ITER Physics Data Model Documentation for mhd_linear

Magnetohydronamic linear stability

Notation of array of structure indices: itime indicates a time index; i1, i2, i3, ... indicate other indices with their depth in the IDS. This notation clarifies the path of a given node, but should not be used to compare indices of different nodes (they may have different meanings).

Lifecycle status: alpha since version 3.0.4

Last change occured on version: 3.30.0

Back to top IDS list

By convention, only the upper error node should be filled in case of symmetrical error bars. The upper and lower errors are absolute and defined positive, and represent one standard deviation of the data. The effective values of the data (within one standard deviation) will be within the interval [data-data_error_lower, data+data_error_upper]. Thus whatever the sign of data, data_error_lower relates to the lower bound and data_error_upper to the upper bound of the error bar interval.

Full path name Description Data Type Coordinates
ids_properties Interface Data Structure properties. This element identifies the node above as an IDS structure
ids_properties/comment Any comment describing the content of this IDS {constant} STR_0D
ids_properties/name User-defined name for this IDS occurrence {constant}. Introduced after DD version 3.39.0 STR_0D
ids_properties/homogeneous_time This node must be filled (with 0, 1, or 2) for the IDS to be valid. If 1, the time of this IDS is homogeneous, i.e. the time values for this IDS are stored in the time node just below the root of this IDS. If 0, the time values are stored in the various time fields at lower levels in the tree. In the case only constant or static nodes are filled within the IDS, homogeneous_time must be set to 2 {constant} INT_0D
ids_properties/occurrence_type Type of data contained in this occurrence. Introduced after DD version 3.39.0. Available options (refer to the children of this identifier structure) :
Name Index Description
reconstruction 1 Equilibrium reconstruction
prediction_fixed 2 Equilibrium prediction, fixed boundary
prediction_free 3 Equilibrium prediction, free boundary
mapping 4 Used for mapping equilibrium results from one grid type / resolution to another, or for including variables not present in the first set such as the calculation of magnetic field of other derived parameters
structure
ids_properties/occurrence_type/name Short string identifier {constant} STR_0D
ids_properties/occurrence_type/index Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index. {constant} INT_0D
ids_properties/occurrence_type/description Verbose description {constant} STR_0D
ids_properties/source
Lifecycle status: obsolescent since version 3.34.0
Source of the data (any comment describing the origin of the data : code, path to diagnostic signals, processing method, ...). Superseeded by the new provenance structure. {constant} STR_0D
ids_properties/provider Name of the person in charge of producing this data {constant} STR_0D
ids_properties/creation_date Date at which this data has been produced {constant} STR_0D
ids_properties/version_put Version of the access layer package used to PUT this IDS structure
ids_properties/version_put/data_dictionary Version of Data Dictionary used to PUT this IDS {constant} STR_0D
ids_properties/version_put/access_layer Version of Access Layer used to PUT this IDS {constant} STR_0D
ids_properties/version_put/access_layer_language Programming language of the Access Layer high level API used to PUT this IDS {constant} STR_0D
ids_properties/provenance
Lifecycle status: alpha since version 3.34.0
Provenance information about this IDS structure
ids_properties/provenance/node(i1) Set of IDS nodes for which the provenance is given. The provenance information applies to the whole structure below the IDS node. For documenting provenance information for the whole IDS, set the size of this array of structure to 1 and leave the child "path" node empty {constant} array of structures [max_size=20 (limited in MDS+ backend only)] 1- 1...N
ids_properties/provenance/node(i1)/path Path of the node within the IDS, following the syntax given in the link below. If empty, means the provenance information applies to the whole IDS. Click here for further documentation. {constant} STR_0D
ids_properties/provenance/node(i1)/reference(i2) List of references used to populate or calculate this node, identified as explained below. In case the node is the result of of a calculation / data processing, the reference is an input to the process described in the "code" structure at the root of the IDS. The reference can be an IDS (identified by a URI or a persitent identifier, see syntax in the link below) or non-IDS data imported directly from an non-IMAS database (identified by the command used to import the reference, or the persistent identifier of the data reference). Often data are obtained by a chain of processes, however only the last process input are recorded here. The full chain of provenance has then to be reconstructed recursively from the provenance information contained in the data references. Click here for further documentation.. Introduced after DD version 3.41.0 array of structures [max_size=10 (limited in MDS+ backend only)] 1- 1...N
ids_properties/provenance/node(i1)/reference(i2)/name Reference name {constant} STR_0D
ids_properties/provenance/node(i1)/reference(i2)/timestamp Date and time (UTC) at which the reference was created, expressed in a human readable form (ISO 8601) : the format of the string shall be : YYYY-MM-DDTHH:MM:SSZ. Example : 2020-07-24T14:19:00Z {constant} STR_0D
ids_properties/plugins
Lifecycle status: alpha since version 3.39.0
Information about the plugins used to write/read this IDS. This structure is filled automatically by the Access Layer at GET/PUT time, no need to fill it via a user program.. Introduced after DD version 3.38.1 structure
ids_properties/plugins/node(i1) Set of IDS nodes for which a plugin has been applied {constant} array of structures [max_size=20 (limited in MDS+ backend only)] 1- 1...N
ids_properties/plugins/node(i1)/path Path of the node within the IDS, following the syntax given in the link below. If empty, means the plugin applies to the whole IDS. Click here for further documentation. {constant} STR_0D
ids_properties/plugins/node(i1)/put_operation(i2) Plugins used to PUT a node (potentially, multiple plugins can be applied, if so they are listed by order of application) array of structures [max_size=10 (limited in MDS+ backend only)] 1- 1...N
ids_properties/plugins/node(i1)/put_operation(i2)/name Name of software used {constant} STR_0D
ids_properties/plugins/node(i1)/put_operation(i2)/description Short description of the software (type, purpose) {constant}. Introduced after DD version 3.38.1 STR_0D
ids_properties/plugins/node(i1)/put_operation(i2)/commit Unique commit reference of software {constant} STR_0D
ids_properties/plugins/node(i1)/put_operation(i2)/version Unique version (tag) of software {constant} STR_0D
ids_properties/plugins/node(i1)/put_operation(i2)/repository URL of software repository {constant} STR_0D
ids_properties/plugins/node(i1)/put_operation(i2)/parameters List of the code specific parameters in XML format {constant} STR_0D
ids_properties/plugins/node(i1)/readback(i2) Plugins to be used to read back a node (potentially, multiple plugins can be applied, listed in reverse order of application) array of structures [max_size=10 (limited in MDS+ backend only)] 1- 1...N
ids_properties/plugins/node(i1)/readback(i2)/name Name of software used {constant} STR_0D
ids_properties/plugins/node(i1)/readback(i2)/description Short description of the software (type, purpose) {constant}. Introduced after DD version 3.38.1 STR_0D
ids_properties/plugins/node(i1)/readback(i2)/commit Unique commit reference of software {constant} STR_0D
ids_properties/plugins/node(i1)/readback(i2)/version Unique version (tag) of software {constant} STR_0D
ids_properties/plugins/node(i1)/readback(i2)/repository URL of software repository {constant} STR_0D
ids_properties/plugins/node(i1)/readback(i2)/parameters List of the code specific parameters in XML format {constant} STR_0D
