Multiple Inputs usage¶
Example created by Wilson Rocha Lacerda Junior
Generating 2 input 1 output sample data¶
The data is generated by simulating the following model:
\(y_k = 0.4y_{k-1}^2 + 0.1y_{k-1}x1_{k-1} + 0.6x2_{k-1} -0.3x1_{k-1}x2_{k-2} + e_{k}\)
If colored_noise is set to True:
\(e_{k} = 0.8\nu_{k-1} + \nu_{k}\)
where \(x\) is a uniformly distributed random variable and \(\nu\) is a gaussian distributed variable with \(\mu=0\) and \(\sigma=0.001\)
pip install sysidentpy
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sysidentpy.model_structure_selection import FROLS
from sysidentpy.basis_function._basis_function import Polynomial
from sysidentpy.metrics import root_relative_squared_error
from sysidentpy.utils.display_results import results
from sysidentpy.utils.plotting import plot_residues_correlation, plot_results
from sysidentpy.residues.residues_correlation import compute_residues_autocorrelation, compute_cross_correlation
from sysidentpy.utils.generate_data import get_miso_data, get_siso_data
x_train, x_valid, y_train, y_valid = get_miso_data(
n=1000,
colored_noise=False,
sigma=0.001,
train_percentage=90
)
There is a specific difference for multiple input data.
You have to pass the lags for each input in a nested list (e.g., [[1, 2], [1, 2]])
The remainder settings remains the same.
Build the model¶
basis_function = Polynomial(degree=2)
model = FROLS(
order_selection=True,
n_terms=4,
extended_least_squares=False,
ylag=2, xlag=[[1, 2], [1, 2]],
info_criteria='aic',
estimator='least_squares',
basis_function=basis_function
)
model.fit(X=x_train, y=y_train)
<sysidentpy.model_structure_selection.forward_regression_orthogonal_least_squares.FROLS at 0x24acfede400>
Model evaluation¶
yhat = model.predict(X=x_valid, y=y_valid)
rrse = root_relative_squared_error(y_valid, yhat)
print(rrse)
r = pd.DataFrame(
results(
model.final_model, model.theta, model.err,
model.n_terms, err_precision=8, dtype='sci'
),
columns=['Regressors', 'Parameters', 'ERR'])
print(r)
plot_results(y=y_valid, yhat = yhat, n=1000)
ee = compute_residues_autocorrelation(y_valid, yhat)
plot_residues_correlation(data=ee, title="Residues", ylabel="$e^2$")
x1e = compute_cross_correlation(y_valid, yhat, x_valid[:, 0])
plot_residues_correlation(data=x1e, title="Residues", ylabel="$x_1e$")
0.002841959614323379
Regressors Parameters ERR
0 x2(k-1) 5.9999E-01 9.07711754E-01
1 x2(k-2)x1(k-1) -3.0026E-01 4.85923554E-02
2 y(k-1)^2 4.0010E-01 4.33885976E-02
3 x1(k-1)y(k-1) 1.0069E-01 3.00089319E-04



xaxis = np.arange(1, model.n_info_values + 1)
plt.plot(xaxis, model.info_values)
plt.xlabel('n_terms')
plt.ylabel('Information Criteria')
Text(0, 0.5, 'Information Criteria')
