

Fusion Platform®

Python SDK

Version 1.0.1
20th April 2022

Digital Content Analysis Technology Ltd

Digital Content Analysis Technology Ltd

 2

Table of Contents

1 Introduction .. 4

1.1 Purpose ... 4

1.2 Scope .. 4

1.3 Overview .. 4

2 Overview ... 5

2.1 User Accounts, Organisations and Credits .. 5

2.2 Workflow ... 5

2.3 Installation .. 7

2.4 Usage.. 7

3 Quick Example ... 8

4 Authentication .. 10

5 Uploading Files .. 13

6 Browsing Services .. 17

7 Creating Processes ... 19

8 Executing and Monitoring Processes .. 22

9 Obtaining Execution Inputs and Outputs .. 26

10 Detailed Example... 28

11 SDK Object Attributes and Methods ... 31

11.1 Attributes and Methods .. 31

12 Glossary of Terms .. 33

13 References .. 35

Digital Content Analysis Technology Ltd

 3

Revision History

Draft 7th February 2022 Initial draft for review.

Draft 9th February 2022 Updated following internal review.

Draft 22nd February 2022 Updated during implementation.

Draft 3rd March 2022 Version candidate.

Draft 8th March 2022 Revised following internal review to include link to code
documentation.

Version 1.0.1 9th March 2022 Released.

Version 1.0.2 20th April 2022 Added find_organisations.

This document has been prepared by Digital Content Analysis Technology Ltd, who can be
contacted at support@d-cat.co.uk

Digital Content Analysis Technology Ltd, Registered in Scotland, SC499652.

This document is copyright and is issued on the strict understanding that it is not to be
reproduced, copied, or disclosed to a third party, in whole or in part, without the consent of
Digital Content Analysis Technology Ltd.

© 2022 Digital Content Analysis Technology Ltd

Digital Content Analysis Technology Ltd

 4

1 Introduction

1.1 Purpose

This document describes the Python SDK used to interact with the Fusion Platform®. The
Fusion Platform® provides enhanced remote monitoring services. By ingesting remotely
sensed Earth Observation (EO) data, and data from other sources, the platform uses and fuses
this data to execute algorithms which provide actionable knowledge to customers.

1.2 Scope

The Python SDK is designed to enable interaction with the Fusion Platform® via its API. As
such, the SDK therefore allows software to login, upload files, create and execute processes,
monitor their execution and then download the corresponding results. Additional
functionality is available directly via the API, and this is defined within the corresponding
OpenAPI 3.0 specification, which can be obtained via a support request.

Support for the SDK can be obtained by contacting Digital Content Analysis Technology Ltd via
support@d-cat.co.uk.

1.3 Overview

This document first presents a brief overview of the Fusion Platform® and the general
requirements for the SDK. This is followed by an example of how to get started with the SDK
for those who wish to try things out. Subsequent sections describe the functionality in detail.
Finally, a more detailed example is provided, along with a full list of the SDK methods available,
together with a glossary of terms.

Python code snippets within this document are shown as follows. These assume a basic level
of Python knowledge. Each block is a snippet of code which may rely upon previous code
examples to be completed to successfully execute.

Where appropriate, shell commands are also shown. These should work regardless of the host
operating system (for example, Windows PowerShell, Mac Terminal or Linux command line):

When there are important notes or warnings, they are shown like this:

This is a Python code snippet.

print('Hello world!')

Python

echo "Hello world!"

Command

This is an important note!

Important

mailto:support@d-cat.co.uk

Digital Content Analysis Technology Ltd

 5

2 Overview

The Fusion Platform® is a cloud-based service which allows users to execute algorithms
published by algorithm providers. Execution may be on-demand or at regular intervals using
a variety of available EO and other data inputs. This data is automatically ingested by the
platform to satisfy execution requirements. Users pay for execution and storage of files
through pre-purchased credits.

2.1 User Accounts, Organisations and Credits

All access to the Fusion Platform® is via a registered user account. Account registration is
performed separately to the SDK and must therefore be completed before the SDK can be
used.

All user accounts are linked to an email address which can receive notifications. A mobile
telephone number may also be provided with an account so that notifications may be sent by
text message as well. Accounts are accessed using an email address or user identifier and a
password.

Each user account is linked to one or more organisations. Each organisation may be associated
with one or more user accounts. Each user account is limited by privileges within an
organisation. Privileges are allocated to a user account by the organisation manager to allow
the account to view processes and their outputs, and to execute processes. Organisations are
used to separately hold processes and their data which have been executed on behalf of the
organisation by account holders. Files and processes created for an organisation are not
available to any other organisation.

Each organisation is associated with pre-purchased credits, which are used to pay for process
executions and for the storage of files. Credits are purchased separately to the SDK. If an
organisation does not have sufficient credits to execute a process, then execution will be
prevented. All uploaded files and outputs from process executions incur storage costs, which
are accounted for daily. If the organisation has insufficient credits to store files, then upload
will be prevented. If an organisation’s credits run out and it has stored files, these may be
deleted to prevent further costs from being incurred without payment.

2.2 Workflow

A typical workflow for the Fusion Platform® using the SDK is as follows:

1. Login to the Fusion Platform® and select an organisation to work with

All access to the Fusion Platform® is via a registered user account. Once logged in, an
organisation must be selected for which processes are to be executed. The list of organisations
available to a user account can be obtained from the user information.

2. Upload a geospatial vector file which describes a region of interest

The Fusion Platform® predominately works with geospatial data, and consequently the
algorithms available typically require a region of interest to be defined to produce outputs
which correspond to this region. Regions of interest are defined using geospatial vector files
which describe one or more polygons. The first step in executing a process is therefore to
upload a vector file defining the region of interest. For example, this could be a GeoJSON file,
or an ESRI Shapefile. Vector files can be created using tools such as QGIS [1], or geojson.io [2].

