
C1 Research Computing - Coursework Assignment

Raunaq Rai (rsr45@cam.ac.uk)
Department of Physics, University of Cambridge

18 December, 2024

1 Introduction

This report details the development and implementation of a Python package, dual autodiff,
designed for automatic differentiation using dual numbers. The package computes deriva-
tives efficiently while supporting mathematical operations such as trigonometric, logarith-
mic, and exponential functions.

The approach builds on the concept of forward-mode automatic differentiation, which
is essential in fields like optimization, computational physics, and machine learning. This
technique traces its roots to the foundational work by Wengert [1], who introduced a sys-
tematic way to compute derivatives using intermediate variables. More recently, Baydin
et al. [2] surveyed the use of automatic differentiation in machine learning, emphasizing
its importance in training deep neural networks.

To enhance performance, a Cython-optimized version, dual autodiff x, was also
developed. This document covers the structure of the project, the mathematical principles
behind dual numbers, and the implementation details of the package.

2 Setting Up the Development Environment

Apple Silicon devices primarily use the ARM64 architecture, which can pose challenges
when working with scientific computing tools built for x86 64. To ensure compatibility
with these tools, I configured the development environment to run in x86 64 mode. This
step was crucial for enabling seamless execution of packages and tools designed for x86 64
systems.

To achieve this:

• Rosetta Installation: Rosetta, an emulation layer by Apple, was installed to
facilitate running x86 64 binaries on ARM-based devices. This was achieved using:

/usr/sbin/softwareupdate --install-rosetta

• Configuring Terminal: The Terminal application was set to run in Rosetta mode,
ensuring compatibility with x86 64 libraries and tools.

1



• Creating an x86 64 Conda Environment: A dedicated Conda environment
was created with all required dependencies for developing and testing the package.

This setup allowed for consistent development and ensured the compatibility of tools
and libraries required for this project.

3 Theoretical Background

3.1 Dual Numbers

Dual numbers can be defined as truncated Taylor series of the form:

x = v + v̇ϵ,

where v, v̇ ∈ R, and ϵ is a nilpotent number such that ϵ2 = 0 and ϵ ̸= 0. Here:

• v: Represents the primal value.

• v̇: Represents the derivative or tangent value.

As explained by Baydin et al. [2], arithmetic operations with dual numbers align
naturally with symbolic differentiation principles:

(x1 + ẋ1ϵ) + (x2 + ẋ2ϵ) = (x1 + x2) + (ẋ1 + ẋ2)ϵ,

(x1 + ẋ1ϵ)(x2 + ẋ2ϵ) = x1x2 + (x1ẋ2 + ẋ1x2)ϵ.

3.2 Automatic Differentiation

Automatic differentiation (AD) leverages dual numbers to compute derivatives efficiently.
For a function f(x), substituting x = v + v̇ϵ yields:

f(x) = f(v + v̇ϵ) = f(v) + f ′(v)v̇ϵ.

The derivative f ′(v) is embedded in the coefficient of ϵ, enabling simultaneous evaluation
of function values and derivatives.

This principle extends to composite functions via the chain rule:

f(g(v + v̇ϵ)) = f(g(v)) + f ′(g(v))g′(v)v̇ϵ.

4 Implementation of Dual Numbers and Operations

4.1 Overview of the Dual Class

The dual.py file implements the Dual class, the core of the dual autodiff package.
This class defines dual numbers and supports operations such as addition, subtraction,
multiplication, and division.

4.1.1 Arithmetic Operations

The Dual class overrides arithmetic operators for seamless integration. For example:

x = Dual(2, 1)

y = Dual(3, 2)

print(x + y) # Output: Dual(real=5, dual=3)

2



4.1.2 Mathematical Functions

The Dual class also implements key mathematical functions such as:

• Trigonometric functions (sin, cos, tan).

• Exponential and logarithmic functions (exp, log).

• Hyperbolic functions (sinh, cosh, tanh).

• Square root (sqrt).

For example:

x = Dual(2, 1)

result = x.sin()

print(result) # Output: Dual(real=0.9092..., dual=-0.4161...)

4.2 Utility Functions

To enhance usability:

• functions.py provides aliases for mathematical functions.

• base.py includes helper functions like:

– is dual instance(value): Checks if a value is a Dual instance.

– ensure dual(value): Wraps non-Dual values into a Dual object.

5 Project Structure and Packaging

5.1 Repository Organization

The repository follows good practices for Python projects:

• dual autodiff/: Core implementation.

• tests/: Unit tests.

• docs/: Documentation.

• pyproject.toml: Modern project configuration file.

• requirements.txt: Lists Python dependencies.

• environment.yaml: Defines the Conda environment.

3



5.2 Building and Installing the Package

The pyproject.toml file specifies build metadata:

• [build-system]: Declares build tools.

• [project]: Contains metadata like name and dependencies.

• [tool.setuptools scm]: Handles dynamic versioning.

To install the package, the following commands were used:

pip install build

python -m build

pip install -e .

6 Conclusion

By combining the theoretical principles of dual numbers with practical implementation
strategies, the dual autodiff package provides an efficient solution for automatic dif-
ferentiation. The structured approach to repository organization and environment setup
ensures robustness and compatibility across platforms.

References

[1] RE Wengert. “A Simple Automatic Derivative Evaluation Program”. In: Communi-
cations of the ACM 7.8 (1964), pp. 463–464.

[2] Atılım Güneş Baydin et al. “Automatic Differentiation in Machine Learning: A Sur-
vey”. In: Journal of Machine Learning Research 18.153 (2018), pp. 1–43.

4


	Introduction
	Setting Up the Development Environment
	Theoretical Background
	Dual Numbers
	Automatic Differentiation

	Implementation of Dual Numbers and Operations
	Overview of the Dual Class
	Arithmetic Operations
	Mathematical Functions

	Utility Functions

	Project Structure and Packaging
	Repository Organization
	Building and Installing the Package

	Conclusion

