values in the defined imprecision).

Return type set

transformedPeaks
m/z value is multiplied by the internal precision

Return type list of tuples

Returns Returns a list of peaks (tuples of mz and intensity). Float m/z values are adjusted by
the internal precision to integers.

transformed deconvolutedPeaks
Deconvoluted mz value is multiplied by the internal precision

Return type list of tuples

Returns Returns a list of peaks (tuples of mz and intensity). Float m/z values are adjusted by
the internal precision to integers.

deconvolute_peaks (ppmFactor=4, minCharge=1, maxCharge=8, maxNextPeaks=100, return-

Charge=False, debug=False)
Calculating uncharged masses and returning deconvoluted peaks.

The deconvolution of spectra is done by first identifying isotope envelopes and the charge state of this
envelopes. The first peak of an isotope envelope is choosen as the monoisotopic peak for which the mass
is calculated from the m/z ratio. Isotope envelopes are identified by searching the centroided spectrum for
peaks which show no preceding isotope peak within a specified mass accuracy. To be sure, the measured
mass accuracy is multiplied by a user adjustable factor (ppmFactor). When the current peak meets the
criteria with no preceding peaks, the following peaks are analysed. The following peaks are considered
to be part of the isotope envelope, as long as they fit within the measured precision and only one local
maximum is present. The second local maximum is not considered as the starting point of a new isotope
envelope as one cannot be sure were this isotope envelope starts. However, the last peak before the second
local maximum is considered to be part of the isotope envelope from the first local maximum, as the
intensity of this peak shouldn’t have a big influence on the whole isotope envelope intensity. The charge
range for detecting isotope envelopes can be specified (ninCharge, maxCharge). An isotope envelope
always gets the highest possible charge. With the charge the mass can be calculated from the m/z value
of the first peak of the isotope envelope. The intensity of the deconvoluted peak results from the sum of
all isotope envelope peaks. In a last step, deconvoluted peaks are grouped together within the measured
precision. This is necessary because isotope envelopes from the same fragment but with different charge

states can leed to slightly different deconvoluted peaks.
Parameters
* ppmFactor (int)— ppm factor (imprecision factor)
* minCharge (int)— minimum charge considered
* maxCharge (int)— maximum charge considered
* maxNextPeaks — maximum length for isotope envelope
Return type tuple (mass, intensity)

Returns Deconvoluted peaks, mass (instead of m/z) and intensity are returned

14

Chapter 4. Class Spectrum

pymzML Documentation, Release 0.7.6

deconvolutedPeaks
Calling spec. Spectrum.deconvolute_peaks () with standard parameters, which calculates un-
charged masses and returns deconvoluted peaks.

Return type list

Returns list of deconvoluted peaks (mass (instead of m/z) / intensity tuples)

15

pymzML Documentation, Release 0.7.6

16 Chapter 4. Class Spectrum

CHAPTER
FIVE

OBO PARSER CLASS

Class to parse the obo file and set up the accessions library

The OBO parse has been designed to convert MS:xxxxx tags to their appropriate names. A minimal set of MS
accession is used in pymzml, but additional accessions can easily added, using the extraAccession parameter during
run.Reader initialization.

The obo translator is used internally to associate names with MS:XxXXXXXXx tags.

The oboTranslator Class generates a dictionary and several lookup tables. e.g.

>>> from pymzml.obo import oboTranslator as OT

>>> translator = OT ()
>>> len(translator.id.keys()) # Number of parsed entries
737

>>> translator['MS:1000127"]
'centroid mass spectrum'
>>> translator|['positive scan']

{'is_a': 'MS:1000465 ! scan polarity', 'id': 'MS:1000130', 'def': '""Polarity
of the scan is positive." [PSI:MS]', 'name': 'positive scan'}

>>> translator['scan']

{'relationship': 'part_of MS:0000000 ! Proteomics Standards Initiative Mass
Spectrometry Ontology', 'id': 'MS:1000441', 'def': '""Function or process of
the mass spectrometer where it records a spectrum." [PSI:MS]', 'name':
'scan'}

>>> translator['unit']

{'relationship': 'part_of MS:0000000 ! Proteomics Standards Initiative Mass
Spectrometry Ontology', 'id': 'MS:1000460', 'def': '""Terms to describe
units." [PSI:MS]', 'name': 'unit'}

pymzML comes with the queryOBO.py script that can be used to interrogate the OBO file.

