Unit-Scaled pP:
Simple, Stable Scaling

Based on the papers:

Blake, C., Eichenberg, C., Dean, J., Balles, L., Prince, L.Y., Deiseroth, B., Cruz-Salinas, A.F., Luschi, C.,
Weinbach, S. and Orr, D. “u-pP: The Unit-Scaled Maximal Update Parametrization.” arXiv:2407.17465, 2024.

Blake, C., Orr, D., and Luschi, C. “Unit scaling: Out-of-the-box low-precision training.”” ICML, 2023.

* Introduction

* Background: uP

 Making uP work in practice
* Background: Unit Scaling

* Deriving u-uP

« Experiments

e Conclusions

Introduction

Our goal

Can we make uP more effective,
useable and efficient 1n practice?

Introduction

Motivation

Unit
Scaling

~ Specifies scaling factors

—

for simple low-precision training

for stable feature learning

Starting point: derive a combined scheme giving the benefits of both

Then: make this practically effective for large-model training

Stability

Across all model-widths:
(and possibly depths)

Stable feature-learning:

Different parts of the model learn

at the same relative rate

nP

Stable hyperparameters:

A model’s optimal HPs are the
same

u-puP

Stable numerics:

Floating-point representations
stay within range during training

Contributions

1. Drawbacks of standard uP

2. A simpler set of scaling rules:
3. A more principled set of HPs
4. Improved HP transfer

5. More efficient HP search

6. Out-of-the-box FP8 training

* Introduction

* Background: uP

 Making uP work in practice
* Background: Unit Scaling

* Deriving u-uP

« Experiments

e Conclusions

Infinite-width limit and HP Transter

Standard Practice Our Work
Maximal 7.0
Update Mean Field
when depth=1
Unstable fours) 6.5
or ¥ w 6.0
175}
Trivial o
- 55
(=]
=
Kernel <, ‘€ 5.0
: . ©
Regime ":5,& = 45
.Staﬂdﬂ'rd # 4.0 ...
LR = ©(1/width) i
3.5 — B192 Dptimum shifts Optlmum stable *
(]
Standard Neural -20 -18 -16 -14 -12 -10 -20 -18 -16 -14 -12 -10

LR =8(1) Tangent log,LearningRate log;LearningRate

ABC-parametrizations

During model training, the time evolution of weights is given by:

We=A4, -w
wo ~ N'(0, Bf)
Wip1 = We — CW ‘ CI)t(VL‘«(), ,VLt)

where t is the time-step and ®,(VL,, ...,VL;) the weight-update.

A parametrization (such as pP) is defined by how A4, By, Cy scale with the model-width.

ABC-parametrizations

Wt — AW * Wt
wo ~ N (0, 2)
Wt+1 — Wt + CW * CDt(VLOJ ,VLt)

By considering a,, « Ay,,b,, « By, ¢, « C,, we can define uP in the following way:

Weight (W) Type

ABC-multiplier :
Input Hidden Output

parameter (a,,) 1 1/fan-in(W)

1
pP initialization () 1 1/, /fan-in(W) 1
Adam LR (cy) 1 Lffan-in(W) 1

HPs for uP

Each Ay, By, C,, comprises an HP, a
scaling factor, and a base shape:

a C
Ay < ay = By < Cw < Nw =
aWbase Whase
ABC-multiplier Weight (W) Type
Input Hidden Output

parameter () 1 1 1/fan-in(W)
pP initialization (5) 1 1/\/fan-in(W) 1

Adam LR () 1 L/fan-in(W) 1

In practice this “full” set of HPs
1s too large.

A global o and n are typically
used, plus some selection of «,,s.