Digital Content Analysis Technology Ltd

 6

3. Select the service that is to be executed

The Fusion Platform® provides a variety of services which can be selected for execution. This
step therefore involves obtaining the list of services available to find the one which is needed.

4. For the selected service, configure a process to run for the region of interest

Once selected, a process can be created from the service. The inputs and options for the
process must be defined so that the process can be executed. Once created, and prior to
execution, the process is associated with a price giving the number of credits needed to
execute it. This price will be charged per execution of the process.

5. Execute the configured process

Once the process has been correctly configured to obtain a price per execution, the process
can be executed. Execution can be once or scheduled to run at one or more times in the future.
Each subsequent execution will incur the associated price being charged.

6. Monitor the execution of the process

Once scheduled for execution (once or many times), each execution may be monitored to
determine its progress and to find out when it is finished.

For large regions of interest, the Fusion Platform® will automatically cut up the region into
smaller slices to make processing more efficient. Each slice will be executed in parallel so that
the outputs are obtained more quickly. When a region is cut up, multiple executions will be
created automatically for a process (each with a proportion of the overall price), and all of
them placed into a single group. Monitoring may therefore take place of single or grouped
executions.

When the execution (or group of executions) has run to completion, an optional notification
will be sent via email or text message to the user account which executed the process to notify
that the execution or group of executions has finished.

It is also possible to stop all executions of a process. This will stop all ongoing and future
executions. Any partial executions will be subject to the associated portion of the charges
incurred.

7. Download the outputs from the executed process

When an execution has completed successfully, the outputs can be downloaded. All the inputs
and outputs to an execution, and its individual steps, are available for download. The
individual steps will include, for example, the ingestion of data, so that all the data used by
the process is available for download.

8. Delete completed process

When a process and its outputs are no longer needed, the process can be deleted. Executions
will be automatically deleted after a delay configured when the process is created. Deleting a
process will delete all its executions and their outputs (and therefore stop any further storage
charges being incurred). Files which have been uploaded explicitly by the user are not
automatically deleted, only executions and their generated data.

Digital Content Analysis Technology Ltd

 7

9. Delete the region of interest file

When a region of interest file is no longer required, and it is not used by any process, then it
can be explicitly deleted by the user (and therefore stop any further storage charges being
incurred for it).

2.3 Installation

The SDK has been built for Python 3, and is tested against Python 3.7, 3.8, 3.9 and 3.10. To
install the SDK into a suitable Python environment containing “pip”, execute the following:

This will install the SDK and all its dependencies.

To update an existing installation to the latest version, execute the following:

2.4 Usage

Within a Python file, the SDK can then be used by importing it. The following shows how the
version of the SDK can be displayed.

pip install fusion-platform-python-sdk

Command

pip install fusion-platform-python-sdk --upgrade

Command

import fusion_platform

Print the current version of the Fusion Platform(r) SDK.

print(fusion_platform.__version__)

print(fusion_platform.__version_date__)

Python

Digital Content Analysis Technology Ltd

 8

3 Quick Example

The following shows a simple example of how to use the SDK to create a process, execute it
and download the resulting data. This example assumes that a suitable user account has been
created with an organisation which has sufficient credits to run the process, and that the SDK
has been set up as described in section 2.3. To use a different user account, replace the email
address ‘me@org.com’ and password ‘MyPassword123!’.

The example uses a pre-defined region of interest for Glasgow, and then obtains elevation
data for the region. It should take approximately 5 minutes to run.

import os

import fusion_platform

Login with email address and password.

user = fusion_platform.login(email='me@org.com',

password='MyPassword123!')

Select the organisation which will own the file. This is

the first organisation the user belongs to in this example,

and which is therefore assumed to have sufficient credits.

organisation = next(user.organisations)

Create a data item for the Glasgow region of interest:

glasgow = organisation.create_data(

name='Glasgow',

file_type=fusion_platform.FILE_TYPE_GEOJSON,

files=[fusion_platform.EXAMPLE_GLASGOW_FILE],

wait=True)

Find the elevation service using its name.

service, _ = organisation.find_services(keyword='Elevation')

Create a template process from the service.

process = organisation.new_process(name='Example',

service=service)

Configure the process to use Glasgow as the region of interest.

process.update(input_number=1, data=glasgow)

Create the process, which will validate its options and inputs.

process.create()

Python

Digital Content Analysis Technology Ltd

 9

Before execution, review the price in credits.

print(f"Price: {process.price}")

Now execute the process and wait for it to complete.

process.execute(wait=True)

Get the corresponding execution of the process. This is assumed

to be the most recently started execution.

execution = next(process.executions)

Now download all the outputs.

for component in execution.components:

 print(f"Downloading {component.name}")

 component_dir = component.name[:60]

 for output in component.outputs:

 dir = os.path.join(component_dir, output.name[:60])

 for file in output.files:

 file.download(path=os.path.join(dir, file.file_name))

Now tidy everything up by deleting the process and the region.

process.delete()

glasgow.delete()

Python

Digital Content Analysis Technology Ltd

 10

4 Authentication

To login to the Fusion Platform® using the SDK, the user account credentials must be obtained
first. These can be obtained, for example, from Digital Content Analysis Technology Ltd via
support@d-cat.co.uk. The user account credentials require an email address for notifications.
An optional user identifier may be supplied along with an automatically generated password.
This password should be changed after first login.

