

www.epyx.ch
info@epyx.ch

t +41 21 623 79 50
f +41 21 623 79 55

epyx

Avenue de Provence 4
1007 Lausanne
Switzerland

26.05.15
Version: 1.1

#fei21 webservices - organizerws.docx/Sylvain Wolf#

Fédération Equestre Internationale

HM King Hussein I Building

Chemin de la Joliette 8

CH 1006 Lausanne

FEI21 - WebServices

OrganizerWS - General description

Version 1.1

FEI21 - WebServices

OrganizerWS - General description – Version 1.1

2

Table of contents

History 3

1. Introduction 4

1.1 Feedback 4

1.2 Technology considerations 4

2. WebServices URLs 4

3. Authentication and user information 5

3.1 FEI21 WebServices Authentication 6

3.2 End User Information 7

3.3 Authentication WebService Description 7

4. General considerations about WebMethods 8

4.1 Exceptions and Messages 8

4.2 Transaction control number 9

4.3 Note about the getVersion() method 9

4.4 Use of the getLookupDateList() method 9

4.5 .NET ASMX vs WCF WebServices 10

4.6 Workaround for certificate issues 10

FEI21 - WebServices

OrganizerWS - General description – Version 1.1

3

History

Date Version Description

28.01.2013 1.0 Initial document (copied from the document for the FEI NF

WebServices).

03.03.2015 1.1 Adjustment in the URLs for the Integration and Validation environments

in section 2.

FEI21 - WebServices

OrganizerWS - General description – Version 1.1

4

1. Introduction

This document is the base document about the FEI21 WebServices for Organizers and their IT
Providers.

It describes general information and principles for these WebServices such as URLs to connect to the

WebServices and security.

The FEI21 WebServices application is made of three WebServices (“.asmx” file): one for the

methods specifically developed to fulfil Organizers and IT Providers needs (OrganizerWS_X_Y.asmx
with X and Y representing the version number of the WebServices), a second one shared with the FEI

WebServices for NFs, which contain the methods to access static data such as countries, NFs,
disciplines codes and so on (CommonWS.asmx) and the last one for authentication

(Authentication.asmx).

The documentation about the WebServices is split in the following files:

Document Description

FEI21 WebServices – OrganizerWS This is the present document that describes among other
things how to connect to the authentication service.

FEI21 WebServices - CommonWS This document describes the Common Data WebService

(CommonWS.asmx) which contains all static data that can be
cached on the client application, such as country list,

discipline list, document issuing body list and so on.

Note that with respect to the current version of the

OrganizerWS webmethods, only a few of the methods

contained in CommonWS are relevant.

FEI21 WebServices - OrganizerWS X.Y

- Methods

This document describes the web methods of this

WebService.

FEI21 WebServices - OrganizerWS X.Y
- Classes

This document describes the classes used by the methods in
OrganizerWS_X_Y.asmx.

1.1 Feedback

Feedback about the present documentation (all documents listed above) or about the WebServices
themselves can be reported to one of the following contacts:

Company Person Contact

FEI Gaspard Dufour

Jérôme Begey

Sylvain Wolf

gaspard.dufour@fei.org

jerome.begey@fei.org

sylvain.wolf@fei.org

1.2 Technology considerations

Web services are implemented using Microsoft C# as the underlying technology, and published using

standard WSDL on an IIS server.

2. WebServices URLs

The URL to access the different WebServices is constructed on the module name with the following

syntax:

mailto:gaspard.dufour@fei.org
mailto:jerome.begey@fei.org
mailto:sylvain.wolf@fei.org

FEI21 - WebServices

OrganizerWS - General description – Version 1.1

5

rootURL/_vti_bin/subfolder/serviceName.asmx

where

- serviceName is the name of the service, e.g. HorseWS, CommonWS, Authentication.

- rootURL is the root URL of the Core Application. This URL depends on the environment

(integration, validation, production, see below).

- subfolder is the path to a subfolder used to separate the Authentication WebService

(Authentication.asmx in our case) from the FEI21 business WebServices (the other ones).