* Introduction

* Background: uP

 Making uP work 1n practice
* Background: Unit Scaling

* Deriving u-uP

« Experiments

e Conclusions

12

Prerequisites for effective transfer

(a) Tensor Programs V settings (b) Standard Llama settings (c) Standard Llama settings + stability fixes

(on GPT, Wikitext-2) (on Llama, Wikitext-103)

(on Llama, Wikitext-103)

16 4.0 || 4.0 I
14 || 3.8
2 Y
S 12 | :
5 3.4
% 10
=} .
= 32 Width
=
3.0 128
6 — 256
28 — 512
5 | 4.0 — 1024
H —— 2048
4 ” 38 —— 4096
7 .
3.6
33 | ¢+ Min
%D 3.4
= 32
1 3.0
0 912 9-10 98 96 ' 9-11 929 97 9-5 93 23 911 99 97 95
Learning Rate Learning Rate Learning Rate

Figure 2. Effective uTransfer does not hold across all training setups. (a) We show strong transfer for
the unrealistic setup used in Tensor Programs V (too many epochs; constant LR). (b) Moving to a
more standard Llama training setup, transfer breaks down. (c) This is restored by the introduction of
two stability fixes: non-parametric norms and independent weight decay.

An 1mproved embedding LR rule

3.6

w
=~

3.2

Validation Loss

o
o

& —X

Proxy
Optimum

Cemb = 1/Vfan-out
Proposed
Transfer

_ Improved

t Optimum t

" Transfer

28 2—12 2—10 2—8 2—6
Learning Rate

recall: Wit1 = wi + Cw - ®(V Ly, ..., VL),

2—4

Width
128 (BaseWidth)

—— 256

—— 512

— 1024

—— 2048

—— 4096

Embedding LR scale

==+ Cemb =1

Cemb = 1/v/fan-out

* Introduction

* Background: uP

 Making uP work in practice
* Background: Unit Scaling

* Deriving u-uP

« Experiments

e Conclusions

15

The principle of unit scale

1[]3—
We require standard deviation = 1 for all .
10 +
* Weights = g1
o
» Activations 10
» Gradients (wrt. both activations 1004 —2—r : :
E—JU E—ZU 2—1[] EU

and weights)

Scale &

Figure 2. The signal to noise ratio (SNR) of samples from a nor-
mal distribution, quantised in FP16 and FP8, as a function of the
distribution’s scale.

at mitialization—i.e. for the first forward
and backward pass of the model.

Can we predict scale?

If we can predict the scale of tensors, we can normalize them.
This 1s hard over all of training, but 1s easier at initialization:

* Consider a simple linear op:
WeRY™" ~N(0,02) x€R"™~N(0,02)
y =Wx

Oy = Oy 0y

y € R* ~ N(0,0,)

* A unit-scaled linear layer uses a forward scaling factor

» Similar analysis can be performed for other ops, or we can use
empirically-found scaling rules.

Existing scale-control mechanisms

We're already familiar with two mechanisms of this kind:

Glorot initialization 8

Oy =

(an average of the 1deal y and Vx scales)

Scaled dot-product attention 4

KT
softmax (Q) 74

Unit Scaling poses the question: what if we put them throughout the model?

* Introduction

* Background: uP

 Making uP work in practice
* Background: Unit Scaling

* Deriving u-uP

« Experiments

e Conclusions

19

A version of uP that (almost) satisties Unit Scaling

All models under the ABC parametrization
are subject to abc-symmetry:

For a fixed 8 > 0, training under Adam (W)
1s invariant to changes of the kind:

Ay, =4y, /0
—B -6
Cy=0C, -0

ABC-multiplier Wﬂlg,ht WAL
Input Hidden Output
parameter (a,,) 1 1 1/fan-in(W)
puP initialization (1) 1 1/, /fan-in(W) 1
Adam LR (cy) 1 1/fan-in(W) 1
6 = Vfan—in l
ABC-multiplier Weight (W) Type
Input Hidden Output
parameter (a,) 1 1/ /fan-in(W) 1/fan-in(W)
u-pP initialization () 1 1 1

Adam LR (cy) 1 1/\/fan-in(W) 1

The u-uP scheme

o Weight Type
ABC-multiplier .
Input Hidden Output
parameter (Aw) Qlemb 1 (or aattn) aout%
uP initialization (Bw) Tinit Tinity/ 225eanin Tinit
AdamIR (Cw) 7 femb 7 PRgem A U
parameter’ (Aw) 1 T Fnin
u-puP initialization (Byy) 1 1 1
1 1
Adam LR (CW) n v/ fan-out n v/fan-in L

"u-uP’s oo HPs are associated with operations, not weights, so are not included here
*We apply 1/Vfan—in scaling in the bwd pass

A principled set of HPs

Previously we showed the “full” set of 3 HPs (a, g,7n) for each weight tensor.