To login with the SDK, use the following:

If you have a user identifier, you can also use:

Here, the registered email address is ‘me@org.com’, user identifier is ‘ff1fbd91-bd64-
4ad7-ac80-d0b3f22f9d19’ and password is ‘MyPassword123!‘.

If login is successful, a user object will be returned. If unsuccessful, an exception will be raised
giving details of the error encountered.

The created user object provides all access to the Fusion Platform® through an authenticated
session with an appropriate configuration.

When logging in, the following configuration parameters may be set in addition to the user
account credentials:

api_url The URL of the Fusion Platform®. This will default to
https://api.thefusionplatform.com, but may be modified as
required for specific uses.

For example:

import fusion_platform

Login with email address and password.

user = fusion_platform.login(email='me@org.com',

password='MyPassword123!')

Python

Login with user identifier and password.

user = fusion_platform.login(

id='ff1fbd91-bd64-4ad7-ac80-d0b3f22f9d19',

password='MyPassword123!')

Python

When using multiple threads, separate user objects should be created within each thread
to ensure that no session data is changed asynchronously across threads.

Important

Login with email address, password and custom API URL.

user = fusion_platform.login(

email='me@org.com',

password='MyPassword123!',

api_url='https://custom.api.thefusionplatform.com')

Python

mailto:support@d-cat.co.uk

Digital Content Analysis Technology Ltd

 11

The user object represents all information about the user, as well as the active Fusion
Platform® session. It can be used to modify key user details, including the user’s given name,
family name, telephone number and notification preferences. For example:

If the update fails for any reason, such as invalid parameter values, then an exception will be
thrown. Section 11 describes how to get help on the content of the user information.

Changing the password uses a separate method since the old password must be provided:

Note that the password must comply with the password policy enforced at the time. Currently,
this requires a minimum length of 8 characters with at least one number, one lowercase letter,
one uppercase letter and one of the special characters “.[]{}()?-!@#%&,><:;|_~”.

The user object can also be used to provide an iterator through the organisations to which the
user account belongs:

Organisation objects can also be searched for by name:

Searching by name looks for those organisations which have the corresponding name. Names
are not unique, hence the ‘organisation’ return is the first item that has been found (or
‘None’ if no items found) and the ‘organisations’ return is an iterator through all items
found.

A specific organisation object can also be obtained from its organisation identifier, which is
listed as part of its information.

Modify the user's name:

user.update(given_name='Joe', family_name='Bloggs')

Python

Modify the password.

user.change_password(old='MyOldPassword123!',

new='MyNewPassword123!')

Python

Get the organisation information for all the user's

organisations.

for organisation in user.organisations:

 print(organisation.name)

Python

Search for organisations by name:

organisation, organisations = user.find_organisations(

name='My Organisation')

Python

Get the organisation by its identifier:

organisation, _ = user.find_organisations(

id=' 981352c2-a5b8-4650-acdc-9ab886a63163')

Python

Digital Content Analysis Technology Ltd

 12

An organisation object is used to access files and processes owned by the organisation. It can
also be used to modify key organisation details if the user account has the appropriate
privilege. For example:

If the update fails for any reason, such as invalid parameter values or insufficient privileges,
then an exception will be thrown. Section 11 describes how to get help on the content of the
organisation information.

Modify the organisation's name:

organisation.update(name='My Organisation')

Python

Digital Content Analysis Technology Ltd

 13

5 Uploading Files

Most algorithms available in the Fusion Platform® analyse and output data based upon a given
region of interest. Regions of interest are defined using geospatial vector files which describe
one or more polygons, which can be created using tools such as QGIS [1], or geojson.io [2].
Supported geospatial vector file formats include GeoJSON, ESRI Shapefile, KML and KMZ. All
regions of interest are defined within a single file. For example, a GeoJSON file is a text file
containing JSON which defines the region.

Other algorithms may work with other types of input, such as geospatial raster or CSV files.
The type of file required is detailed with the service information.

To be able to provide a region of interest file to an algorithm, the file must first be uploaded
to the platform. A data object represents one of more files grouped into a single object, and
data objects are used as input to, and output from, processes. For example, a region of interest
defined in a GeoJSON file ‘region.geojson’ found in the local directory is uploaded to a
data object as follows:

This will create the associated data object for the organisation, give it a name and then upload
the GeoJSON file to the Fusion Platform®. Multiple files of the same type can be uploaded by
extending the list of paths in the array. If the create fails for any reason, such as invalid
parameter values, insufficient privileges or not enough credits, then an exception will be
thrown. The default usage of this method is not to wait for the upload and analysis of the files
to complete, but instead to return once the data object has been created successfully.

An ESRI Shapefile is different in that the region is defined by a series of files with the same
name, but different extensions. To be uploaded as a region of interest, all the files which
go to make up the ESRI Shapefile must be zipped into a single archive file with no directory
structure included. This single file can then be uploaded as an ESRI Shapefile.

Important

Select the organisation which will own the file. This is

the first organisation the user belongs to in this example:

organisation = next(user.organisations)

Now create a data object and upload the file to it.

This will return as soon as the data object is created, and

will not wait for the files to be uploaded or analysed.

data = organisation.create_data(name='My Region',

file_type=fusion_platform.FILE_TYPE_GEOJSON,

files=['region.geojson'])

Python

The amount of time it takes to upload files will depend upon the size of the files and the
bandwidth of your network connection. Once uploaded, the Fusion Platform® will
perform some analysis on the files before the files can be used. The default version of
create_data will not wait for all these steps to complete, but these steps must be
complete before the data object can be used within an execution.