$./example_scripts/queryOBO.py "scan time"

MS:1000016

scan time

"The time taken for an acquisition by scanning analyzers." [PSI:MS]
Is a: MS:1000503 ! scan attribute

$

5.1 Accessing specific OBO MS tags

This section describes how to access some common MS tags by their names as they are defined in the OBO file.

First pymzML is imported and the run is defined.

17

pymzML Documentation, Release 0.7.6

>>> example_file = get_example_file.open_example ('dta_example.mzML")
>>> import pymzml
>>> msrun = pymzml.run.Reader (example_file)

Now, we can fetch specific imformations from the spectrum object.

MS level:

>>> for spectrum in msrun:
print (spectrum['ms level'])

Total Ion current:

>>> for spectrum in msrun:
print (spectrum['total ion current'])

Furthermore we can also check for presence of parameters, therefore the proprties of the spectrum.

Differentiation of e.g. HCD and CID fractionation:

>>> for spectrum in msrun:
if spctrum['ms level'] == 2:
if 'collision—-induced dissociation' in spectrum.keys{() :
print ('Spectrum {0} is a CID spectrum'.format (spectrum['id']))
elif 'high-energy collision-induced dissociation' in spectrum.keys():
print ('Spectrum {0} is a HCD spectrum'.format (spectrum['id']))

5.2 Minimal accession set

The following dictionary shows the minimal accession necessary to run pymzML.

MIN_REQ = [

#

#!NOTE! exact names will be extracted of current OBO File, comments are just an_
—orientation

pymzml comes with a little script (queryOBO.py) to query the obo file

#

S ./example_scripts/queryOBO.py "scan time"

MS:1000016

scan time

"The time taken for an acquisition by scanning analyzers." [PSI:MS]

Is a: MS:1000503 ! scan attribute

#

("MS:1000016"', ['value']), #"scan time"

—> Could also be ['value', 'unitName'] to retrieve a

tuple of time and unit by calling spectrum('scan time']

('MS:1000040"', ['value'] Yy, #"'m/z"

("MS:1000041"', ['value']), #"charge state"”

('"MS:1000127"', ["name"']), #"centroid spectrum"”

('"MS:1000128", ["name"']), #"profile spectrum"

("MS:1000133", ["name"']), #"collision—-induced dissociation"
('MS:1000285", ['value']), #"total ion current"

('"MS:1000422", ["name "]), #"high-energy collision—-induced dissociation"
("MS:1000511", ['value']), #"ms level"

('MS:1000512", ['value']), #"filter string"

("MS:1000514"', ["name '] Yy, #"m/z array"

18 Chapter 5. OBO parser Class

pymzML Documentation, Release 0.7.6

('MS:1000515"', ["name "]) #"intensity array"
('"MS:1000521", ["name ']), #"32-bit float"
('MS:1000523"', ["name "]) #"64-bit float"
('MS:1000744"', ['value']), # legacy precursor mz value

5.2. Minimal accession set 19

pymzML Documentation, Release 0.7.6

20 Chapter 5. OBO parser Class

CHAPTER
SIX

PLOTTING FUNCTIONS

Plotting functions for pymzML. The Factory object can hold several plots with several data traces each. The plot will
be rendered as interactive plotly plots.

class plot .Factory (filename=None)
Class to plot pymzml.spec.Spectrum as svg/xhtml.

Parameters filename (str)— Name for the output file. Default = “spectra.xhtml”

Example:

>>> import pymzml, get_example_ file

>>> mzMLFile = 'profile-mass-spectrum.mzml'

>>> example_file = get_example_file.open_example (mzMLFile)

>>> run = pymzml.run.Run("../mzML_example files/"+mzMLFile, precisionMSn = 250e-6)
>>> p = pymzml.plot.Factory ()

>>> for spec in run:

>>> p.newPlot ()

>>> p.add(spec.peaks, color=(200,00,00), style='sticks'")

>>> p.add (spec.centroided_peaks, color=(00,00,00), style='sticks")

>>> p.add(spec.reprofiled_peaks, color=(00,255,00), style='sticks")

>>> p.save(filename="output/plotAspect.xhtml" , mzRange = (745.2,745.6))

newPlot (header="*, mzRange=None, normalize=False, precision="5e¢-6’")
Add new plot to the plotting Factory.