We reduce this in a principled way by:
1. Dropping oj,jt via abc-symmetry
2. Pushing a, from weights into subsequent ops

3. Using one global n

SP uP u-uP
n n n
o-scheme Tinit
For a transformer this gives: Qemb |[Temb tffn-act
Mattn Xattn-softmax

Xaut Cres
base-width Xros-attn-ratio

baEC—dﬂpt h Moss-softmax

* Introduction

* Background: uP

 Making uP work in practice
* Background: Unit Scaling

* Deriving u-uP

* Experiments

e Conclusions

23

HP interdependence

transfer HP

A"’“{’\O
\,\’ :“\10 L) \}\:

XN . X o &Q\ A o f'bp X

A S 6 o g o A o® o o o8 oot
Tlemb Olyeg 0.2 L—{']
g
Oinit Qres-attn-ratio @
fixed HP a
Qemb Uattn 0.1 —
=
—
Xattn Xffn-act 9;

0foul:put aoutput = 00
nP u-pP

Figure 4: A visualization of the dependencies between pairs of HPs under each scheme. Transfer
error measures the extent to which the optimal value of the transfer HP depends on the fixed HP (see
Algorithm 1). On average, uP has a transfer error of 0.03, whereas u-uP has 0.005.

HP search

Independent search:

1. 1D Line search to find optimal n. Other
HPs are set to their default values (i.e. 1)

2. For all other HPs, in parallel perform a
1D line search (using best 7).

3. Combine the best HPs from step 2.

For u-uP just sweeping n gives near-optimal
loss.

More Efficient HP Sweeps

Best Validation Loss

109 10! 102 103
Run Count

HP Sweep Strategy

—— u-pP —— Random Search
e oo Independent Search
X << LR

® < Mults
€ < Combined Mults

Our FP8 Scheme

We only focus on FP8 in linear layer matmuls. Communication, optimizer
states and other operations are left for future work.

We use E4M3 for activations and weights and E5M2 for gradients, except:
1. The final FFN down projection

2. The final SA dense projection

For which we use BF16.

70% of our matmul flops are in FP8

Experiments

Numerical insights I

In some layers the scale of the input tensor to the critical matmul suddenly
increases after stagnating for a certain number of steps

25 A

201

Layer 3

std

10 1

151

10000 20000 30000 40000 50000 60000
step

10000 20000 30000 40000 50000 60000
step

40000 A

30000 A

abs_max

20000

10000 4

10000 20000 30000 40000 50000 60000
step

2000 1

1750 A

1500 A

1250

abs_max

11000 A

~
wu
(=]

500 4

250 4

10000 20000 30000 40000 50000 60000

27

Numerical insights 11

For non-critical matmuls, the numerical scales are relatively stable across model size.

Example: FFN up projection

4 | \
o 2 104
1B 7, / b MM,MM
0L T T
10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
step step
201
2 i o
o
3B @ # 10 -
1 - 0 = T T T T T T T
10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
step step
20
'7 B 5 1.5 1)
o] 7 , My oy
10 - 0 - T T T T T T T
10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
step step

weight

ograd_y

Large-scale u-uP FP8 results

Full 1-7B results (standard Llama architecture; 300B tokens of SlimPajama)

b2
[N

Training Loss
o
=

0K

ro
b

Training Loss
bo
=

20K 40K 60K 0K 20K 40K 60K
Training Step Training Step

Figure 6: Large-scale training runs. (Left) u-uP BF16 vs u-pyP FP8. (Right) u-uP BF16 vs SP BF16.

Table 4: 0-shot benchmark results at 7B scale.