ids_properties/plugins/node(i1)/get_operation(i2) Plugins actually used to read back a node (potentially, multiple plugins can be applied, listed in reverse order of application). This information is filled by the plugin infrastructure during the GET operation. array of structures [max_size=10 (limited in MDS+ backend only)] 1- 1...N
ids_properties/plugins/node(i1)/get_operation(i2)/name Name of software used {constant} STR_0D
ids_properties/plugins/node(i1)/get_operation(i2)/description Short description of the software (type, purpose) {constant}. Introduced after DD version 3.38.1 STR_0D
ids_properties/plugins/node(i1)/get_operation(i2)/commit Unique commit reference of software {constant} STR_0D
ids_properties/plugins/node(i1)/get_operation(i2)/version Unique version (tag) of software {constant} STR_0D
ids_properties/plugins/node(i1)/get_operation(i2)/repository URL of software repository {constant} STR_0D
ids_properties/plugins/node(i1)/get_operation(i2)/parameters List of the code specific parameters in XML format {constant} STR_0D
ids_properties/plugins/infrastructure_put Plugin infrastructure used to PUT the data structure
ids_properties/plugins/infrastructure_put/name Name of software used {constant} STR_0D
ids_properties/plugins/infrastructure_put/description Short description of the software (type, purpose) {constant}. Introduced after DD version 3.38.1 STR_0D
ids_properties/plugins/infrastructure_put/commit Unique commit reference of software {constant} STR_0D
ids_properties/plugins/infrastructure_put/version Unique version (tag) of software {constant} STR_0D
ids_properties/plugins/infrastructure_put/repository URL of software repository {constant} STR_0D
ids_properties/plugins/infrastructure_get Plugin infrastructure used to GET the data structure
ids_properties/plugins/infrastructure_get/name Name of software used {constant} STR_0D
ids_properties/plugins/infrastructure_get/description Short description of the software (type, purpose) {constant}. Introduced after DD version 3.38.1 STR_0D
ids_properties/plugins/infrastructure_get/commit Unique commit reference of software {constant} STR_0D
ids_properties/plugins/infrastructure_get/version Unique version (tag) of software {constant} STR_0D
ids_properties/plugins/infrastructure_get/repository URL of software repository {constant} STR_0D
model_type Type of model used to populate this IDS. Available options (refer to the children of this identifier structure) :
Name Index Description
global 1 Global calculation
local 2 Local calculation
analytical 3 Analytical estimate
structure
model_type/name Short string identifier {constant} STR_0D
model_type/index Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index. {constant} INT_0D
model_type/description Verbose description {constant} STR_0D
equations Type of MHD equations used to populate this IDS. Available options (refer to the children of this identifier structure) :
Name Index Description
reduced 1 Reduced MHD
reduced_kinetic 11 Reduced MHD and kinetic hybrid
full 2 Full MHD
full_kinetic 21 Full MHD and kinetic hybrid
structure
equations/name Short string identifier {constant} STR_0D
equations/index Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index. {constant} INT_0D
equations/description Verbose description {constant} STR_0D
fluids_n Number of fluids considered in the model {constant} INT_0D
ideal_flag 1 if ideal MHD is used to populate this IDS, 0 for non-ideal MHD {constant} INT_0D
vacuum_toroidal_field Characteristics of the vacuum toroidal field (used in rho_tor definition and in the normalization of current densities) structure
vacuum_toroidal_field/r0 Reference major radius where the vacuum toroidal magnetic field is given (usually a fixed position such as the middle of the vessel at the equatorial midplane) {constant} [m] FLT_0D
vacuum_toroidal_field/b0(:) Vacuum toroidal field at R0 [T]; Positive sign means anti-clockwise when viewing from above. The product R0B0 must be consistent with the b_tor_vacuum_r field of the tf IDS. {dynamic} [T]. This quantity is COCOS-dependent, with the following transformation :
Label Expression
b0_like .sigma_b0_eff
FLT_1D 1- time
time_slice(itime) Core plasma radial profiles for various time slices {dynamic} array of structures 1- time_slice(itime)/time
time_slice(itime)/toroidal_mode(i1) Vector of toroidal modes. Each mode is described as exp(i(n_tor.phi - m_pol.theta - 2.pi.frequency.t - phase)) array of structures 1- 1...N
time_slice(itime)/toroidal_mode(i1)/perturbation_type Type of the perturbation. Available options (refer to the children of this identifier structure) :
Name Index Description
TAE 1 Toroidal Alfven Eigenmode
EAE 2 Ellipticity-induced Alfven Eigenmode
NAE 3 Non-circular triangularity induced Alfven Eigenmode
RSAE 4 Reversed Shear Alfven Eigenmode
BAE 5 Beta induced Alfven Eigenmode
BAAE 6 Beta induced Alfven Acoustic Eigenmode
EPM 7 Energetic particle mode, outside any shear Alfven gap
GAE 8 Global Alfven Eingenmode
GAM 9 Geodesic Acoustic Mode
EGAM 10 Energetic particle-driven Geodesic Acoustic Mode
iKINK 11 Internal KINK mode
eKINK 12 External KINK mode
Tearing 13 Tearing mode
Double_Tearing 14 Double Tearing mode
structure
time_slice(itime)/toroidal_mode(i1)/perturbation_type/name Short string identifier {dynamic} STR_0D
time_slice(itime)/toroidal_mode(i1)/perturbation_type/index Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index. {dynamic} INT_0D
time_slice(itime)/toroidal_mode(i1)/perturbation_type/description Verbose description {dynamic} STR_0D
time_slice(itime)/toroidal_mode(i1)/n_tor
Lifecycle status: obsolescent since version 3.42.0
Toroidal mode number of the MHD mode {dynamic} INT_0D
time_slice(itime)/toroidal_mode(i1)/n_phi Toroidal mode number of the MHD mode {dynamic} INT_0D
time_slice(itime)/toroidal_mode(i1)/m_pol_dominant Dominant poloidal mode number defining the mode rational surface; for TAEs the lower of the two main m's has to be specified {dynamic} [-] FLT_0D
time_slice(itime)/toroidal_mode(i1)/ballooning_type Ballooning type of the mode : ballooning 0; anti-ballooning:1; flute-like:2. Available options (refer to the children of this identifier structure) :
Name Index Description
TAE 1 Toroidal Alfven Eigenmode
EAE 2 Ellipticity-induced Alfven Eigenmode
NAE 3 Non-circular triangularity induced Alfven Eigenmode
RSAE 4 Reversed Shear Alfven Eigenmode
BAE 5 Beta induced Alfven Eigenmode
BAAE 6 Beta induced Alfven Acoustic Eigenmode
EPM 7 Energetic particle mode, outside any shear Alfven gap
GAE 8 Global Alfven Eingenmode
GAM 9 Geodesic Acoustic Mode
EGAM 10 Energetic particle-driven Geodesic Acoustic Mode
iKINK 11 Internal KINK mode
eKINK 12 External KINK mode
Tearing 13 Tearing mode
Double_Tearing 14 Double Tearing mode
structure
time_slice(itime)/toroidal_mode(i1)/ballooning_type/name Short string identifier {dynamic} STR_0D
time_slice(itime)/toroidal_mode(i1)/ballooning_type/index Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index. {dynamic} INT_0D
time_slice(itime)/toroidal_mode(i1)/ballooning_type/description Verbose description {dynamic} STR_0D
time_slice(itime)/toroidal_mode(i1)/radial_mode_number Radial mode number {dynamic} [-] FLT_0D
time_slice(itime)/toroidal_mode(i1)/growthrate Linear growthrate of the mode {dynamic} [Hz] FLT_0D
time_slice(itime)/toroidal_mode(i1)/frequency Frequency of the mode {dynamic} [Hz] FLT_0D
time_slice(itime)/toroidal_mode(i1)/phase Additional phase offset of mode {dynamic} [rad] FLT_0D
time_slice(itime)/toroidal_mode(i1)/energy_perturbed Perturbed energy associated to the mode {dynamic} [J] FLT_0D
time_slice(itime)/toroidal_mode(i1)/amplitude_multiplier Multiplier that is needed to convert the linear mode structures to the amplitude of a non-linearly saturated mode in physical units. If empty, it means that the structures contains no information about non-linearly saturated mode {dynamic} [mixed] FLT_0D
time_slice(itime)/toroidal_mode(i1)/plasma MHD modes in the confined plasma structure
time_slice(itime)/toroidal_mode(i1)/plasma/grid_type Selection of one of a set of grid types. Available options (refer to the children of this identifier structure) :
Name Index Description
rectangular 1 Cylindrical R,Z ala eqdsk (R=dim1, Z=dim2). In this case the position arrays should not be filled since they are redundant with grid/dim1 and dim2.