The following table give the explicit list of URLs:

WebService URL

Authentication rootURL/_vti_bin/Authentication.asmx

CommonWS rootURL/_vti_bin/FEI/CommonWS.asmx

OrganizerWS rootURL/_vti_bin/FEI/OrganizerWS_X_Y.asmx

There are currently three environments where the FEI21 WebServices application is available:

Environment name Description Root URL

Integration This is the environment where the
developed applications are integrated

and tested.

https://idata.fei.org

Validation This is the validation environment
whose is architecture is close to the

production environment

https://vdata.fei.org

Production This is the production environment https://data.fei.org

2.1 Generic user account

The following user account is available in both the Integration and the Validation environments (but of
course, not in the Production environment):

- Username : OC_WS.

- Password: OC_WS.

To get a user account for the Production environment, look with the FEI (see section 1.1).

3. Authentication and user information

Security is implemented using a session login, and while the session is open no additional security is
required. It is anticipated that the session will be initiated by a client application as part of their own

central application service, and may therefore be accessible to several users simultaneously. Users are

recorded to aid with fault diagnosis, and user information should be supplied in the header for every
web service call (see 3.2).

The authentication process is performed through the Authentication.asmx WebService (see section
3.3). We now describe the basic workflow to authenticate and use the returned cookie.

https://integration.family.fei.org/
https://validation.family.fei.org/
https://data.fei.org/

FEI21 - WebServices

OrganizerWS - General description – Version 1.1

6

3.1 FEI21 WebServices Authentication

The client application must login into the WebServices application by calling the Login method of the
Authentication.asmx WebService. This method returns a LoginResult object that contains an

ErrorCode to check that the login was successful and a CookieName which can be used to get the
authentication cookie in the cookie container of the WebService proxy caller. This authentication

cookie has to be provided to each call of the FEI21 WebServices application.

As an illustration, we give now an application of this workflow in C#:

AuthenticationWS.LoginResult result = authenticateWS.Login(username, password);

// Analyse result

if (result.ErrorCode == WebServiceTestApp.AuthenticationWS.LoginErrorCode.PasswordNotMatch)

{

 _errorMessage = "Invalid username/password";

}

else if (result.ErrorCode == WebServiceTestApp.AuthenticationWS.LoginErrorCode.NoError)

{

 cookieContainer = authenticateWS.CookieContainer;

 if (cookieContainer == null || cookieContainer.Count == 0)

 {

 _errorMessage = "The authentication webservice ("

 + authenticateWS.Url

 + ") did not return any authentication cookie.";

 }

 CookieCollection cc = cookieContainer.GetCookies(new Uri(authenticateWS.Url));

 foreach (Cookie cookie in cc)

 {

 if (cookie.Name == result.CookieName)

 {

 _authenticationCookie = cookie;

 break;

 }

 }

 if (_authenticationCookie == null)

 {

 _errorMessage = "The authentication webservice ("

 + authenticateWS.Url

 + ") did not return any authentication cookie named " + result.CookieName + ".";

 }

}

else

{

 throw new Exception("The authentication webservice ("

 + authenticateWS.Url

 + ") returned an invalid enum value (the return value, "

 + result.ErrorCode.ToString()

 + ", does not belong to " + "LoginErrorCode");

}

Where authenticateWS is the Authentication WebService proxy.

To complete the illustration, we now show an example of a subsequent call to a FEI21 WebService:

private void btnGetHorseColorList_Click(object sender, EventArgs e)

{

 WebServiceTestApp.HorseWS horseWS = new WebServiceTestApp.HorseWS();

 WebServiceTestApp.AuthHeader authHeader = new WebServiceTestApp.AuthHeader();

 authHeader.UserName = "MyName";

 authHeader.Language = "en";

 horseWS.AuthHeaderValue = authHeader;

FEI21 - WebServices

OrganizerWS - General description – Version 1.1

7

 horseWS.CookieContainer = new CookieContainer();

 horseWS.CookieContainer.Add(_authenticationCookie);

 WebServiceTestApp.HorseColor[] _horseColorList = horseWS.getHorseColorList();

 foreach (WebServiceTestApp.HorseColor color in horseColorList)

 {

 // Display color

 }

}

The relevant code in this example is printed in orange: this is the correct way (in C#) to use the

authentication cookie received during the authentication process.