Parameters
* header (str) — an optional title that will be printed above the plot
* mzRange (tuple)— Boundaries of the new plot

* normalize (boolean) — whether or not the individal data sets are normalized in the
plot

* precision (float)— measuring precision used in handler. Default Se-6.

add (data, color=(0, 0, 0), style="sticks’, mzRange=None, opacity=0.8, name=None, plotNum=-1)
Add data to the graph.

Parameters

* data (list)— The data added to the graph. Must be list of tuples, like (mz,i) or (mzl,
mz2, i, string)

* style (str) - plotting style. Default = “sticks”.
Currently supported styles are:

— ‘sticks’

21

pymzML Documentation, Release 0.7.6

— ‘sticks.centroided’

— ‘triangle’ (small, medium or big)

— ‘label.sticks’

— ‘label.triangle’ (small, medium or big)

— ‘label.spline’ (top, medium or bottom)

— ‘label.linear’ (top, medium or bottom)
¢ color (tuple) - color encoded in RGB. Default = (0,0,0)
* mzRange (tuple)— Boundaries that should be added to the current plot
* opacity (float) — opacity of the data points
* name (str)-name of data in legend
* plotNum (int)— Add data to plot[plotNum]

info ()
Prints summary about the plotting factory, i.e.how many plots and how many datasets per plot.

save (filename="spectra.xhtml’, xLimits=None)
Saves all plots and their data points that have been added to the plotFactory.

Parameters
e filename (str)— Name for the output file. Default = “spectra.xhtml”
* mzRange (tuple)— m/z range which should be considered [start, end]. Default = None

get_data()
Return data and layout in JSON format.

Returns JSON compatible python dict
Return type plots (dict)

22 Chapter 6. Plotting functions

CHAPTER
SEVEN

EXAMPLE SCRIPTS

In this section, example scripts for the usage of pymzML can be found.

7.1 Finding a peak

hasPeak.py Testscript to demonstrate functionality of function spec.Spectrum.hasPeak () or spec.
Spectrum.hasDeconvolutedPeak ()

Example:

>>> import pymzml, get_example_ file
>>> example_file = get_example_file.open_example ('deconvolution.mzML.gz")

>>> run = pymzml.run.Reader (example_file, MS1l_Precision = 5e-6, MSn_Precision = 20e-6)
>>> for spectrum in run:
if spectrum["ms level"] == 2:

peak_to_find = spectrum.hasPeak (1016.5404)
C. print (peak_to_find)
[(1016.5402567492666, 19141.735187697403)]

7.2 Plotting a spectrum

plotAspec.py This function shows how to plot a simple spectrum. It can be directly plotted via this script or using the
python console

Example of plotting a spectrum:

>>> import pymzml, get_example_ file

>>> mzMLFile = 'profile-mass-spectrum.mzml'

>>> get_example_file.open_example (mzMLFile)

>>> run = pymzml.run.Reader ("mzML_example_ files/"+mzMLFile, MSn_Precision = 25e-6)
>>> p = pymzml.plot.Factory ()

>>> for spec in run:

>>> p.newPlot ()

>>> p.add(spec.peaks, color=(200,0,0), style='circles')

>>> p.add (spec.centroidedPeaks, color=(0,0,0), style='sticks"')

>>> p.add(spec.reprofiledPeaks, color=(0,255,0), style='circles")

>>> p.save(filename="output/plotAspect.xhtml" , mzRange = [744.7,747])

23

pymzML Documentation, Release 0.7.6

LWFL
67kFL
05kl
I°SkL
E-SkL
SrL
“erL
[

LSFL
1.0
“ArL
3°9rL
L9rL
BUOkL

9

=1 =1 =]

=

GO05°9rL
GOE"9FL

0-9rL
0OT"9kL
gz

E"9rL

QOB PEL
GOz ekl
oo
005

aoe

QOB SkL
ans

Fig. 7.1: output as xhtml :)

7.3 Abundant precursor

find_abundant_precursors.py Testscript to demonstrate an easy isoloation of the most abundant, isolated precusors
for MSn spectra.Thus exclusion list for further MS runs can be generated. In this example all precursors which were

isolated more than 5 times are found and printed.