inverse 2 Rhopolar_polar 2D polar coordinates (rho=dim1, theta=dim2) with magnetic axis as centre of grid; theta and values following the COCOS=11 convention; the polar angle is theta=atan2(z-zaxis,r-raxis)
inverse_psi_straight_field_line 11 Flux surface type with psi as radial label (dim1) and the straight-field line poloidal angle (mod(index,10)=1) (dim2); could be non-equidistant; magnetic axis as centre of grid; following the COCOS=11 convention
inverse_psi_equal_arc 12 Flux surface type with psi as radial label (dim1) and the equal arc poloidal angle (mod(index,10)=2) (dim2)
inverse_psi_polar 13 Flux surface type with psi as radial label (dim1) and the polar poloidal angle (mod(index,10)=3) (dim2); could be non-equidistant
inverse_psi_straight_field_line_fourier 14 Flux surface type with psi as radial label (dim1) and Fourier modes in the straight-field line poloidal angle (mod(index,10)=4) (dim2), could be non-equidistant; magnetic axis as centre of grid; following the COCOS=11 convention
inverse_psi_equal_arc_fourier 15 Flux surface type with psi as radial label (dim1) and Fourier modes in the equal arc poloidal angle (mod(index,10)=5) (dim2)
inverse_psi_polar_fourier 16 Flux surface type with psi as radial label (dim1) and Fourier modes in the polar poloidal angle (mod(index,10)=6) (dim2); could be non-equidistant
inverse_rhopolnorm_straight_field_line 21 Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and the straight-field line poloidal angle (dim2)
inverse_rhopolnorm_equal_arc 22 Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and the equal arc poloidal angle (dim2)
inverse_rhopolnorm_polar 23 Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and the polar poloidal angle (dim2)
inverse_rhopolnorm_straight_field_line_fourier 24 Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and Fourier modes in the straight-field line poloidal angle (dim2)
inverse_rhopolnorm_equal_arc_fourier 25 Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and Fourier modes in the equal arc poloidal angle (dim2)
inverse_rhopolnorm_polar_fourier 26 Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and Fourier modes in the polar poloidal angle (dim2)
inverse_rhotornorm_straight_field_line 31 Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and the straight-field line poloidal angle (dim2)
inverse_rhotornorm_equal_arc 32 Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and the equal arc poloidal angle (dim2)
inverse_rhotornorm_polar 33 Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and the polar poloidal angle (dim2)
inverse_rhotornorm_straight_field_line_fourier 34 Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and Fourier modes in the straight-field line poloidal angle (dim2)
inverse_rhotornorm_equal_arc_fourier 35 Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and Fourier modes in the equal arc poloidal angle (dim2)
inverse_rhotornorm_polar_fourier 36 Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and Fourier modes in the polar poloidal angle (dim2)
inverse_rhopol_straight_field_line 41 Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and the straight-field line poloidal angle (dim2)
inverse_rhopol_equal_arc 42 Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and the equal arc poloidal angle (dim2)
inverse_rhopol_polar 43 Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and the polar poloidal angle (dim2)
inverse_rhopol_straight_field_line_fourier 44 Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and Fourier modes in the straight-field line poloidal angle (dim2)
inverse_rhopol_equal_arc_fourier 45 Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and Fourier modes in the equal arc poloidal angle (dim2)
inverse_rhopol_polar_fourier 46 Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and Fourier modes in the polar poloidal angle (dim2)
inverse_rhotor_straight_field_line 51 Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and the straight-field line poloidal angle (dim2)
inverse_rhotor_equal_arc 52 Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and the equal arc poloidal angle (dim2)
inverse_rhotor_polar 53 Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and the polar poloidal angle (dim2)
inverse_rhotor_straight_field_line_fourier 54 Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and Fourier modes in the straight-field line poloidal angle (dim2)
inverse_rhotor_equal_arc_fourier 55 Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and Fourier modes in the equal arc poloidal angle (dim2)
inverse_rhotor_polar_fourier 56 Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and Fourier modes in the polar poloidal angle (dim2)
irregular_rz_na 91 Irregular grid, thus give list of vertices in dim1(1:ndim1), dim2(1:ndim1) and then all fields are on values(1:ndim1,1)
structure
time_slice(itime)/toroidal_mode(i1)/plasma/grid_type/name Short string identifier {dynamic} STR_0D
time_slice(itime)/toroidal_mode(i1)/plasma/grid_type/index Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index. {dynamic} INT_0D
time_slice(itime)/toroidal_mode(i1)/plasma/grid_type/description Verbose description {dynamic} STR_0D
time_slice(itime)/toroidal_mode(i1)/plasma/grid Definition of the 2D grid (the content of dim1 and dim2 is defined by the selected grid_type) structure
time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1(:) First dimension values {dynamic} [mixed]. This quantity is COCOS-dependent, with the following transformation :
Label Expression
grid_type_dim1_like grid_type_transformation(index_grid_type,1)
FLT_1D 1- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2(:) Second dimension values {dynamic} [mixed]. This quantity is COCOS-dependent, with the following transformation :
Label Expression
grid_type_dim2_like grid_type_transformation(index_grid_type,2)
FLT_1D 1- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/grid/volume_element(:,:) Elementary plasma volume of plasma enclosed in the cell formed by the nodes [dim1(i) dim2(j)], [dim1(i+1) dim2(j)], [dim1(i) dim2(j+1)] and [dim1(i+1) dim2(j+1)] {dynamic} [m^3] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/coordinate_system Flux surface coordinate system of the equilibrium used for the MHD calculation on a square grid of flux and poloidal angle structure
time_slice(itime)/toroidal_mode(i1)/plasma/coordinate_system/grid_type Selection of one of a set of grid types. Available options (refer to the children of this identifier structure) :
Name Index Description
rectangular 1 Cylindrical R,Z ala eqdsk (R=dim1, Z=dim2). In this case the position arrays should not be filled since they are redundant with grid/dim1 and dim2.