3.2 End User Information

Before each call to one of the FEI21 WebServices, a header should be added. This header contains

information about the end user.

Currently, two properties can be filled:

- Username: the end user username string that identifies the user.

- Language: a two letter ISO 639-1 language code to set the expected language for returned
data.

Remark: in version 1.0.0 of the FEI WebServices application, only English (“en”) is supported.

private void AddEndUserInfoToHorseWS(WebServiceTestApp.HorseWS.HorseWS ws)

{

 WebServiceTestApp.HorseWS.AuthHeader authHeader =

new WebServiceTestApp.HorseWS.AuthHeader();

 authHeader.UserName = "John Doe";

 authHeader.Language = "en";

 ws.AuthHeaderValue = authHeader;

}

3.3 Authentication WebService Description

The Authentication WebService contains two methods:

- Mode

- Login

The first one, Mode, is obsolete since version 2.0 (see below).

We give now a brief description of the two methods.

3.3.1 Mode WebMethod

Syntax

public AuthenticationMode[] Mode()

Parameters

N/A

Return value

FEI21 - WebServices

OrganizerWS - General description – Version 1.1

8

An AuthenticationMode enum value that identifies the user authentication system that is being used

by the WebServices application.

Possible values are:

- None,

- Windows,

- Passport,

- Forms.

Remarks

Since version 2.0, this method is obsolete and is provided only for backward compatibility. It always

returns the “Forms” AuthenticationMode and thus it is not necessary anymore to call this method as

an opening step to the authentication process.

3.3.2 Login WebMethod

Syntax

public LoginResult[] Login(string username, string password)

Parameters

- username

The user's login name for the WebServices application (delivered by FEI).

- password

The user's password.

Return value

A LoginResult structure that contains an error code in its ErrorCode field and the name of the

authentication cookie in its CookieName property.

The login process is successful if the ErrorCode field contains the value NoError.

The possible values are:

- NoError,
- PasswordNotMatch.

Remarks

The cookie contains an authentication ticket that will be used to authenticate subsequent requests to
the server (see section 3.1 for an example).

4. General considerations about WebMethods

4.1 Exceptions and Messages

The behaviour of the FEI21 WebServices is designed as follow:

- For WebMethods that have an argument “out Message[] Messages”, the client application
must check the length of this Array after the call to the WebMethod. It will in fact contain any

predicable exception that occurred during the WebMethod request. See below to know how to

use the values returned in this parameter.

For unexpected exceptions in those WebMethods, a Soap Exception is raised and must be

processed by the client application.

http://msdn.microsoft.com/en-us/library/authentication.authenticationmode.aspx
http://msdn.microsoft.com/en-us/library/aa979651.aspx
http://msdn.microsoft.com/en-us/library/authentication.loginresult.errorcode.aspx
http://msdn.microsoft.com/en-us/library/authentication.loginresult.cookiename.aspx
http://msdn.microsoft.com/en-us/library/authentication.loginresult.errorcode.aspx

FEI21 - WebServices

OrganizerWS - General description – Version 1.1

9

- For unexpected exceptions in all other WebMethods, Soap Exceptions are raised that must be

processed by the client application

Use of the returned value in the “Messages” parameter:

If no errors or warnings are generated then the value of Messages will be null.

If there were errors or warnings then Messages will contain an array of message object. For each

Message object, the property “UID” contains the identifier of the message type and the property
“Detail” contains detailed information about the exception. This identifier must be used to get a

MessageType object by using the getMessageTypeList() method in CommonWS.asmx and finding the
corresponding message type (the match must be performed between the “UID” property of the

Message object and the “Id” property of the MessageType object). On this object, the description and

criticality of the exception can be read in the “Description” and “IsWarning”, “IsError” and “IsCritical”
properties.

The inspection of the whole Messages array will show how to deal with the problem:-

 If the worst case message is a warning (W) then the user can deal with it, (e.g. by more

restrictive search conditions).