Important

Digital Content Analysis Technology Ltd

 14

To find out if the upload and analysis have completed, use the following:

If the upload and analysis have not yet completed, then this method will return ‘False’. If it
has completed successfully, this will return ‘True’. If, however, the upload and analysis have
completed but failed, then this method will raise an exception containing the details of why it
failed.

To have the method wait for all uploads and the analysis to complete, then the ‘wait’ flag
can be turned on:

An iterator through the data objects which have been uploaded to the platform for the
organisation can be obtained using:

import time

Loop waiting for the create to complete.

while not data.create_complete():

 time.sleep(10) # Sleep for 10 seconds.

The create is complete without exception.

print('Create successfully completed')

Python

Now create a data item and upload the file to it.

This will wait for the upload and analysis to complete.

data = organisation.create_data(name='My Region',

file_type=fusion_platform.FILE_TYPE_GEOJSON,

files=['region.geojson'],

wait=True)

Python

If the upload and analysis of the data object’s files has not completed, then the data object
will not be available for use within a process. The upload will take place in a series of
background threads, and hence if the program is closed, the upload will terminate
prematurely causing the uploaded files to be in an invalid state. The data object must then
be deleted, and the upload started again.

Important

Get an iterator of the data items belonging to the

organisation:

for data in organisation.data:

 print(data.name)

Python

Digital Content Analysis Technology Ltd

 15

Data items can also be searched for by name:

Searching by name looks for those services which have the corresponding name. Names are
not unique, hence the ‘data’ return is the first item that has been found (or ‘None’ if no items
found) and the ‘data_items’ return is an iterator through all items found.

A specific data item can also be obtained from its data identifier, which is listed as part of its
information.

A data object can be used to modify the name. For example:

If the update fails for any reason, such as invalid parameter values or insufficient privileges,
then an exception will be thrown. Section 11 describes how to get help on the content of the
data information.

A data object can be used to iterate through and download one or more of the associated
files:

Section 11 describes how to get help on the content of the file information.

The default usage of the ‘download’ method is not to wait for the for the download to
complete, but instead to return immediately.

Search for data items by name:

data, data_items = organisation.find_data(name='My Region')

Python

Get the data item by its identifier:

data, _ = organisation.find_data(

id='e1fca0a4-e14d-4a9a-8c76-82a6a6831860')

Python

Modify the name of the first uploaded data item:

data = next(organisation.data)

data.update(name='Other Region')

Python

Download all files from the data object to the local

directory. Each download will return immediately once started.

for file in data.files:

 print(f"Downloading {file.name} ({file.size} bytes)")

 file.download(path=file.name)

Python

The amount of time it takes to download a file will depend upon the size of the files and
the bandwidth of your network connection. The download will take place in a background
thread, and hence if the program is closed, the download will terminate prematurely
causing the downloaded file to be in an invalid state.

Important

Digital Content Analysis Technology Ltd

 16

To find out the progress of a download, and if the download has completed, use the following:

To have the method wait for the download to complete, turn the ‘wait’ flag on:

When the data item is not being used by any process, it may be deleted:

This will raise an exception if the data item is in use by a process, or because of insufficient
privileges, otherwise the item will be deleted. Deleting a data item ensures that no further
storage costs are incurred for its files. Storage charges are incurred daily.

import time

Loop waiting for the download to complete.

while not file.download_complete():

 url, destination, size = file.download_progress()

 print(f"Downloaded {size} of {file.size} bytes")

 time.sleep(10) # Sleep for 10 seconds.

The download is complete without exception.

print('Download successfully completed')

Python

Download all files from the data object to the local

directory. Each download will only return when complete.

for file in data.files:

 print(f"Downloading {file.name} ({file.size} bytes)")

 file.download(path=file.name, wait=True)

Python

Delete the data item:

data.delete()

Python

Digital Content Analysis Technology Ltd

 17

6 Browsing Services

The purpose of the Fusion Platform® is to provide a convenient way of efficiently executing a
range of algorithms. Each algorithm is bundled into a service which defines what data is
required for the algorithm to execute so that when the service is run, it will obtain all the
required data, then run the algorithm to produce the desired outputs.

The following provides an iterator through the services that are available to an organisation:

A service object contains all the details of a service. This includes its name and documentation.
Services can also be searched for by name or by keyword:

Searching by name looks for those services which have the specified text at the beginning of
their name, whereas a keyword search will search service keywords to find any which contain
the corresponding keyword. All searches are case sensitive. Names are not unique, hence the
‘service’ return is the first item that has been found (or ‘None’ if no items found) and the

‘services’ return is an iterator through all items found.

A specific service can also be obtained from its service identifier or SSD ID. Both are listed as
part of the service information.

Section 11 describes how to get help on the content of the service information.

Select the organisation to browse services. This is

the first organisation the user belongs to in this example:

organisation = next(user.organisations)

Now iterate through the available services:

for service in organisation.services:

 print(service.name)

 print(service.documentation_summary)

Python

Search for services by name. This finds all Sentinel services.

service, services = organisation.find_services(name='Sentinel')

Search for services by keyword. This finds all climate services.

service, services = organisation.find_services(keyword='Climate')

Python

Both these get the same Sentinel-2 service:

service, _ = organisation.find_services(

id='5e98fdd7-77a3-451f-ba49-d67002fc420d')

service, _ = organisation.find_services(

ssd_id='819f9e0c-a94e-4477-81f6-467a0f876e77')

Python

Digital Content Analysis Technology Ltd

 18

All services in the Fusion Platform® are uniquely identified by an SSD ID. At any time, there
will always be only one service available with the unique SSD ID. When a new version of
a service is released, it will have the same SSD ID, but it will have a different version
number and individual service identifier. The service identifier therefore uniquely
identifies a specific version of a service, whereas an SSD ID is used to find the most recent
version of a service, and should therefore be the preferred way of finding a service
through an identifier.