inverse 2 Rhopolar_polar 2D polar coordinates (rho=dim1, theta=dim2) with magnetic axis as centre of grid; theta and values following the COCOS=11 convention; the polar angle is theta=atan2(z-zaxis,r-raxis)
inverse_psi_straight_field_line 11 Flux surface type with psi as radial label (dim1) and the straight-field line poloidal angle (mod(index,10)=1) (dim2); could be non-equidistant; magnetic axis as centre of grid; following the COCOS=11 convention
inverse_psi_equal_arc 12 Flux surface type with psi as radial label (dim1) and the equal arc poloidal angle (mod(index,10)=2) (dim2)
inverse_psi_polar 13 Flux surface type with psi as radial label (dim1) and the polar poloidal angle (mod(index,10)=3) (dim2); could be non-equidistant
inverse_psi_straight_field_line_fourier 14 Flux surface type with psi as radial label (dim1) and Fourier modes in the straight-field line poloidal angle (mod(index,10)=4) (dim2), could be non-equidistant; magnetic axis as centre of grid; following the COCOS=11 convention
inverse_psi_equal_arc_fourier 15 Flux surface type with psi as radial label (dim1) and Fourier modes in the equal arc poloidal angle (mod(index,10)=5) (dim2)
inverse_psi_polar_fourier 16 Flux surface type with psi as radial label (dim1) and Fourier modes in the polar poloidal angle (mod(index,10)=6) (dim2); could be non-equidistant
inverse_rhopolnorm_straight_field_line 21 Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and the straight-field line poloidal angle (dim2)
inverse_rhopolnorm_equal_arc 22 Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and the equal arc poloidal angle (dim2)
inverse_rhopolnorm_polar 23 Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and the polar poloidal angle (dim2)
inverse_rhopolnorm_straight_field_line_fourier 24 Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and Fourier modes in the straight-field line poloidal angle (dim2)
inverse_rhopolnorm_equal_arc_fourier 25 Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and Fourier modes in the equal arc poloidal angle (dim2)
inverse_rhopolnorm_polar_fourier 26 Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and Fourier modes in the polar poloidal angle (dim2)
inverse_rhotornorm_straight_field_line 31 Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and the straight-field line poloidal angle (dim2)
inverse_rhotornorm_equal_arc 32 Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and the equal arc poloidal angle (dim2)
inverse_rhotornorm_polar 33 Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and the polar poloidal angle (dim2)
inverse_rhotornorm_straight_field_line_fourier 34 Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and Fourier modes in the straight-field line poloidal angle (dim2)
inverse_rhotornorm_equal_arc_fourier 35 Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and Fourier modes in the equal arc poloidal angle (dim2)
inverse_rhotornorm_polar_fourier 36 Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and Fourier modes in the polar poloidal angle (dim2)
inverse_rhopol_straight_field_line 41 Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and the straight-field line poloidal angle (dim2)
inverse_rhopol_equal_arc 42 Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and the equal arc poloidal angle (dim2)
inverse_rhopol_polar 43 Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and the polar poloidal angle (dim2)
inverse_rhopol_straight_field_line_fourier 44 Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and Fourier modes in the straight-field line poloidal angle (dim2)
inverse_rhopol_equal_arc_fourier 45 Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and Fourier modes in the equal arc poloidal angle (dim2)
inverse_rhopol_polar_fourier 46 Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and Fourier modes in the polar poloidal angle (dim2)
inverse_rhotor_straight_field_line 51 Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and the straight-field line poloidal angle (dim2)
inverse_rhotor_equal_arc 52 Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and the equal arc poloidal angle (dim2)
inverse_rhotor_polar 53 Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and the polar poloidal angle (dim2)
inverse_rhotor_straight_field_line_fourier 54 Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and Fourier modes in the straight-field line poloidal angle (dim2)
inverse_rhotor_equal_arc_fourier 55 Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and Fourier modes in the equal arc poloidal angle (dim2)
inverse_rhotor_polar_fourier 56 Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and Fourier modes in the polar poloidal angle (dim2)
irregular_rz_na 91 Irregular grid, thus give list of vertices in dim1(1:ndim1), dim2(1:ndim1) and then all fields are on values(1:ndim1,1)
structure
time_slice(itime)/toroidal_mode(i1)/plasma/coordinate_system/grid_type/name Short string identifier {dynamic} STR_0D
time_slice(itime)/toroidal_mode(i1)/plasma/coordinate_system/grid_type/index Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index. {dynamic} INT_0D
time_slice(itime)/toroidal_mode(i1)/plasma/coordinate_system/grid_type/description Verbose description {dynamic} STR_0D
time_slice(itime)/toroidal_mode(i1)/plasma/coordinate_system/grid Definition of the 2D grid structure
time_slice(itime)/toroidal_mode(i1)/plasma/coordinate_system/grid/dim1(:) First dimension values {dynamic} [mixed]. This quantity is COCOS-dependent, with the following transformation :
Label Expression
grid_type_dim1_like grid_type_transformation(index_grid_type,1)
FLT_1D 1- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/coordinate_system/grid/dim2(:) Second dimension values {dynamic} [mixed]. This quantity is COCOS-dependent, with the following transformation :
Label Expression
grid_type_dim2_like grid_type_transformation(index_grid_type,2)
FLT_1D 1- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/coordinate_system/grid/volume_element(:,:) Elementary plasma volume of plasma enclosed in the cell formed by the nodes [dim1(i) dim2(j)], [dim1(i+1) dim2(j)], [dim1(i) dim2(j+1)] and [dim1(i+1) dim2(j+1)] {dynamic} [m^3] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/coordinate_system/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/coordinate_system/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/coordinate_system/r(:,:) Values of the major radius on the grid {dynamic} [m] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/coordinate_system/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/coordinate_system/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/coordinate_system/z(:,:) Values of the Height on the grid {dynamic} [m] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/coordinate_system/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/coordinate_system/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/coordinate_system/jacobian(:,:) Absolute value of the jacobian of the coordinate system {dynamic} [mixed] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/coordinate_system/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/coordinate_system/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/coordinate_system/tensor_covariant(:,:,:,:) Covariant metric tensor on every point of the grid described by grid_type {dynamic} [mixed] FLT_4D 1- time_slice(itime)/toroidal_mode(i1)/plasma/coordinate_system/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/coordinate_system/grid/dim2
3- 1...3
4- 1...3
time_slice(itime)/toroidal_mode(i1)/plasma/coordinate_system/tensor_contravariant(:,:,:,:) Contravariant metric tensor on every point of the grid described by grid_type {dynamic} [mixed] FLT_4D 1- time_slice(itime)/toroidal_mode(i1)/plasma/coordinate_system/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/coordinate_system/grid/dim2
3- 1...3
4- 1...3
time_slice(itime)/toroidal_mode(i1)/plasma/displacement_perpendicular Perpendicular displacement of the modes [m] structure
time_slice(itime)/toroidal_mode(i1)/plasma/displacement_perpendicular/real(:,:) Real part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/displacement_perpendicular/imaginary(:,:) Imaginary part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/displacement_perpendicular/coefficients_real(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (real part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/displacement_perpendicular/coefficients_imaginary(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (imaginary part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/displacement_parallel Parallel displacement of the modes [m] structure
time_slice(itime)/toroidal_mode(i1)/plasma/displacement_parallel/real(:,:) Real part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/displacement_parallel/imaginary(:,:) Imaginary part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/displacement_parallel/coefficients_real(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (real part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/displacement_parallel/coefficients_imaginary(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (imaginary part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/tau_alfven(:) Alven time=R/vA=R0 sqrt(mi ni(rho))/B0 {dynamic} [s] FLT_1D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
time_slice(itime)/toroidal_mode(i1)/plasma/tau_resistive(:) Resistive time = mu_0 rho*rho/1.22/eta_neo {dynamic} [s] FLT_1D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
time_slice(itime)/toroidal_mode(i1)/plasma/a_field_perturbed Pertubed vector potential for given toroidal mode number [T.m] structure