 If the worst case message is an exception (E) the client application program should have dealt

with it before calling the method, and needs amendment.

 If the worst case message is a critical unhandled exception (C) an unexpected fault has

occurred at the server (e.g. power or network failure) and the service is likely to be down until

the fault is fixed. The FEI web service administrators should be notified immediately.

4.2 Transaction control number

To ensure this concurrency control mechanism, the FEI system appends to each record a special
property called TCN, which means “Transaction control number”. This property is provided in each

class returned by the WebServices. You can use this number to check whether the local copy of a

given record (for example a horse record) has changed since you got it: if the TCN has changed that
means that some data has changed and that you should replace (or merge) your local data with the

received data; and if it has not changed, you know then that the received data matches your local
version of the data.

4.3 Note about the getVersion() method

Note that this method returns the version number of the FEI Core Application. The FEI WebServices
for Organizers and IT Providers is part of it and has its own version number contained in the name of

the asmx file.

4.4 Use of the getLookupDateList() method

The method getLookupDateList() returns the last modification date for each type of lookup data (such

as coutries, disciplines, horse colors, message types, …). Those dates must thus be stored by the
client applications. A periodic call to the getLookupDateList() will thus shows which lookup data must

be refreshed: the lookup data for which the date has changed must be reloaded. To do that, the

corresponding method (getCountryList(),getDisciplineList(), getHorseColorList(),
getMessageTypeList(), …) must be called and the result stored in the client system.

Be sure not to call one of the getXXXList() method each time the lookup data is required but to store
it and apply the procedure exposed above.

FEI21 - WebServices

OrganizerWS - General description – Version 1.1

10

4.5 .NET ASMX vs WCF WebServices

Since version 2010 of Microsoft Visual Studio, Microsoft tends to promote the WCF Services Reference
instead of the “old fashion” Web References. Indeed, in a Visual Studio 2010 project, when right

clicking on the “References” node, you are only proposed to “Add Service Reference…” and not
anymore to “Add Web Reference”.

If you want to add a Web Reference, you have to click on “Add Service Reference…” and then click on

the “Advanced…” button on the bottom left corner of the dialog box to reach another dialog box
where you can finally click on “Add Web Reference…” to end up with the usual interface to add a Web

Reference to your project.

If you want to develop your client application with a WCF Service, use the interface on the first modal

dialog box. Note however that you will have to deal with the cookie persistence like described at
section 3.1 but with different objects. Look at the following articles for more information:

- http://megakemp.com/2009/02/06/managing-shared-cookies-in-wcf/

- http://msdn.microsoft.com/fr-fr/library/system.servicemodel.basichttpbinding.allowcookies.aspx

4.6 Workaround for certificate issues

Due to a SSL certificate issue in the Integration and Validation environments (see section 2), you may
experience some trouble connecting to the Web Services in those environments if you are developing

with Microsoft Visual Studio as you will indeed get a security issue during the hand shaking between

your application and the FEI WebServices hosting server.

Of course, this issue (and the following workaround) is not relevant in the Production environment: if

there is a certificate validation error this means that there really is a problem and you should contact
FEI.

A workaround to this issue is the following:

- Add a custom validation handler on the class ServicePointManager:

ServicePointManager.ServerCertificateValidationCallback +=

 new System.Net.Security.RemoteCertificateValidationCallback(customXertificateValidation);}

 This can for example be done in the Application_Start method of your Global.asax.cs

file (if your are in an ASP.NET project).

- In the delegate customXertificateValidation, always returns “true”, thus ignoring SSL

certificate issues:

private static bool customXertificateValidation(object sender, X509Certificate cert,

X509Chain chain, System.Net.Security.SslPolicyErrors error)

{

 return true;

}

Remark:

- According to our experience, there is for example no such issue with PHP (with the default
configuration of SSL).

*** End of document ***

http://megakemp.com/2009/02/06/managing-shared-cookies-in-wcf/
http://msdn.microsoft.com/fr-fr/library/system.servicemodel.basichttpbinding.allowcookies.aspx