Important

Digital Content Analysis Technology Ltd

 19

7 Creating Processes

Once a service has been selected, a process can be created from it. To obtain a template
process from a service, use the following:

Here, to create the template process, a service object is required. If the request fails for any
reason, such as invalid parameter values or insufficient privileges, then an exception will be
thrown. See section 6 for a description of how to get a service object.

The process object contains three important parts that must be completed before the process
object can be saved to the Fusion Platform®. First, all mandatory options must be completed.
Second, all input data items need to be specified. Third, the execution schedule needs to be
defined.

 Section 11 describes how to get help on the content of the process information. Options can
be completed as per the following example:

Get a template process from a service object:

process = organisation.new_process(name='Example',

service=service)

Python

The returned process object is a template which has not been configured for execution.
Because it has not been configured, this template object has not been persisted to the
Fusion Platform®. Only a successfully configured process object can be persisted.

Important

from datetime import datetime, timezone

Set the mandatory options which need to be completed:

for option in process.options:

 if option.required and (value is None):

 # This option is mandatory. Set the value by its type.

 if option.data_type == fusion_platform.DATA_TYPE_NUMERIC:

 process.update(option=option, value=1)

 elif option.data_type == fusion_platform.DATA_TYPE_CURRENCY:

 process.update(option=option, value=1)

 elif option.data_type == fusion_platform.DATA_TYPE_BOOLEAN:

 process.update(option=option, value=True)

 elif option.data_type == fusion_platform.DATA_TYPE_DATETIME:

 process.update(option=option, value= datetime.now(timezone.utc))

 elif option.data_type == fusion_platform.DATA_TYPE_STRING:

 process.update(option=option, value='Hello world!')

 elif option.data_type == fusion_platform.DATA_TYPE_CONSTRAINED:

 process.update(option=option, value=option.constrained_values[0])

Python

Digital Content Analysis Technology Ltd

 20

This example loops through all the options, finds the mandatory options which have not got a
default value, and completes each with an example value of the correct data type.
Alternatively, individual options can be set using their name:

To provide inputs, there must be an existing data model which has been uploaded and
completed its analysis, as shown in section 5.

Alternatively, inputs can be set using their input number, with the number for the first input
to the process ‘1’.

from datetime import datetime, timedelta, timezone

Get the list of options and their description.

for option in process.options:

 print(option.name)

 print(option.description)

Set an option using its name.

process.update(option_name='latest_date', value=False)

start_date = datetime.now(timezone.utc) – timedelta(days=25)

process.update(option_name='start_date', value=start_date)

Python

Find the region of interest and a raster file, both of

which have been uploaded previously.

region, _ = organisation.find_data(name='My Region')

raster, _ = organisation.find_data(name='My Raster')

Specify the inputs to the process.

for input in process.inputs:

 if input.file_type == fusion_platform.FILE_TYPE_GEOJSON:

 process.update(input=input, data=region)

 elif input.file_type == fusion_platform.FILE_TYPE_GEOTIFF:

 process.update(input=input, data=raster)

Python

Set the input by its number.

process.update(input_number=1, data=region)

Python

Digital Content Analysis Technology Ltd

 21

Finally, the execution schedule can be defined. This is either to run the process once, or to run
it using a particular schedule:

Full details on options, inputs and scheduling can be found in the process information. Section
11 describes how to get help on the content of the process information.

When the process has been correctly configured, it can be saved to the Fusion Platform®.
During this creation, the process will be validated and its corresponding price per execution
calculated. If the process fails validation, then an exception will be thrown, and the process
will not be saved.

When the process is no longer needed, it may be deleted:

This will raise an exception in case of insufficient privileges, otherwise the process will be
deleted. This will first stop any current executions and prevent any further executions taking
place. Then this will delete any existing executions and their associated outputs, before
deleting the process itself. This deletion cannot be undone.

from datetime import datetime, timedelta, timezone

Run the process once...

process.update(run_type=fusion_platform.RUN_TYPE_RUN_ONCE)

...or using a schedule, which will run the job once, tomorrow.

then = datetime.now(timezone.utc) + timedelta(days=1)

process.update(run_type=fusion_platform.RUN_TYPE_RUN_SCHEDULE,

repeat_count=1, repeat_start=then)

Python

Attempt to create the process which will first validate it.

This will throw an exception if the validation fails.

process.create()

Once created, the price will be available to review.

print(process.price)

Python

Prior to execution, the name and schedule of a process may be changed using the
‘update’ method. However, the inputs and options may only be configured prior to
creating the process.

Important

Delete the process:

process.delete()

Python

Digital Content Analysis Technology Ltd

 22

8 Executing and Monitoring Processes

An iterator through the processes which have been validated and saved for an organisation
can be obtained as follows:

Each entry is a process object, which contains all the details of a created process. Processes
can also be searched for by name:

Searching by name looks for those processes which have the corresponding name. All
searches are case sensitive. Names are not unique, hence the ‘process’ return is the first
item that has been found (or ‘None’ if no items found) and the ‘processes’ return is an
iterator through all items found.

A specific process can also be obtained from its process identifier, which is listed as part of its
process information.

Section 11 describes how to get help on the content of the process information.

A process may be executed using the following:

This will execute a process according to its options, inputs and schedule. Every execution will
incur the price listed with the process. This method will return immediately and will not wait
for the execution to complete.