time_slice(itime)/toroidal_mode(i1)/plasma/a_field_perturbed/coordinate1 First coordinate (radial) [as_parent] structure
time_slice(itime)/toroidal_mode(i1)/plasma/a_field_perturbed/coordinate1/real(:,:) Real part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/a_field_perturbed/coordinate1/imaginary(:,:) Imaginary part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/a_field_perturbed/coordinate1/coefficients_real(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (real part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/a_field_perturbed/coordinate1/coefficients_imaginary(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (imaginary part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/a_field_perturbed/coordinate2 Second coordinate (poloidal) [as_parent] structure
time_slice(itime)/toroidal_mode(i1)/plasma/a_field_perturbed/coordinate2/real(:,:) Real part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/a_field_perturbed/coordinate2/imaginary(:,:) Imaginary part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/a_field_perturbed/coordinate2/coefficients_real(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (real part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/a_field_perturbed/coordinate2/coefficients_imaginary(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (imaginary part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/a_field_perturbed/coordinate3 Third coordinate (toroidal) [as_parent] structure
time_slice(itime)/toroidal_mode(i1)/plasma/a_field_perturbed/coordinate3/real(:,:) Real part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/a_field_perturbed/coordinate3/imaginary(:,:) Imaginary part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/a_field_perturbed/coordinate3/coefficients_real(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (real part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/a_field_perturbed/coordinate3/coefficients_imaginary(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (imaginary part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/b_field_perturbed Pertubed magnetic field for given toroidal mode number [T] structure
time_slice(itime)/toroidal_mode(i1)/plasma/b_field_perturbed/coordinate1 First coordinate (radial) [as_parent] structure
time_slice(itime)/toroidal_mode(i1)/plasma/b_field_perturbed/coordinate1/real(:,:) Real part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/b_field_perturbed/coordinate1/imaginary(:,:) Imaginary part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/b_field_perturbed/coordinate1/coefficients_real(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (real part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/b_field_perturbed/coordinate1/coefficients_imaginary(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (imaginary part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/b_field_perturbed/coordinate2 Second coordinate (poloidal) [as_parent] structure
time_slice(itime)/toroidal_mode(i1)/plasma/b_field_perturbed/coordinate2/real(:,:) Real part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/b_field_perturbed/coordinate2/imaginary(:,:) Imaginary part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/b_field_perturbed/coordinate2/coefficients_real(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (real part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/b_field_perturbed/coordinate2/coefficients_imaginary(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (imaginary part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/b_field_perturbed/coordinate3 Third coordinate (toroidal) [as_parent] structure
time_slice(itime)/toroidal_mode(i1)/plasma/b_field_perturbed/coordinate3/real(:,:) Real part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/b_field_perturbed/coordinate3/imaginary(:,:) Imaginary part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/b_field_perturbed/coordinate3/coefficients_real(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (real part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/b_field_perturbed/coordinate3/coefficients_imaginary(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (imaginary part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/velocity_perturbed Pertubed velocity for given toroidal mode number [m/s] structure
time_slice(itime)/toroidal_mode(i1)/plasma/velocity_perturbed/coordinate1 First coordinate (radial) [as_parent] structure
time_slice(itime)/toroidal_mode(i1)/plasma/velocity_perturbed/coordinate1/real(:,:) Real part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/velocity_perturbed/coordinate1/imaginary(:,:) Imaginary part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/velocity_perturbed/coordinate1/coefficients_real(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (real part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/velocity_perturbed/coordinate1/coefficients_imaginary(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (imaginary part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/velocity_perturbed/coordinate2 Second coordinate (poloidal) [as_parent] structure
time_slice(itime)/toroidal_mode(i1)/plasma/velocity_perturbed/coordinate2/real(:,:) Real part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/velocity_perturbed/coordinate2/imaginary(:,:) Imaginary part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/velocity_perturbed/coordinate2/coefficients_real(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (real part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/velocity_perturbed/coordinate2/coefficients_imaginary(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (imaginary part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/velocity_perturbed/coordinate3 Third coordinate (toroidal) [as_parent] structure
time_slice(itime)/toroidal_mode(i1)/plasma/velocity_perturbed/coordinate3/real(:,:) Real part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/velocity_perturbed/coordinate3/imaginary(:,:) Imaginary part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/velocity_perturbed/coordinate3/coefficients_real(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (real part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/velocity_perturbed/coordinate3/coefficients_imaginary(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (imaginary part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/pressure_perturbed Perturbed pressure for given toroidal mode number [Pa] structure
time_slice(itime)/toroidal_mode(i1)/plasma/pressure_perturbed/real(:,:) Real part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/pressure_perturbed/imaginary(:,:) Imaginary part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/pressure_perturbed/coefficients_real(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (real part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/pressure_perturbed/coefficients_imaginary(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (imaginary part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/mass_density_perturbed Perturbed mass density for given toroidal mode number [kg.m^-3] structure
time_slice(itime)/toroidal_mode(i1)/plasma/mass_density_perturbed/real(:,:) Real part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/mass_density_perturbed/imaginary(:,:) Imaginary part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/mass_density_perturbed/coefficients_real(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (real part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/mass_density_perturbed/coefficients_imaginary(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (imaginary part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/temperature_perturbed Perturbed temperature for given toroidal mode number [eV] structure
time_slice(itime)/toroidal_mode(i1)/plasma/temperature_perturbed/real(:,:) Real part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/temperature_perturbed/imaginary(:,:) Imaginary part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/temperature_perturbed/coefficients_real(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (real part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/temperature_perturbed/coefficients_imaginary(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (imaginary part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/phi_potential_perturbed Perturbed electrostatic potential for given toroidal mode number [V] structure
time_slice(itime)/toroidal_mode(i1)/plasma/phi_potential_perturbed/real(:,:) Real part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/phi_potential_perturbed/imaginary(:,:) Imaginary part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/phi_potential_perturbed/coefficients_real(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (real part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/phi_potential_perturbed/coefficients_imaginary(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (imaginary part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/psi_potential_perturbed Perturbed electromagnetic super-potential for given toroidal mode number, see ref [Antonsen/Lane Phys Fluids 23(6) 1980, formula 34], so that A_field_parallel=1/(i*2pi*frequency) (grad psi_potential)_parallel [V] structure
time_slice(itime)/toroidal_mode(i1)/plasma/psi_potential_perturbed/real(:,:) Real part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/psi_potential_perturbed/imaginary(:,:) Imaginary part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
