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Can we make µP more effective, 

useable and efficient in practice?

 Introduction

  Our goal
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 Introduction

  Motivation

Starting point: derive a combined scheme giving the benefits of both

Then: make this practically effective for large-model training

Unit 
Scaling

µP

for simple low-precision training

for stable feature learning

Specifies scaling factors
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Stable feature-learning:

Different parts of the model learn 
at the same relative rate

Stable hyperparameters:

A model’s optimal HPs are the 
same

Stable numerics:

Floating-point representations 
stay within range during training 

µP u-µP

Across all model-widths:
(and possibly depths)

 Introduction

  Stability
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1.  Drawbacks of standard µP

2.  A simpler set of scaling rules: u-µP

3.  A more principled set of HPs

4.  Improved HP transfer

5.  More efficient HP search 

6.  Out-of-the-box FP8 training

 Overview

  Contributions
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 Background: µP

  Infinite-width limit and HP Transfer

Yang, G., et al. “Tensor 

Programs V: Tuning large 
neural networks via zero-shot 

hyperparameter transfer.” 
arXiv:2203.03466, 2022.

Yang, G., et al. “Feature Learning 

in Infinite-Width Neural Networks.” 
https://arxiv.org/abs/2011.14522, 

2022.
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During model training, the time evolution of weights is given by:

where 𝑡 is the time-step and Φ𝑡 ∇ℒ0, … , ∇ℒ𝑡  the weight-update.

A parametrization (such as µP) is defined by how 𝐴𝑊, 𝐵𝑊, 𝐶𝑊 scale with the model-width.

 Background: µP

  ABC-parametrizations

𝑊𝑡 = 𝐴𝑤 ⋅ 𝑤𝑡

𝑤0 ∼ 𝒩(0, 𝐵𝑊
2 )

𝑤𝑡+1 = 𝑤𝑡 − 𝐶𝑊 ⋅ Φ𝑡 ∇ℒ0, … , ∇ℒ𝑡

9



(𝑎𝑤)

(𝑏𝑤)
(𝑐𝑤)

By considering aw ∝ 𝐴𝑊, bw ∝ 𝐵𝑊, 𝑐𝑤 ∝ 𝐶𝑤, we can define µP in the following way:

𝑊𝑡 = 𝐴𝑤 ⋅ 𝑤𝑡

𝑤0 ∼ 𝒩(0, 𝐵𝑊
2 )

𝑤𝑡+1 = 𝑤𝑡 + 𝐶𝑊 ⋅ Φ𝑡 ∇ℒ0, … , ∇ℒ𝑡

 Background: µP

  ABC-parametrizations
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Background: µP

  HPs for µP

Each 𝐴𝑊, 𝐵𝑊, 𝐶𝑤 comprises an HP, a 

scaling factor, and a base shape:

𝐴𝑤  ← 𝛼𝑤

𝑎𝑊

𝑎𝑊𝑏𝑎𝑠𝑒

𝐵𝑤  ← 𝜎𝑤

𝑏𝑊

𝑏𝑊𝑏𝑎𝑠𝑒

𝐶𝑤  ← 𝜂𝑤

𝑐𝑊

𝑐𝑊𝑏𝑎𝑠𝑒

In practice this “full” set of HPs 
is too large.

A global 𝜎 and 𝜂 are typically 
used, plus some selection of 𝛼𝑤s.

(𝑎𝑤)

(𝑏𝑤)
(𝑐𝑤)
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 Making µP work in practice

  Prerequisites for effective transfer
Lingle, L. “A Large-Scale 

Exploration of µ-
Transfer.” arXiv:2404.05728.

(recommend non-parametric
norms)
 

Wortsman, M., et al. “Small-
scale proxies for large-scale 

Transformer training 
instabilities.” ICLR, 2024.
(recommend independent 

weight decay)

13



 Making µP work in practice

  An improved embedding LR rule

recall:
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 Background: Unit Scaling

  The principle of unit scale

We require standard deviation ≈ 1 for all

• Weights

• Activations

• Gradients (wrt. both activations 
and weights)

at initialization—i.e. for the first forward 
and backward pass of the model.
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 Background: Unit Scaling

  Can we predict scale?