Select the organisation to find processes. This is

the first organisation the user belongs to in this example:

organisation = next(user.organisations)

Now iterate through the processes:

for process in organisation.processes:

 print(f"{process.name}: {process.process_status}")

Python

Search for processes by name:

process, processes = organisation.find_processes(name='Process')

Python

Get the process by its identifier:

process, _ = organisation.find_processes(

id='6a4417de-e885-4749-9f75-f7eeb2aac7ab')

Python

Execute the configured process. See later for how to

wait for completion.

process.execute()

Python

Digital Content Analysis Technology Ltd

 23

To wait for the execution to start after calling ‘execute’, use the following:

Waits for the next execution of the process to start, according to its schedule. If executions
are already started, this method will return immediately. Otherwise, this method will block
until the next scheduled execution has started. An exception will be raised if the process is not
being executed.

For every execution of a process, a corresponding process execution object is created, and
these can be obtained as follows:

The progress of an execution can be determined from its ‘progress’ attribute, which is its
percentage progress through execution. When the ‘progress’ is 100%, then the execution
is complete and the ‘success’ flag will state whether the execution was successful (‘True’)
or failed (‘False’). When an execution completes, an optional notification will be sent by

email and/or text message to the user account that executed the process. Whether such
notifications are sent can be configured for the user account (see section 4 for how to modify
account information).

For convenience, the following can be used to determine if the execution has finished, raising
an exception if the execution was unsuccessful:

Wait for the next execution to start.

process.wait_for_next_execution()

Python

If the process is configured with a schedule, this method will wait until the scheduled time,
and hence this method may block for a considerable time.

Important

Get all the executions for the process:

for execution in process.executions:

 print(f"{execution.id}: {execution.progress})

Python

import time

Loop waiting for the execution to complete.

while not execution.check_complete():

 time.sleep(10) # Sleep for 10 seconds.

The execution has completed without exception.

print('Execution successfully completed')

Python

Digital Content Analysis Technology Ltd

 24

To have the method wait for the execution to complete, turn the ‘wait’ flag on:

To execute and wait, the ‘wait’ flag can be turned on:

For large regions of interest, the Fusion Platform® will automatically cut up the region into
smaller slices to make processing more efficient, and each slice will be allocated to a separate
execution within a group. Just the executions for a group can be obtained as follows:

The ‘execution’ return is the first execution that has been found (or ‘None’ if no items
found) and the ‘executions’ return is an iterator through all items found. When an

execution is part of a group, only one completion notification will be sent, instead of one per
execution in the group.

Every process is configured with an output storage period in days which determines how long
each execution is kept before it is automatically deleted. Prior to deletion, an optional
notification may be sent via email or text message to the user account which executed the
process to warn that the execution will be deleted shortly.

If the automatic deletion should be delayed further, then this delete expiry can be modified
for an execution as follows:

Wait for the execution to complete.

execution.check_complete(wait=True)

The execution has completed without exception.

print('Execution successfully completed')

Python

Execute the configured process and wait for completion:

process.execute(wait=True)

Python

The amount of time it takes to execute the process depends upon the selected service.
When the ‘wait’ flag is turned on, the method will wait for the next scheduled execution
to start, and then block until all current executions of the process have completed. If the
process is configured to repeat the execution more than once, only the first execution will
be considered.

Important

Get all the executions for a group:

execution, executions = process.find_executions(

group_id='1cf57d5c-f1c9-4cac-b6c7-076cc9c3ec89')

Python

Digital Content Analysis Technology Ltd

 25

If the update fails for any reason, such as invalid parameter values or insufficient privileges,
then an exception will be thrown. Extending the expiry will mean that additional storage costs
are incurred for the extra time that the execution’s outputs are stored. All storage charges are
collated daily. Section 11 describes how to get help on the content of the execution
information.

Process executions can be stopped at any time by using the following:

This will first stop the process from running any more executions as per its schedule. It will
then abort any executions which are in progress. Partial charges will still be incurred for any
incomplete executions and the corresponding outputs which have been created.

Change the delete expiry for an execution to delay it

from being deleted for 2 days from now.

delete_expiry = datetime.now(timezone.utc) + timedelta(days=2)

execution.update(delete_expiry=delete_expiry)

Python

Stop all executions of a process, aborting those running:

process.stop()

Python

Digital Content Analysis Technology Ltd

 26

9 Obtaining Execution Inputs and Outputs

Once an execution has completed, then its inputs and outputs can be downloaded. Each
execution is composed of the different operations that have been executed to make up the
full processing chain of the service. For example, this will involve ingesting data and pre-
processing it before the associated algorithm is run. Each of these components therefore
corresponds to a separate, individual service executed as part of the chain. Each of these
components can be obtained from an execution as follows:

If an execution is still executing, then it and its components can still be accessed using the
above methods. However, the associated data will be incomplete. Section 11 describes how
to get help on the content of the execution component information.

Each component may have inputs and outputs associated with it. Typically, in a processing
chain, the first component in the chain will take as input the region of interest. Its outputs will
then be fed as inputs to the second component in the chain, and so on. Whereas a typical first
input is a region of interest defined as a geospatial vector file (see section 5), outputs from
executions may be any supported file type. This includes geospatial vector files, such as
GeoJSON, ESRI Shapefile, KML and KMZ and geospatial raster files, including DEM, GeoTIFF,
JPEG2000. Non-geospatial images, such as PNG and JPEG files, as well as other types of file
may also be output, including CSV files. Types of file unknown to the Fusion Platform® will be
listed as ‘Other’.

All the inputs and outputs are data objects which are associated with one or more files each.
(See section 5 for how to work with data objects.)