Scheme Format MMLU HellaSwag OpenBook QA PIQA TriviaQA WinoGr
SP BF16 29.6 52.4 27.8 76.5 22.2 63.3
u- BF16 29.0 53.4 31.6 77.1 234 63.7
u- FP8 31.2 53.4 29.6 77.6 21.3 65.7

* Introduction

* Background: uP

 Making uP work in practice
* Background: Unit Scaling

* Deriving u-uP

« Experiments

 Conclusions

30

Conclusions

There is a version of uP which is compatible with Unit Scaling

... this leverages uP’s feature stability for low-precision training

An embedding LR rule of 1/vVfan—out is better than pP’s 1 rule

The standard uP HPs are sub-optimal & over-complex

o= B9 =

A more independent set of HPs gives more efficient search

If you want all of the above, use u-uP!

https://github.com/graphcore-research/unit-scaling
https://github.com/Aleph-Alpha/scaling

Extra Slides

* Introduction ()

* Background: uP (CE)

 Making uP work in practice (CB)
* Background: Unit Scaling (CB)

* Deriving u-uP (CE & CB; add slide on HPs? One does HPs, one
does scaling rules)

« Experiments (CE)

* Conclusions ()

33

Low-precision training

Floating-point formats

Values represented by
sign / exponent / mantissa bit-strings

—

bexp bmant

sign = (—1)ien
exponent = be,, — bias, (bias = 2"71 — 1)

bmant
oM 7

mantissa = 1 +

value = sign x 2°P°"¢"* » mantissa

34

Low-precision training

Floating-point formats

%12 FP32
-y - TF32
-BF16
128- -FP16 3
-FP8_1.5.2_GAQ 3
64- I FPs_Esmz Nl g
. - INT8x512 g
= -FP8_1.4.3_GAQ -1
§ 16- - FP8_E4M3_NAI
£ - INT8x2
4 8- . normal dist. (u=0, o*2)
4 -
2 -

1_ ||
T T

25 -20 -15 -10 -5 0 5 10 15 20 25
representable values, log,

logs(normal _o): —— 6
logs(normal_samples): — 10

source: https://thecharlieblake.co.uk/visualising-ml-number-formats 35

https://thecharlieblake.co.uk/visualising-ml-number-formats

uP and low-precision

[1]

Desiderata J.1. At any time during training
1. Every (pre)activation vector in a network should have ©(1)-sized coordinates®?

2. Neural network output should be O(1).

3. All parameters should be updated as much as possible (in terms of scaling in width) without
leading to divergence.

Let’s briefly justify these desiderata. For the desideratum 1, if the coordinates are w(1) or o(1),
then for sufficiently wide networks their values will go out of floating point range.

[1]
during training of the yTransfer model we
encountered numerical issues that lead to frequent divergences. In order to avoid them, the model was
trained using FP32 precision, even though the original 6.7B model and our re-run were trained using
FP16.

Methods for controlling scale

Method Flne-gx:alned No tu.nlng Adapt.s (%urlng Pass Complexity
scaling required training
Loss scaling X X X bwd low
Dynamic loss -
: X v v bwd medium
scaling

e o v - v bwd + fwd medium/high
engine scaling

Unit scaling v v X bwd + fwd low

uP as a form of Unit Scaling

All models under the ABC parametrization are subject to abc-symmetry:

For a fixed 8 > 0, training under Adam(W) is invariant to changes of the kind:

A,=A4,/86
_ p Setting 8 = vfan—in for hidden
weights results in Unit Scaling:
Cw=Cy, -0
ABC-multiplier Weight (W) Type ABC-multiplier Weight (W) Type
Input Hidden Output Input Hidden Output
parameter (a,,) 1 1 1 /fan-in(W) parameter (a,) 1 L/\ffan-in(W) 1/fan-in(W)”
pP initialization () 1 1/ /fan-in(W) 1 u-pP initialization (p) 1 1 1
Adam LR (cy) 1 1/fan-in(W) 1 Adam LR (cy) 1 L/\/fan-in(W) 1
“We apply 1/Vfan—in scaling in the bwd pass