If we can predict the scale of tensors, we can normalize them.
This is hard over all of training, but is easier at initialization:

• Consider a simple linear op:

𝑊 ∈ ℝ𝑛×𝑚 ∼ 𝒩 0, 𝜎𝑤
2  𝑥 ∈ ℝ𝑚 ∼ 𝒩 0, 𝜎𝑥

2  

𝑦 = 𝑊𝑥

 𝜎𝑦 = 𝜎𝑤𝜎𝑥 𝑚

𝑦 ∈ ℝ𝑛 ∼ 𝒩 0, 𝜎𝑦

• A unit-scaled linear layer uses a 1/ 𝑚 forward scaling factor

• Similar analysis can be performed for other ops, or we can use 

empirically-found scaling rules.
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Background: Unit Scaling

  Existing scale-control mechanisms

We’re already familiar with two mechanisms of this kind:

Glorot initialization [3]

𝜎𝑤 =
2

𝑚 + 𝑛

 

 (an average of the ideal 𝑦 and ∇x scales)

Scaled dot-product attention [4]

softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

Unit Scaling poses the question: what if we put them throughout the model?

[3] Glorot, X., and Bengio, Y. 

“Understanding the difficulty 
of training deep feedforward 

neural networks.” AISTATS, 
2010.

[4] Vaswani, A., Shazeer, 
N.M., Parmar, N., Uszkoreit, 

J., Jones, L., Gomez, A.N., 
Kaiser, L., & Polosukhin, I. 
“Attention is All you 

Need.” NeurIPS, 2017.
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Deriving u-µP

  A version of µP that (almost) satisfies Unit Scaling

All models under the ABC parametrization 
are subject to abc-symmetry:

For a fixed 𝜃 > 0, training under Adam(W) 

is invariant to changes of the kind:

 

𝐴𝑤 = 𝐴𝑤 / 𝜃

𝐵𝑤 = 𝐵𝑤 ⋅  𝜃

𝐶𝑤 = 𝐶𝑤 ⋅ 𝜃

𝜃 = fan−in

(𝑎𝑤)

(𝑏𝑤)
(𝑐𝑤)

u-
(𝑎𝑤)

(𝑏𝑤)
(𝑐𝑤)
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Deriving u-µP

  The u-µP scheme

𝐴𝑤  ← 𝛼𝑤

𝑎𝑊

𝑎𝑊𝑏𝑎𝑠𝑒

𝐵𝑤  ← 𝜎𝑤

𝑏𝑊

𝑏𝑊𝑏𝑎𝑠𝑒

𝐶𝑤  ← 𝜂𝑤

𝑐𝑊

𝑐𝑊𝑏𝑎𝑠𝑒

Recalling:

* We apply 1/ fan−in scaling in the bwd pass

*
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Deriving u-µP

  A principled set of HPs

Previously we showed the “full” set of 3 HPs (𝛼, 𝜎, 𝜂) for each weight tensor.

We reduce this in a principled way by:

1. Dropping 𝜎init via abc-symmetry

2. Pushing 𝛼𝑠 from weights into subsequent ops

3. Using one global 𝜂

For a transformer this gives:
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 Experiments

  HP interdependence
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 Experiments

  HP search

Independent search:

1. 1D line search to find optimal 𝜂. Other 

HPs are set to their default values (i.e. 1)

2. For all other HPs, in parallel perform a 

1D line search (using best 𝜂).

3. Combine the best HPs from step 2.

For u-µP just sweeping 𝜂 gives near-optimal 

loss.
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 Experiments

  Our FP8 Scheme

We only focus on FP8 in linear layer matmuls. Communication, optimizer 
states and other operations are left for future work.

We use E4M3 for activations and weights and E5M2 for gradients, except:

1. The final FFN down projection 

2. The final SA dense projection 

For which we use BF16.

70% of our matmul flops are in FP8
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 Experiments

  Numerical insights I
In some layers the scale of the input tensor to the critical matmul suddenly 
increases after stagnating for a certain number of steps

Layer 3

Layer 6
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 Experiments

  Numerical insights II

For non-critical matmuls, the numerical scales are relatively stable across model size. 