time_slice(itime)/toroidal_mode(i1)/plasma/psi_potential_perturbed/coefficients_real(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (real part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/psi_potential_perturbed/coefficients_imaginary(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (imaginary part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/alfven_frequency_spectrum(i2) Local shear Alfven spectrum as a function of radius (only in case grid/dim1 is a radial coordinate) array of structures 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
time_slice(itime)/toroidal_mode(i1)/plasma/alfven_frequency_spectrum(i2)/real(:) Real part of the frequency, for a given radial position and every root found at this position {dynamic} [s^-1] FLT_1D 1- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/alfven_frequency_spectrum(i2)/imaginary(:) Imaginary part of the frequency, for a given radial position and every root found at this position {dynamic} [s^-1] FLT_1D 1- time_slice(itime)/toroidal_mode(i1)/plasma/alfven_frequency_spectrum(i2)/real
time_slice(itime)/toroidal_mode(i1)/plasma/stress_maxwell Maxwell stress tensor structure
time_slice(itime)/toroidal_mode(i1)/plasma/stress_maxwell/real(:,:,:) Real part of the stress tensor, for various radial positions {dynamic} [N.m^-2] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- 1...N
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/stress_maxwell/imaginary(:,:,:) Imaginary part of the stress tensor, for various radial positions {dynamic} [N.m^-2] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- 1...N
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/stress_reynolds Reynolds stress tensor structure
time_slice(itime)/toroidal_mode(i1)/plasma/stress_reynolds/real(:,:,:) Real part of the stress tensor, for various radial positions {dynamic} [N.m^-2] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- 1...N
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/stress_reynolds/imaginary(:,:,:) Imaginary part of the stress tensor, for various radial positions {dynamic} [N.m^-2] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- 1...N
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/ntv Neoclassical toroidal viscosity tensor structure
time_slice(itime)/toroidal_mode(i1)/plasma/ntv/real(:,:,:) Real part of the stress tensor, for various radial positions {dynamic} [N.m^-2] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- 1...N
3- 1...N
time_slice(itime)/toroidal_mode(i1)/plasma/ntv/imaginary(:,:,:) Imaginary part of the stress tensor, for various radial positions {dynamic} [N.m^-2] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/plasma/grid/dim1
2- 1...N
3- 1...N
time_slice(itime)/toroidal_mode(i1)/vacuum MHD modes in the vacuum structure
time_slice(itime)/toroidal_mode(i1)/vacuum/grid_type Selection of one of a set of grid types. Available options (refer to the children of this identifier structure) :
Name Index Description
rectangular 1 Cylindrical R,Z ala eqdsk (R=dim1, Z=dim2). In this case the position arrays should not be filled since they are redundant with grid/dim1 and dim2.
inverse 2 Rhopolar_polar 2D polar coordinates (rho=dim1, theta=dim2) with magnetic axis as centre of grid; theta and values following the COCOS=11 convention; the polar angle is theta=atan2(z-zaxis,r-raxis)
inverse_psi_straight_field_line 11 Flux surface type with psi as radial label (dim1) and the straight-field line poloidal angle (mod(index,10)=1) (dim2); could be non-equidistant; magnetic axis as centre of grid; following the COCOS=11 convention
inverse_psi_equal_arc 12 Flux surface type with psi as radial label (dim1) and the equal arc poloidal angle (mod(index,10)=2) (dim2)
inverse_psi_polar 13 Flux surface type with psi as radial label (dim1) and the polar poloidal angle (mod(index,10)=3) (dim2); could be non-equidistant
inverse_psi_straight_field_line_fourier 14 Flux surface type with psi as radial label (dim1) and Fourier modes in the straight-field line poloidal angle (mod(index,10)=4) (dim2), could be non-equidistant; magnetic axis as centre of grid; following the COCOS=11 convention
inverse_psi_equal_arc_fourier 15 Flux surface type with psi as radial label (dim1) and Fourier modes in the equal arc poloidal angle (mod(index,10)=5) (dim2)
inverse_psi_polar_fourier 16 Flux surface type with psi as radial label (dim1) and Fourier modes in the polar poloidal angle (mod(index,10)=6) (dim2); could be non-equidistant
inverse_rhopolnorm_straight_field_line 21 Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and the straight-field line poloidal angle (dim2)
inverse_rhopolnorm_equal_arc 22 Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and the equal arc poloidal angle (dim2)
inverse_rhopolnorm_polar 23 Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and the polar poloidal angle (dim2)
inverse_rhopolnorm_straight_field_line_fourier 24 Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and Fourier modes in the straight-field line poloidal angle (dim2)
inverse_rhopolnorm_equal_arc_fourier 25 Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and Fourier modes in the equal arc poloidal angle (dim2)
inverse_rhopolnorm_polar_fourier 26 Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and Fourier modes in the polar poloidal angle (dim2)
inverse_rhotornorm_straight_field_line 31 Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and the straight-field line poloidal angle (dim2)
inverse_rhotornorm_equal_arc 32 Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and the equal arc poloidal angle (dim2)
inverse_rhotornorm_polar 33 Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and the polar poloidal angle (dim2)
inverse_rhotornorm_straight_field_line_fourier 34 Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and Fourier modes in the straight-field line poloidal angle (dim2)
inverse_rhotornorm_equal_arc_fourier 35 Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and Fourier modes in the equal arc poloidal angle (dim2)
inverse_rhotornorm_polar_fourier 36 Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and Fourier modes in the polar poloidal angle (dim2)
inverse_rhopol_straight_field_line 41 Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and the straight-field line poloidal angle (dim2)
inverse_rhopol_equal_arc 42 Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and the equal arc poloidal angle (dim2)
inverse_rhopol_polar 43 Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and the polar poloidal angle (dim2)
inverse_rhopol_straight_field_line_fourier 44 Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and Fourier modes in the straight-field line poloidal angle (dim2)
inverse_rhopol_equal_arc_fourier 45 Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and Fourier modes in the equal arc poloidal angle (dim2)
inverse_rhopol_polar_fourier 46 Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and Fourier modes in the polar poloidal angle (dim2)
inverse_rhotor_straight_field_line 51 Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and the straight-field line poloidal angle (dim2)
inverse_rhotor_equal_arc 52 Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and the equal arc poloidal angle (dim2)
inverse_rhotor_polar 53 Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and the polar poloidal angle (dim2)
inverse_rhotor_straight_field_line_fourier 54 Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and Fourier modes in the straight-field line poloidal angle (dim2)
inverse_rhotor_equal_arc_fourier 55 Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and Fourier modes in the equal arc poloidal angle (dim2)
inverse_rhotor_polar_fourier 56 Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and Fourier modes in the polar poloidal angle (dim2)
irregular_rz_na 91 Irregular grid, thus give list of vertices in dim1(1:ndim1), dim2(1:ndim1) and then all fields are on values(1:ndim1,1)
structure
time_slice(itime)/toroidal_mode(i1)/vacuum/grid_type/name Short string identifier {dynamic} STR_0D
time_slice(itime)/toroidal_mode(i1)/vacuum/grid_type/index Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index. {dynamic} INT_0D
time_slice(itime)/toroidal_mode(i1)/vacuum/grid_type/description Verbose description {dynamic} STR_0D
time_slice(itime)/toroidal_mode(i1)/vacuum/grid Definition of the 2D grid (the content of dim1 and dim2 is defined by the selected grid_type) structure
time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim1(:) First dimension values {dynamic} [mixed]. This quantity is COCOS-dependent, with the following transformation :
Label Expression
grid_type_dim1_like grid_type_transformation(index_grid_type,1)
FLT_1D 1- 1...N
time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim2(:) Second dimension values {dynamic} [mixed]. This quantity is COCOS-dependent, with the following transformation :
Label Expression
grid_type_dim2_like grid_type_transformation(index_grid_type,2)
FLT_1D 1- 1...N
time_slice(itime)/toroidal_mode(i1)/vacuum/grid/volume_element(:,:) Elementary plasma volume of plasma enclosed in the cell formed by the nodes [dim1(i) dim2(j)], [dim1(i+1) dim2(j)], [dim1(i) dim2(j+1)] and [dim1(i+1) dim2(j+1)] {dynamic} [m^3] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim2
time_slice(itime)/toroidal_mode(i1)/vacuum/coordinate_system Flux surface coordinate system of the equilibrium used for the MHD calculation on a square grid of flux and poloidal angle structure
time_slice(itime)/toroidal_mode(i1)/vacuum/coordinate_system/grid_type Selection of one of a set of grid types. Available options (refer to the children of this identifier structure) :
Name Index Description
rectangular 1 Cylindrical R,Z ala eqdsk (R=dim1, Z=dim2). In this case the position arrays should not be filled since they are redundant with grid/dim1 and dim2.