Example:

0-LFL

>>> import pymzml, get_example_file, operator.item

>>> import collections import defaultdict as ddict

>>> from operator import itemgetter

>>> example_file = get_example_file.open_example ('dta_example.mzML")

>>> run = pymzml.run.Reader (example_file , MS1l_Precision = 5e-6 , MSn_Precision = 20e-
6)

>>> precursor_count_dict = ddict (int)

>>> for spectrum in run:

>>> if spectrum["ms level"] == 2:

>>> if "precursors" in spectrum.keys():

>>> precursor_count_dict [round(float (spectrum|["precursors"][0] ["mz"]1),3)],
—t+= 1

>>> for precursor, frequency in sorted(precursor_count_dict.items()):

>>> print ("{0}\t{1}".format (precursor, frequency))

7.4 Compare Spectra

compareSpectra.py Compare two spectra and return the cosine distance between them. The returned value is between

0 and 1, a returned value of 1 represents highest similarity.

24 Chapter 7. Example scripts

pymzML Documentation, Release 0.7.6

Example

measuredPrecision 20e-5)

measuredPrecision = 20e-5)
1502,2.0), (1300,1)1
1502,1.3), (1400,2)]

>>> specl = pymzml.spec.Spectrum
>>> spec2 = pymzml.spec.Spectrum
>>> gpecl.peaks = [(1500,1),
>>> spec2.peaks = [(1500,1),
>>> gspecl.similarityTo(spec2)
0.5682164685724541

>>> specl.similarityTo(specl)
1.0000000000000002

7.5 Query Obo files

queryOBO.py %(prog)s [-h] [-v VERSION] query

Use this script to interrogate the OBO database files.

example

$ %(prog)s ‘scan time’ MS:1000016 scan time ‘The time taken for an acquisition by scanning analyzers.” [PSI:MS] Is
a: MS:1000503 ! scan attribute

7.6 Highest peaks

highestPeaks.py Testscript to isolate the n-highest peaks from an example file.

Example:

>>> example_file = get_example_file.open_example ('deconvolution.mzML.gz")
>>> run = pymzml.run.Reader (example_file, MS1l_Precision = 5e-6, MSn_Precision = 20e-6)
>>> for spectrum in run:
if spectrum["ms level"] ==
if spectrum["id"] == 1770:
for mz,i in spectrum.highestPeaks (5) :
print (mz, i)

7.7 extract a specific lon Chromatogram (EIC, XIC)

extractlonChromatogram.py Demonstration of the extraction of a specific ion chromatogram, i.e. XIC or EIC

Example:

>>> import pymzml, get_example_ file
>>> example_file = get_example_file.open_example('small.pwiz.l.l.mzML")

>>> run = pymzml.run.Reader (example_file, MS1_Precision = 20e-6, MSn_Precision = 20e-
—6)
>>> timeDependentIntensities = []

>>> for spectrum in run:
if spectrum['ms level'] ==
matchList = spectrum.hasPeak (MASS_2_FOLLOW)

7.5. Query Obo files 25

pymzML Documentation, Release 0.7.6

if matchList != []:
for mz,I in matchList:
C timeDependentIntensities.append([spectrum['scan time'], I , mz
—1)
>>> for rt, i, mz in timeDependentIntensities:
print (' '.format (rt, i, mz))

7.8 Accessing the original XML Tree of a spectrum

accessAllData.py accessAllData.py
Demos the usage of the spectrum.xmlTree iterator that can be used to extract all MS:tag for a given spectrum.

Example:

>>> example_file = get_example_file.open_example('small.pwiz.l.l.mzML")
>>> run = pymzml.run.Reader (example_file, MSn_Precision = 250e-6)
>>> spectrum = run[1l]
>>> for element in spectrum.xmlTree:
print ('-"'%40)
print (element)
print (element.get ('accession'))
print (element.taqg)
print (element.items())

7.9 Write mzML

writeExample.py
This is part is still in development. Simple test of the mzML writing functionality.