Example: FFN up projection

1B

weight

3B

7B

grad_y
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 Experiments

  Large-scale u-µP FP8 results

Full 1-7B results (standard Llama architecture; 300B tokens of SlimPajama)
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  Conclusions

1. There is a version of µP which is compatible with Unit Scaling

2. … this leverages µP’s feature stability for low-precision training

3. An embedding LR rule of 1/ fan−out is better than µP’s 1 rule

4. The standard µP HPs are sub-optimal & over-complex

5. A more independent set of HPs gives more efficient search

If you want all of the above, use u-µP!

https://github.com/graphcore-research/unit-scaling
(library for u-µP)

https://github.com/Aleph-Alpha/scaling
(codebase for large-scale training)
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Extra Slides
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1 

bit 𝐸 bits 𝑀 bits

𝑏sign 𝑏exp 𝑏mant

Values represented by
sign / exponent / mantissa bit-strings

Background

 Low-precision training

  Floating-point formats
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source: https://thecharlieblake.co.uk/visualising-ml-number-formats

Background

 Low-precision training

  Floating-point formats
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https://thecharlieblake.co.uk/visualising-ml-number-formats


 Introduction

  µP and low-precision

[1] Yang, G., et al. “Tensor 

Programs V: Tuning large 
neural networks via zero-shot 

hyperparameter transfer.” 
arXiv:2203.03466, 2022.

[1]

[1]
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Method
Fine-grained 

scaling
No tuning 
required

Adapts during 
training

Pass Complexity

Loss scaling ✗ ✗ ✗ bwd low

Dynamic loss 
scaling

✗ ✓ ✓ bwd medium

Transformer 
engine scaling

✓ ~ ✓ bwd + fwd medium/high

Unit scaling ✓ ✓ ✗ bwd + fwd low

Background: Unit Scaling

  Methods for controlling scale

37



Deriving u-µP

  µP as a form of Unit Scaling

All models under the ABC parametrization are subject to abc-symmetry:

For a fixed 𝜃 > 0, training under Adam(W) is invariant to changes of the kind:

 

𝐴𝑤 = 𝐴𝑤 / 𝜃

𝐵𝑤 = 𝐵𝑤 ⋅  𝜃

𝐶𝑤 = 𝐶𝑤 ⋅ 𝜃

Setting 𝜃 = fan−in for hidden 

weights results in Unit Scaling:

(𝑎𝑤)

(𝑏𝑤)
(𝑐𝑤)

u-
(𝑎𝑤)

(𝑏𝑤)
(𝑐𝑤)

* We apply 1/ fan−in scaling in the bwd pass

*
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Deriving u-µP

  An improved HP scheme

𝐴𝑤  ← 𝛼𝑤

𝑎𝑊

𝑎𝑊𝑏𝑎𝑠𝑒

𝐵𝑤  ← 𝜎𝑤

𝑏𝑊

𝑏𝑊𝑏𝑎𝑠𝑒

𝐶𝑤  ← 𝜂𝑤

𝑐𝑊

𝑐𝑊𝑏𝑎𝑠𝑒

Recalling:

The u-µP HP scheme

• No 𝜎𝑖𝑛𝑖𝑡

• No base shapes

• 𝛼s moved from 

weight to ops
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 Experiments

  Numerical Properties
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 Experiments

  Our FP8 Scheme

We only focus on FP8 matmuls. Putting comms / optimizer state / 
nonlinearities into FP8 is out-of-scope.

We use E4M3 for everything (activations, weights and gradients), except:

1. The input to the final FFN layer (fwd pass)

2. The input to the final SA layer (fwd pass)

For which we use E5M2.

A note on the status of our experiments:

• Large-scale experimentation is still ongoing

• Particularly in the case of downstream analysis
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Llama up to 1B (u-µP; WikiText-103) Standard BERT (original Unit Scaling)

 Experiments

  Out-of-the-box FP8
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 Experiments

  Out-of-the-box FP8

Full 1-7B results (standard Llama setup; 300B tokens of SlimPajama)

• Partial scheme puts two layers that were in E5, in BF16.

• Gradients also now have to be in E5.
43



We use a different scaling factor for each of 
the three matmuls.

Under certain circumstances we require 
the same factor for 𝑦 and ∇𝑥, to ensure 
valid gradients.

More interesting unit-scaled ops include:

• Residual-add

• Scaled dot-product attention

Background

 Unit Scaling

  Example: uu.Linear

github.com/graphcore-research/unit-scaling

44
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How to Unit Scale a model

  Unit-Scaled gradients

𝜃 𝑡+1 = 𝜃𝑡 −  𝜂
ෝ𝑚𝑡

ො𝑣𝑡 + 𝜖

Why are we allowed to have separate 
forward and backward scaling factors?