inverse 2 Rhopolar_polar 2D polar coordinates (rho=dim1, theta=dim2) with magnetic axis as centre of grid; theta and values following the COCOS=11 convention; the polar angle is theta=atan2(z-zaxis,r-raxis)
inverse_psi_straight_field_line 11 Flux surface type with psi as radial label (dim1) and the straight-field line poloidal angle (mod(index,10)=1) (dim2); could be non-equidistant; magnetic axis as centre of grid; following the COCOS=11 convention
inverse_psi_equal_arc 12 Flux surface type with psi as radial label (dim1) and the equal arc poloidal angle (mod(index,10)=2) (dim2)
inverse_psi_polar 13 Flux surface type with psi as radial label (dim1) and the polar poloidal angle (mod(index,10)=3) (dim2); could be non-equidistant
inverse_psi_straight_field_line_fourier 14 Flux surface type with psi as radial label (dim1) and Fourier modes in the straight-field line poloidal angle (mod(index,10)=4) (dim2), could be non-equidistant; magnetic axis as centre of grid; following the COCOS=11 convention
inverse_psi_equal_arc_fourier 15 Flux surface type with psi as radial label (dim1) and Fourier modes in the equal arc poloidal angle (mod(index,10)=5) (dim2)
inverse_psi_polar_fourier 16 Flux surface type with psi as radial label (dim1) and Fourier modes in the polar poloidal angle (mod(index,10)=6) (dim2); could be non-equidistant
inverse_rhopolnorm_straight_field_line 21 Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and the straight-field line poloidal angle (dim2)
inverse_rhopolnorm_equal_arc 22 Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and the equal arc poloidal angle (dim2)
inverse_rhopolnorm_polar 23 Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and the polar poloidal angle (dim2)
inverse_rhopolnorm_straight_field_line_fourier 24 Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and Fourier modes in the straight-field line poloidal angle (dim2)
inverse_rhopolnorm_equal_arc_fourier 25 Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and Fourier modes in the equal arc poloidal angle (dim2)
inverse_rhopolnorm_polar_fourier 26 Flux surface type with radial label sqrt[(psi-psi_axis)/(psi_edge-psi_axis)] (dim1) and Fourier modes in the polar poloidal angle (dim2)
inverse_rhotornorm_straight_field_line 31 Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and the straight-field line poloidal angle (dim2)
inverse_rhotornorm_equal_arc 32 Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and the equal arc poloidal angle (dim2)
inverse_rhotornorm_polar 33 Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and the polar poloidal angle (dim2)
inverse_rhotornorm_straight_field_line_fourier 34 Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and Fourier modes in the straight-field line poloidal angle (dim2)
inverse_rhotornorm_equal_arc_fourier 35 Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and Fourier modes in the equal arc poloidal angle (dim2)
inverse_rhotornorm_polar_fourier 36 Flux surface type with radial label sqrt[Phi/Phi_edge] (dim1) and Fourier modes in the polar poloidal angle (dim2)
inverse_rhopol_straight_field_line 41 Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and the straight-field line poloidal angle (dim2)
inverse_rhopol_equal_arc 42 Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and the equal arc poloidal angle (dim2)
inverse_rhopol_polar 43 Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and the polar poloidal angle (dim2)
inverse_rhopol_straight_field_line_fourier 44 Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and Fourier modes in the straight-field line poloidal angle (dim2)
inverse_rhopol_equal_arc_fourier 45 Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and Fourier modes in the equal arc poloidal angle (dim2)
inverse_rhopol_polar_fourier 46 Flux surface type with radial label sqrt[psi-psi_axis] (dim1) and Fourier modes in the polar poloidal angle (dim2)
inverse_rhotor_straight_field_line 51 Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and the straight-field line poloidal angle (dim2)
inverse_rhotor_equal_arc 52 Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and the equal arc poloidal angle (dim2)
inverse_rhotor_polar 53 Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and the polar poloidal angle (dim2)
inverse_rhotor_straight_field_line_fourier 54 Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and Fourier modes in the straight-field line poloidal angle (dim2)
inverse_rhotor_equal_arc_fourier 55 Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and Fourier modes in the equal arc poloidal angle (dim2)
inverse_rhotor_polar_fourier 56 Flux surface type with radial label sqrt[Phi/pi/B0] (dim1), Phi being toroidal flux, and Fourier modes in the polar poloidal angle (dim2)
irregular_rz_na 91 Irregular grid, thus give list of vertices in dim1(1:ndim1), dim2(1:ndim1) and then all fields are on values(1:ndim1,1)
structure
time_slice(itime)/toroidal_mode(i1)/vacuum/coordinate_system/grid_type/name Short string identifier {dynamic} STR_0D
time_slice(itime)/toroidal_mode(i1)/vacuum/coordinate_system/grid_type/index Integer identifier (enumeration index within a list). Private identifier values must be indicated by a negative index. {dynamic} INT_0D
time_slice(itime)/toroidal_mode(i1)/vacuum/coordinate_system/grid_type/description Verbose description {dynamic} STR_0D
time_slice(itime)/toroidal_mode(i1)/vacuum/coordinate_system/grid Definition of the 2D grid structure
time_slice(itime)/toroidal_mode(i1)/vacuum/coordinate_system/grid/dim1(:) First dimension values {dynamic} [mixed]. This quantity is COCOS-dependent, with the following transformation :
Label Expression
grid_type_dim1_like grid_type_transformation(index_grid_type,1)
FLT_1D 1- 1...N
time_slice(itime)/toroidal_mode(i1)/vacuum/coordinate_system/grid/dim2(:) Second dimension values {dynamic} [mixed]. This quantity is COCOS-dependent, with the following transformation :
Label Expression
grid_type_dim2_like grid_type_transformation(index_grid_type,2)
FLT_1D 1- 1...N
time_slice(itime)/toroidal_mode(i1)/vacuum/coordinate_system/grid/volume_element(:,:) Elementary plasma volume of plasma enclosed in the cell formed by the nodes [dim1(i) dim2(j)], [dim1(i+1) dim2(j)], [dim1(i) dim2(j+1)] and [dim1(i+1) dim2(j+1)] {dynamic} [m^3] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/coordinate_system/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/coordinate_system/grid/dim2
time_slice(itime)/toroidal_mode(i1)/vacuum/coordinate_system/r(:,:) Values of the major radius on the grid {dynamic} [m] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/coordinate_system/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/coordinate_system/grid/dim2
time_slice(itime)/toroidal_mode(i1)/vacuum/coordinate_system/z(:,:) Values of the Height on the grid {dynamic} [m] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/coordinate_system/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/coordinate_system/grid/dim2
time_slice(itime)/toroidal_mode(i1)/vacuum/coordinate_system/jacobian(:,:) Absolute value of the jacobian of the coordinate system {dynamic} [mixed] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/coordinate_system/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/coordinate_system/grid/dim2