An 1improved HP scheme

o Weight Type :
ABC-multiplier . Residual
Input Hidden Output
parameter (AW) *emb 1 (or ctattn) Qout W \/ %
pP initialization (Byy) s Oinit4/ % Tinit —
AdamLR (Cw) 7 femb n P E U \/@
1 1 1
parameter* (Aw) 1 V/Tan-in fan-in +/depth
u-puP initialization (Byy) 1 1 1 —
1 1 1
e O v n Vdepth

"u-uP’s o HPs are associated with operations, not weights, so are not included here

The u-uP HP scheme

No gipi;
No base shapes

as moved from
welght to ops

Numerical Properties

E5M2 E4AM3 E4N3 E5M2 E4AM3 E4N3

nP ! it | nP | bt |
ractivation I ractivation I

u-pP i | u-pP i |
1 1 1 1

P i P i

L welght : L welght :

i i i i

i grad i i grad i

i i i i

—24 —16 —8 o) a8 —24 a—16 —8 ol a8

RMS RMS

Figure 6: Per-tensor RMS = /02 + p? across u-pP and pP models at initialization (left) and after
training (right). u-pP tensors have RMS that starts close to 1 and remains within E4M3 range at the
end of training. Dashed and solid red lines show each format’s min. normal and subnormal values.

Our FP8 Scheme

We only focus on FP8 matmuls. Putting comms / optimizer state /
nonlinearities into FP8 1s out-of-scope.

We use E4M3 for everything (activations, weights and gradients), except:
1. The input to the final FFN layer (fwd pass)
2. The input to the final SA layer (fwd pass)

For which we use ES5M2.

A note on the status of our experiments:
« Large-scale experimentation is still ongoing

« Particularly in the case of downstream analysis

Out-of-the-box FPS8

Llama up to 1B (u-uP; WikiText-103) Standard BERT (original Unit Scaling)
(b) Better HP Transfer (c) Simple FP8 Training Model Method Precision EMSQuAD v2.0 .

50 0 I NoScaling T FP32 — —

Base Loss Scaling FP16 73.36 (£0.27) 76.47 (£0.23)

3.4 Unit Scaling FP16 72.31 (£0.60) 75.70 (£0.53)

N\ 8 Unit Scaling FP8 72.28 (+0.02) 75.67 (+0.01)

39 W\ a = 2P 100 No Scaling t FP32 78.7 81.9

A\NN\N apbs, N Loss Scaling FP16 77.52 (0.63) 80.54 (+0.61)
6 Large Loss Scaling i FP8 — —

3.0 | ’ u-EP 4006 Unit Scaling ~ FP16 79.94 (+0.10) 82.97 (+0.09)
\ . Unit Scaling FP8 79.29 (£0.31) 82.29 (%0.29)
M 4

2.8 .~

1P 4096 9
9711|272 27920 277 |22 27524 0 2500 5000 7500
1P | u-pP Learning Rate Training Step
Widths
128 = 1024 Precision
— 256 - 2048 — FP32 —— FP8

— 512 - 4096

Experiments

Out-of-the-box FPS8

Full 1-7B results (standard Llama setup; 300B tokens of SlimPajama)

u-pP vs SP at 1B u-pP FP8 up to 7B

3.0 b 3.0
' «— SP FP8 T.E. Size
«— u-pP FP8 .
2.8 2.115 4
A SP FP8 SP
S (Diverged) «— u-pP FP8 Partial
2.6 2.110 1
) u-pP
8
g
© 24
&
2.2
0 10K 20K 30K 40K 50K 60K 70K 0 20K 40K 60K

Training Step Training Step

* Partial scheme puts two layers that were in E5, in BF16.

 Gradients also now have to be in E5.