Fixed scales cancel in the Adam update 

(ignoring ϵ):

So we can use different scales, as long as 

we’re not on a residual

× 𝛼

× 𝛼2

Readout linear

+

FFN linear

…

…

w

w

x

x

𝛼𝑦

× 𝑦

𝛼𝑑𝑥

× 𝑑𝑥

𝛼𝑑𝑤

× 𝑑𝑤

𝛼𝑑𝑥

× 𝑑𝑥

𝛼𝑑𝑤

× 𝑑𝑤

𝛼𝑦

× 𝑦

𝛼𝑦 ≠ 𝛼𝑑𝑥 ≠  𝛼𝑑𝑤

𝛼𝑦 = 𝛼𝑑𝑥

𝛼𝑦 ≠ 𝛼𝑑𝑤

CE loss
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How to Unit Scale a model

  How has the model changed?

𝜃 𝑡+1 = 𝜃𝑡 −  𝜂
ෝ𝑚𝑡

ො𝑣𝑡 + 𝜖

1. The scale going into non-linear 
operations has changed

2. Our weight update has effectively 

become smaller

This term hasn’t changed scale

But we now use larger (𝜎 = 1) weights
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 The challenges with µP in practice

  Which HPs should be swept?

µTransfer: the process of sweeping HPs 
on a small model, to transfer to a large 

one.

How should we select/group our 𝛼𝑊, 𝜎𝑊, 
𝜂𝑊 in order to sweep them? 

A global 𝜎 and 𝜂 are commonly used. 

However, this creates problems:

Grouping-conflicts:

 std 𝑥𝑠𝑤𝑖𝑠ℎ ∝ 𝜎𝑊𝑔𝑎𝑡𝑒
 std 𝑥𝑎𝑡𝑡𝑛 ∝ 𝜎𝑊𝑄

𝜎𝑊𝐾

HP interdependence:

 the relative size of a weight update is 
determined by Τ𝜎𝑊 𝜂𝑊
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 The challenges with µP in practice

  Base shapes

Recall:
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Scheme Rule

Constant Scale weights by constant std

LeCun Scale weights by 1/√d_in

Glorot Scale weights by 2/√(d_in + d_out)

Small Scale all weights by 2/√(5d)

Mitchell-scale Scale weights by 1/√(2Ld)

Depth-residual Scale residual by 1/√(2L)

Wang Scale residual by 2/(L√d)

Palm-readout Scale embedding proj by 1/√v

“Overall 

scheme”
Per-tensor schemes Users

Constant constant init OpenLLaMA; Deepseek

Megatron
constant init + depth-

residual init

GPT-2; GPT-3; Megatron-LM; OPT; Cerebras-GPT; OLMo-

Llama

GPT-neo-X small init + wang init GPT-neo-X; TinyLlama; Pythia; StableLM; Luminous

PaLM LeCun init + palm-readout PaLM

Mitchell mitchell-scale OLMo

Combining Unit Scaling and µP

  Existing approaches to 𝜎𝑖𝑛𝑖𝑡
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 Unit-Scaled µP

  Combining µP with Unit Scaling

Basic µP
scaling rules

Full µP
implementation

Recall:

Recall abc-
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 Unit-Scaled µP

  A principled approach to HPs

Deriving the u-µP HP scheme:

1. We drop 𝜎𝑊s entirely: only need 𝛼𝑊, 𝜂𝑊 under abc-symmetry

2. Global 𝜂, granular 𝛼𝑊 grouped across layers

3. Shift 𝛼s from weights to ops

4. Special residual-add formulation, which

• Gives unit-scale at initialization

• 𝛼𝑟𝑒𝑠 defines contribution of the residual vs skip scale

•  𝛼𝑟𝑒𝑠−𝑎𝑡𝑡𝑛−𝑟𝑎𝑡𝑖𝑜 defines the relative contribution

of attention versus FFN branches
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 Experiments

  Numerical Properties

Regular µP

u-µP
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 Experiments

  Heavy-tail analysis
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 Experiments

  Factors affecting scale growth

Takeaway:

• The only factor 

significantly 

affecting scale-

growth is LR 
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