time_slice(itime)/toroidal_mode(i1)/vacuum/coordinate_system/tensor_covariant(:,:,:,:) Covariant metric tensor on every point of the grid described by grid_type {dynamic} [mixed] FLT_4D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/coordinate_system/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/coordinate_system/grid/dim2
3- 1...3
4- 1...3
time_slice(itime)/toroidal_mode(i1)/vacuum/coordinate_system/tensor_contravariant(:,:,:,:) Contravariant metric tensor on every point of the grid described by grid_type {dynamic} [mixed] FLT_4D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/coordinate_system/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/coordinate_system/grid/dim2
3- 1...3
4- 1...3
time_slice(itime)/toroidal_mode(i1)/vacuum/a_field_perturbed Pertubed vector potential for given toroidal mode number [T.m] structure
time_slice(itime)/toroidal_mode(i1)/vacuum/a_field_perturbed/coordinate1 First coordinate (radial) [as_parent] structure
time_slice(itime)/toroidal_mode(i1)/vacuum/a_field_perturbed/coordinate1/real(:,:) Real part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim2
time_slice(itime)/toroidal_mode(i1)/vacuum/a_field_perturbed/coordinate1/imaginary(:,:) Imaginary part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim2
time_slice(itime)/toroidal_mode(i1)/vacuum/a_field_perturbed/coordinate1/coefficients_real(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (real part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/vacuum/a_field_perturbed/coordinate1/coefficients_imaginary(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (imaginary part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/vacuum/a_field_perturbed/coordinate2 Second coordinate (poloidal) [as_parent] structure
time_slice(itime)/toroidal_mode(i1)/vacuum/a_field_perturbed/coordinate2/real(:,:) Real part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim2
time_slice(itime)/toroidal_mode(i1)/vacuum/a_field_perturbed/coordinate2/imaginary(:,:) Imaginary part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim2
time_slice(itime)/toroidal_mode(i1)/vacuum/a_field_perturbed/coordinate2/coefficients_real(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (real part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/vacuum/a_field_perturbed/coordinate2/coefficients_imaginary(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (imaginary part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/vacuum/a_field_perturbed/coordinate3 Third coordinate (toroidal) [as_parent] structure
time_slice(itime)/toroidal_mode(i1)/vacuum/a_field_perturbed/coordinate3/real(:,:) Real part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim2
time_slice(itime)/toroidal_mode(i1)/vacuum/a_field_perturbed/coordinate3/imaginary(:,:) Imaginary part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim2
time_slice(itime)/toroidal_mode(i1)/vacuum/a_field_perturbed/coordinate3/coefficients_real(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (real part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/vacuum/a_field_perturbed/coordinate3/coefficients_imaginary(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (imaginary part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/vacuum/b_field_perturbed Pertubed magnetic field for given toroidal mode number [T] structure
time_slice(itime)/toroidal_mode(i1)/vacuum/b_field_perturbed/coordinate1 First coordinate (radial) [as_parent] structure
time_slice(itime)/toroidal_mode(i1)/vacuum/b_field_perturbed/coordinate1/real(:,:) Real part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim2
time_slice(itime)/toroidal_mode(i1)/vacuum/b_field_perturbed/coordinate1/imaginary(:,:) Imaginary part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim2
time_slice(itime)/toroidal_mode(i1)/vacuum/b_field_perturbed/coordinate1/coefficients_real(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (real part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/vacuum/b_field_perturbed/coordinate1/coefficients_imaginary(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (imaginary part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/vacuum/b_field_perturbed/coordinate2 Second coordinate (poloidal) [as_parent] structure
time_slice(itime)/toroidal_mode(i1)/vacuum/b_field_perturbed/coordinate2/real(:,:) Real part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim2
time_slice(itime)/toroidal_mode(i1)/vacuum/b_field_perturbed/coordinate2/imaginary(:,:) Imaginary part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim2
time_slice(itime)/toroidal_mode(i1)/vacuum/b_field_perturbed/coordinate2/coefficients_real(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (real part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/vacuum/b_field_perturbed/coordinate2/coefficients_imaginary(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (imaginary part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/vacuum/b_field_perturbed/coordinate3 Third coordinate (toroidal) [as_parent] structure
time_slice(itime)/toroidal_mode(i1)/vacuum/b_field_perturbed/coordinate3/real(:,:) Real part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim2
time_slice(itime)/toroidal_mode(i1)/vacuum/b_field_perturbed/coordinate3/imaginary(:,:) Imaginary part {dynamic} [as_parent] FLT_2D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim2
time_slice(itime)/toroidal_mode(i1)/vacuum/b_field_perturbed/coordinate3/coefficients_real(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (real part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim2
3- 1...N
time_slice(itime)/toroidal_mode(i1)/vacuum/b_field_perturbed/coordinate3/coefficients_imaginary(:,:,:) Interpolation coefficients, to be used for a high precision evaluation of the physical quantity (imaginary part) with finite elements, provided on the 2D grid {dynamic} [as_parent] FLT_3D 1- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim1
2- time_slice(itime)/toroidal_mode(i1)/vacuum/grid/dim2
3- 1...N
time_slice(itime)/time Time {dynamic} [s] FLT_0D
code Generic decription of the code-specific parameters for the code that has produced this IDS structure
code/name Name of software generating IDS {constant} STR_0D
code/description Short description of the software (type, purpose) {constant}. Introduced after DD version 3.38.1 STR_0D
code/commit Unique commit reference of software {constant} STR_0D
code/version Unique version (tag) of software {constant} STR_0D
code/repository URL of software repository {constant} STR_0D
code/parameters List of the code specific parameters in XML format {constant} STR_0D
code/output_flag(:) Output flag : 0 means the run is successful, other values mean some difficulty has been encountered, the exact meaning is then code specific. Negative values mean the result shall not be used. {dynamic} INT_1D 1- time
code/library(i1) List of external libraries used by the code that has produced this IDS array of structures [max_size=10 (limited in MDS+ backend only)] 1- 1...N
code/library(i1)/name Name of software {constant} STR_0D
code/library(i1)/description Short description of the software (type, purpose) {constant}. Introduced after DD version 3.38.1 STR_0D
code/library(i1)/commit Unique commit reference of software {constant} STR_0D
code/library(i1)/version Unique version (tag) of software {constant} STR_0D
code/library(i1)/repository URL of software repository {constant} STR_0D
code/library(i1)/parameters List of the code specific parameters in XML format {constant} STR_0D
time(:) Generic time {dynamic} [s] FLT_1D 1- 1...N

Back to top IDS list