This is very preliminary. The ‘header’ is copied into the new file with some addition in the softwareList XML tag,
hence a pymzml.run.Reader Object needs to be passed over to the write function.

Writing of indexed mzML files is not possible at the moment

Example:

>>> example_file = get_example_file.open_example('small.pwiz.1l.l.mzML")

>>> run = pymzml.run.Reader (example_file, MS1l_Precision = 5e-6)

>>> run2 = pymzml.run.Writer (filename = 'write_test.mzML', run= run , overwrite =
—True)

>>> gspecOfIntrest = run[2]

>>> run2.addSpec (spec)
>>> run2.save ()

26 Chapter 7. Example scripts

CHAPTER
EIGHT

INDICES AND TABLES

* genindex
¢ modindex

¢ search

27

pymzML Documentation, Release 0.7.6

28 Chapter 8. Indices and tables

a

accessAllData, 26

C

compareSpectra, 24

e

extractIonChromatogram, 25

f

find_abundant_precursors, 24

h

hasPeak, 23
highestPeaks, 25

(0]
obo, 17

P

plot, 21
plotAspec, 23

q

queryOBO, 25

r

run, 7
S

spec, 9

w

writeExample, 26

PYTHON MODULE INDEX

29

Symbols

__add__() (spec.Spectrum method), 11
mul__() (spec.Spectrum method), 11

__truediv__() (spec.Spectrum method), 11

A

accessAllData (module), 26
add() (plot.Factory method), 21

C

centroidedPeaks (spec.Spectrum attribute), 10
compareSpectra (module), 24

D

deconvolute_peaks() (spec.Spectrum method), 14
deconvolutedPeaks (spec.Spectrum attribute), 15
deRef() (spec.Spectrum method), 11

E

estimatedNoiseLevel() (spec.Spectrum method), 12
extractlonChromatogram (module), 25
extreme Values() (spec.Spectrum method), 11

F

Factory (class in plot), 21
find_abundant_precursors (module), 24

G

get_data() (plot.Factory method), 22

H

hasDeconvolutedPeak() (spec.Spectrum method), 13
hasOverlappingPeak() (spec.Spectrum method), 12
hasPeak (module), 23

hasPeak() (spec.Spectrum method), 12
highestPeaks (module), 25

highestPeaks() (spec.Spectrum method), 12

i (spec.Spectrum attribute), 9
info() (plot.Factory method), 22

INDEX

M

measuredPrecision (spec.Spectrum attribute), 11
mz (spec.Spectrum attribute), 9

N

newPlot() (plot.Factory method), 21
next() (run.Reader method), 8

O

obo (module), 17

P

peaks (spec.Spectrum attribute), 9
plot (module), 21
plotAspec (module), 23

Q

queryOBO (module), 25

R

Reader (class in run), 7

reduce() (spec.Spectrum method), 11
removeNoise() (spec.Spectrum method), 12
reprofiledPeaks (spec.Spectrum attribute), 10
run (module), 7

S

save() (plot.Factory method), 22
similarityTo() (spec.Spectrum method), 13
spec (module), 9

Spectrum (class in spec), 9
Spectrum.__init__() (in module spec), 9
strip() (spec.Spectrum method), 11

T

tmassSet (spec.Spectrum attribute), 14

tmzSet (spec.Spectrum attribute), 14

transformed_deconvolutedPeaks (spec.Spectrum at-
tribute), 14

transformedPeaks (spec.Spectrum attribute), 14

30

pymzML Documentation, Release 0.7.6

W

writeExample (module), 26
Writer (class in run), 8
Writer.__init__ () (in module run), 8

X

xmlTree (spec.Spectrum attribute), 9

Index

31

	Introduction
	General information
	Summary
	Implementation
	Download
	Citation
	Installation
	Introduction

	Usage
	Basic usage
	Advanced usage

	Module Run
	Class Spectrum
	OBO parser Class
	Accessing specific OBO MS tags
	Minimal accession set

	Plotting functions
	Example scripts
	Finding a peak
	Plotting a spectrum
	Abundant precursor
	Compare Spectra
	Query Obo files
	Highest peaks
	extract a specific Ion Chromatogram (EIC, XIC)
	Accessing the original XML Tree of a spectrum
	Write mzML

	Indices and tables
	Python Module Index