Each of the files associated with the input data objects can be downloaded as follows:

Select the execution for a process. This is the last

execution which was started for the process in this example:

execution = next(process.executions)

Now iterate through the components of the execution:

for component in execution.components:

 print(f"{component.name}: {component.runtime}")

Python

Select the first input for a component in this example:

input = next(component.inputs)

Download all files from the input to the local directory:

for file in input.files:

 print(f"Downloading {file.name} ({file.size} bytes)")

 file.download(path=file.name)

Python

Digital Content Analysis Technology Ltd

 27

Similarly, the files from an output can also be downloaded:

Executions will be automatically deleted according to the output storage period defined for
the associated process (see section 8). However, an execution can be deleted before this
expiry as follows:

This will raise an exception in case of insufficient privileges or if the process is still executing,
otherwise the execution and its associated outputs will be deleted. This deletion cannot be
undone.

Select the first output for a component in this example:

output = next(component.output)

Download all files from the output to the local directory:

for file in output.files:

 print(f"Downloading {file.name} ({file.size} bytes)")

 file.download(path=file.name)

Python

Delete the execution:

execution.delete()

Python

Digital Content Analysis Technology Ltd

 28

10 Detailed Example

The following shows a detailed example of how to use the SDK to create a process, execute it
and download the resulting data. This example assumes that a suitable user account has been
created with an organisation which has sufficient credits to run the process, and that the SDK
has been set up as described in section 2.3. To use a different user account, replace the email
address ‘me@org.com’ and password ‘MyPassword123!’. Note that the ‘rasterio’ and
‘matplotlib’ packages will also need to be installed.

The example uses a pre-defined region of interest for the Lake District, and then performs
cloud classification over the region for a specific date. Since the region is relatively large, its
execution is split. The example shows how split results can be combined into a single GeoTIFF,
as well as how to work with the metadata generated by the Fusion Platform® for each file.

from datetime import datetime, timezone

import os

import rasterio

from rasterio.merge import merge

from rasterio.plot import show

import matplotlib.pyplot as pyplot

import fusion_platform

Login with email address and password.

user = fusion_platform.login(email='me@org.com',

password='MyPassword123!')

Select the organisation which will own the file. This is

the first organisation the user belongs to in this example,

and which is therefore assumed to have sufficient credits.

organisation = next(user.organisations)

Create a data item for the Lake District region of interest:

lake_district = organisation.create_data(

name='Lake District National Park',

file_type=fusion_platform.FILE_TYPE_GEOJSON,

files=[fusion_platform.EXAMPLE_LAKE_DISTRICT_FILE],

wait=True)

Find the cloud classification service using its name.

service, _ = organisation.find_services(

name='Cloud Classification')

Create a template process from the service.

process = organisation.new_process(name='Example',

service=service)

Python

Digital Content Analysis Technology Ltd

 29

Configure the process to use Lake District National Park

as the region of interest.

process.update(input_number=1, data=lake_district)

Configure the service to work on historic data.

process.update(option_name='latest_date', value=False)

process.update(option_name='start_date',

value=datetime(2021, 3, 27, tzinfo=timezone.utc))

process.update(option_name='end_date', value=None)

Create the process, review its price, then execute it.

process.create()

print(f"Price: {process.price}")

process.execute(wait=True)

Because the Lake District region of interest is relatively

large, the process will be executed in a group, so find all of

the executions in the group. These are assumed to be the most

recently started group obtained from the last execution.

execution = next(process.executions)

_, executions = process.find_executions(

group_id=execution.group_id)

Download the cloud classification output for each execution.

We also keep the metadata for each raster file.

files = []

selectors = []

paths = []

for index, execution in enumerate(executions):

 for component in execution.components:

 # We are only interested in the first file.

 if component.name == 'Cloud Classification':

 print(f"Downloading {component.id}")

 output = next(component.outputs)

 file = next(output.files)

 files.append(file)

 paths.append(f"{index}_{file.file_name}")

 file.download(path=paths[-1])

 # The file has a single band for the classification.

 selectors.append(file.selectors[0])

Python

Digital Content Analysis Technology Ltd

 30

Wait for all downloads to complete.

for file in files:

 file.download_complete(wait=True)

Create a single cloud classification image as a mosaic.

rasters = []

for path in paths:

 rasters.append(rasterio.open(path))

mosaic, transform = merge(rasters)

mosaic_meta = rasters[0].meta.copy()

mosaic_meta.update({'height': mosaic.shape[1],

'width': mosaic.shape[2],

'transform': transform})

with rasterio.open('mosaic.tif', 'w', ** mosaic_meta) as merged:

 merged.write(mosaic)

Display the mosaic image, and the histogram.

with rasterio.open('mosaic.tif', 'r') as source:

 pyplot.imshow(source.read(1, masked=True), cmap='coolwarm')

 pyplot.show()

histogram = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

for metadata in selectors:

 histogram = [first + second for first, second in

zip(histogram, metadata['histogram'])]

There are only 4 classes, while the histogram has 10 bins.

x = ['Ground', 'Shadow', 'Thick Cloud', 'Thin Cloud']

y = [histogram[0], histogram[3], histogram[6], histogram[9]]

pyplot.bar(x, y)

pyplot.show()

Tidy everything up by deleting the process and the input file.

process.delete()

lake_district.delete()

Python

Digital Content Analysis Technology Ltd

 31

11 SDK Object Attributes and Methods

The SDK consists of package functions which control the overall behaviour of the SDK, and
model objects, which are created in response to requests to the Fusion Platform®. Key model
objects include:

User The current logged in user associated with the active session with the Fusion
Platform®.

Organisation An organisation that the user belongs to. Organisations own data and
processes.

Credit The credits assigned to an organisation.

Data A data item which holds one or more files of a specific type.

File A data object’s file and its associated metadata.