Example: uu.Linear

class Linear(nn.Linear):
def __init__(self, fan_in, fan_out, bias=False):
super().__init__(fan_in, fan_out, bias)

github.com/graphcore-research/unit-scaling

reset_parameters(self) -> None:
nn.init.normal_(self.weight, 0, 1)

We use a different scaling factor for each of
forward(self, x):
the three matmuls. fan_out, fan_in = self.weight.shape

batch_size = x.numel() // fan_in

X = scale bwd(x, fan_out**-0.5)

Under Certain circumstances we I'eqU_iI‘e weight = scale_bwd(self.weight, batch_size**-0.5)
the same factor fOI‘ y and VX to ensure output = nn.functional.linear(x, weight)
)

. : return scale_fwd(output, fan_in**-0.5)
valid gradients.
b, d = 2%*x]12, 2*x*10

x = torch.randn(b, d).requires_grad_(
linear = Linear(d, 4 * d) # regular: ni
y = linear(x)

More interesting unit-scaled ops include:
y.sum().backward()

. (
* Residual-add y.std(),

. Linear.weight.std(),
» Scaled dot-product attention x.grad.std(),

Linear.weight.grad.std(),

https://github.com/graphcore-research/unit-scaling

CE loss

Unit-Scaled gradients i

X dw

Readout linear F Ay F Agw
Why are we allowed to have separate n U g
forward and backward scaling factors? X dx
Fixed scales cancel in the Adam update
(ignoring €): @(
/X a
Py X dw
m
Oty1=0t— 1 At X X dw
\/?\"‘E FFN linear
X o
e A X dx
_ X dx
So we can use different scales, as long as
we're not on a residual = Qax
* daw

How has the model changed?

1. The scale going into non-linear
operations has changed

2. Our weight update has effectively
become smaller

A, —
0ty1 =060t — 1

\/ﬁ—t+e
]

But we now use larger (o = 1) weights

This term hasn’t changed scale

Which HPs should be swept?

nTransfer: the process of sweeping HPs
on a small model, to transfer to a large
one.

How should we select/group our ay,, gy,
Ny 1n order to sweep them?

A global ¢ and n are commonly used.
However, this creates problems:

Grouping-conflicts:
std(Xsyisn) X TWyate
HP interdependence:

the relative size of a weight update 1s
determined by oy, /1y,

Table 7: Sweeping configurations used for a selection of pP models from the literature. The sweeping
process is similar across models, the only differences being the choice of discrete or continuous

distributions and their ranges.

roxy/target roxy/target swee base
Model It)okf:is usged pmoci:l siic sizv::p width HPs swept
T.PV WMT14 [2] 100% 7.1% 64 1, Cout; Xattn
TPV BERTlarge [2] 10% 3.7% 256 ? 75 Nemb s Clouty Kattny XLN ; (bias
T.P.V GPT-3 [2] 1.3% 0.6% 350 1, 0, Clemb, Couts Yattn s Cpos
MiniCPM [6] 0.008% 0.45% 400 256 n,0, Qemb, Otresidual

Cerebras-GPT [3] 1.1% 1.5% 200 256 n,0,Qemp

SuPar [63] 6.6% 6.4% 350 256 1,0, Qemp

std(xg¢en) X oy, O,

Base shapes

import mup

proxy width
base width
re-initialize proxy_model

proxy_model = MupModel(d_model=128, ...)
base_model = MupModel (d_model=256, ...)
mup.set_base_shapes (proxy_model , base_model)

Cw

aw bw
Aw +— aw —— Bw +— ow , Cw + nw

?

Recall: b
{I'Wbas-e Wbase CWbi]SE

Existing approaches to g;,;;

OveraI'I' Per-tensor schemes Users
scheme
Constant constant init OpenlLLaMA; Deepseek
constant init + depth- GPT-2; GPT-3; Megatron-LM; OPT; Cerebras-GPT; OLMo-
Megatron . .
residual init Llama
GPT-neo-X small init + wang init GPT-neo-X; TinyLlama; Pythia; StableLM; Luminous
PaLM LeCun init + palm-readout PaLM
Mitchell mitchell-scale OLMo

Scheme Rule

Constant Scale weights by constant std
LeCun Scale weights by 1/d_in
Glorot Scale weights by 2/+/(d_in + d_out)
Small Scale all weights by 2/~/(5d)

Mitchell-scale
Depth-residual
Wang

Palm-readout

Scale weights by 1/+/(2Ld)
Scale residual by 1/4(2L)
Scale residual by 2/(LVd)