Service An available service which may be chosen to be configured as a process.

Process Describes the specific inputs and options for a service which may be executed
to produce output data objects.

Execution A specific execution of a process.

Component Each service is composed of individual components used to complete the
desired processing. For example, the ingestion of data followed by its
classification. Each execution is therefore made up of one or more execution
components representing these stages of processing.

Log The log output from the execution of a component.

Each model object has three elements:

Attributes These represent the information associated with each object, such as a
‘name’. Attributes may also be used to obtain an iterator through child
objects, such as ‘executions’ for a process. All attributes are read-
only.

Common Methods Common methods include ‘update’, which, where allowed, permit
one or more of the object’s attributes to be updated. For example,
‘process.update(name="My process")’. Other common
methods include ‘find_<object_type>’ and ‘delete’, where

relevant and permitted.

Specific Methods Specific methods are only available to certain object types. For
example, ‘organisation.new_process(service=service)’,
which allows a template process to be initialised for an organisation.

11.1 Attributes and Methods

Detailed information about the available attributes and methods for the package and its
classes used to form model objects can be obtained from:

https://www.d-cat.co.uk/public/fusion_platform_python_sdk/

https://www.d-cat.co.uk/public/fusion_platform_python_sdk/

Digital Content Analysis Technology Ltd

 32

Similar information can also be obtained in Python using the following:

Help on individual classes can be obtained in a similar way:

import fusion_platform

Get help on the package methods:

help(fusion_platform)

Python

from fusion_platform.models.user import User

Get help on the user class:

help(User)

Python

Digital Content Analysis Technology Ltd

 33

12 Glossary of Terms

Application Programming Interface (API) Typically refers to a software interface (rather
than a user interface) used to access services or
resources, performing actions or storing or
retrieving data.

Comma Separated Values (CSV) A text file format used to provide row-based data
separated by commas.

Digital Elevation Model (DEM) A type of three-dimensional model file for
geolocated elevations.

Earth Observation (EO) Gathering of physical characteristics of the Earth,
typically via remote sensing.

ESRI Shapefile A type of vector data file which allows attributes
to be assigned to locations using points, lines or
polygons.

GeoJSON JSON data used to encode geospatial data.

Geospatial raster file A file which is contains raster data which is
geospatially located. GeoTIFF and JPEG2000 are
both types of geospatial vector file.

Geospatial vector file A file which is used to describe geographic areas or
points of interest. GeoJSON and ESRI Shapefiles
are both examples of geospatial vector files.

GeoTIFF A type of image file which allows the embedding
of geospatial metadata alongside image data (in
TIFF format).

Hypertext Transfer Protocol (HTTP) Communication protocol used to exchange data
with a web server. In this document, HTTP is
synonymous with the corresponding HTTP Secure
version (HTTPS).

Joint Photographic Experts Group (JPEG) A type of image file format which uses lossy data
compression.

JPEG2000 A type of image file which allows the embedding
of geospatial metadata alongside image data (in
JPEG format).

JavaScript Object Notation (JSON) Text-based format used to label data for data
interchange.

Keyhole Mark-up Language (KML) A text-based mark-up language used to encode
geospatial data, with the zipped version being
KMZ.

Keyhole Mark-up Language Zipped (KMZ) A KML file and associated resources which has
been zipped into a single file to reduce the file size.

OpenAPI 3.0 Specification [3] The standardised specification of a RESTful API
interface which can be used to document or access
the API with suitable software which can read the
specification.

Digital Content Analysis Technology Ltd

 34

Portable Network Graphics (PNG) A type of image file format which uses lossless
data compression.

Process Refers to process which has been created from a
selected service, and which defines the required
inputs and options for the process to execute.

Remote Sensing Refers to the use of satellite (or aircraft or drone)
technologies to remotely sense the Earth. A
variety of sensing technologies can be used,
including optical, hyperspectral or radar sensors.

Service Services within the Fusion Platform® can be
selected to execute a particular algorithm given
appropriate inputs and options.

Software Development Kit (SDK) Term used to define software used by developers
to perform a specific function. In this document,
the SDK is used to interact with the Fusion
Platform®.

Standardised Service Description (SSD) Within the Fusion Platform® this defines the input,
algorithm options and output requirements of a
service which may be selected and configured as a
process to be run. An SSD ID uniquely identifies a
service which can be selected.

Uniform Resource Locator (URL) A reference to a resource held on the web. A URL
consists of a protocol (for example, “https://”) a
resource name (“thefusionplatform.com”), a path
(“/platform”) and parameters
(“?id=1&name=User”).

Zip Archive A single file which contains other files which have
been compressed.

Digital Content Analysis Technology Ltd

 35

13 References

[1] QGIS, “Welcome to the QGIS project!,” 2022. [Online]. Available: https://www.qgis.org.
[Accessed February 2022].

[2] Mapbox, “geojson.io,” 2022. [Online]. Available: https://geojson.io. [Accessed February
2022].

[3] Linux Foundation, “OpenAPI Specification v3.0.3 | Introduction, Definitions, & More,”
2020. [Online]. Available: https://spec.openapis.org/oas/v3.0.3.html. [Accessed March
2022].

	1 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Overview

	2 Overview
	2.1 User Accounts, Organisations and Credits
	2.2 Workflow
	2.3 Installation
	2.4 Usage

	3 Quick Example
	4 Authentication
	5 Uploading Files
	6 Browsing Services
	7 Creating Processes
	8 Executing and Monitoring Processes
	9 Obtaining Execution Inputs and Outputs
	10 Detailed Example
	11 SDK Object Attributes and Methods
	11.1 Attributes and Methods

	12 Glossary of Terms
	13 References