Scale embedding proj by 1/+v

Combining uP with Unit Scaling

ABC-multiplier UG () Mo
. Input Hidden Output
Basic pP) y
scaline rules parameter aw 1 1 fan-in(W)
g uP initialization (byy) 1 1/, /fan-in(W) 1
AdamLR (ew) 1 Lffan-in(W) 1
o Weight Type .
ABC-multiplier _ Residual
Input Hidden Output
:,Full].IP . IJ&IB,I'I]EtEI (AW) Xemb 1 (Dl’ t::'f:a.1;1:1'1:| Qput ba?::;{ig"in 1/ ba_[:n_za;:-s:h th
implementation - N
pP initialization (By) CTinit r:r;nm!w Tinit —_
AdamLR (Cw) Nl 7 o2cinin n et

Recall:

aw
Aw W

awb:w

b
BW {—ﬂ'wi

L]
bwbmn

Cw

Cw + nw
cwhau:

k)

"Residual multipliers are applied to the end of each branch, rather than the output of linear layers.

ABRMGoadnrihiediar

Wevwsig Ry Pype

RPacidial

Racidnal

A principled approach to HPs

Table 3: Typical transformer HPs used un-
der different schemes. Basic HPs in bold
are considered most impactful and are com-
monly swept. Extended HPs in non-bold are
not always swept, often set heuristically or

dropped.
SP uP u-pP
7 n 7
o-scheme Oinit
Qemb |nemb Offn-act
Kattn Qattn-softmax
Qout Qres
base-width Qires-attn-ratio
base-depth ()oss-softmax

Deriving the u-uP HP scheme:

1
2
3.
1

We drop gy, s entirely: only need ayy,, n,, under abc-symmetry
Global n, granular ay, grouped across layers

Shift as from weights to ops

Special residual-add formulation, which

e (1ves unit-scale at initialization

Q.5 defines contribution of the residual vs skip scale

Ares—atin—ratio defines the relative contribution
of attention versus FFN branches

Numerical Properties

Regular pP

Figure 13: RMS during training, for all parametrized matmul inputs, for uP (top) and u-uP (bottom).

FFN Up FFN Gate
0 2500 5000 7500 0 2500 5000 7500
Step Step
FFN Up FFN Gate

5000 7500
Step

0 2500

FFN Down

0 2

5

00

5000
Step

7

ol

00

0

2500

5000
Step

7500

7500

5000
Step

0 2500

Model width 256, default hyperparameters, n = (21, 2~%) for (u-uP, uP).

-

5000 7500

Step

0 2500

P
-

5000 7500

Step

0 2500

Tensor

input
---- weight
grad

u_kurtosis

Heavy-tai

analy

S1S

self_attn.q_proj self_attn.k_proj self_attn.v_proj self_attn.out_proj ffn.linearl ffn.linear_gate ffn.linear2 decoder
4096 - R 4 4
256 E g g
16 R 4 4
3 4 L o v _ B e LD L LLLLEDELL T LT AN
T T
0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000
step step step step step step step step

tensor
input
weight
grad

Factors atfecting scale growth

£ 100 | + | t . — + . T T

10

(a) RMS

Takeaway:

* The only factor
: significantly
affecting scale-
growth is LR

(b) RMS

=
—
[
= 1 L\.‘ﬁ\"‘\‘\ e ey —_— —a S S
1] 1 2 4 8 256 512 24 4 & 16 8192 16384 A2768 64 128 256
Learning Rate Width Depth Training Steps Batch Size
—— FP32 . FF8&

Figure 14: The effect of hyperparameters on FP8 training loss and on the end-training RMS of
various tensors: (a) decoder weight, (b) last-layer FFN down-projection input and (c) last-layer FFN
down-projection output gradient. Only learning rate has a substantial effect on the end-training RMS.
Vertical lines show the default setting of that hyperparameter, as used for all other plots.

	Slide 1: Unit-Scaled µP: Simple, Stable Scaling
	Slide 2: Contents
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Contents
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Contents
	Slide 13
	Slide 14
	Slide 15: Contents
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Contents
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Contents
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Contents
	Slide 31
	Slide 32
	Slide 33: Contents
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

