

What is Rune?

e« Rune is a dynamic content
preprocessor that unifies content from
multiple sources (YAML, HTML,
Markdown, SVG, PNG, ZIP, JPG, and
JSON files) into a single JSON structure.

e Built for the entire team — developers,
designers, and content creators —Rune
simplifies collaboration by providing
input formats that are familiar and easy
to use.

Key Features

. Dynamic Content Processing: Merges
YAML and HTML files, embeds assets as
Baseb4.

. Multilingual Support: Integrates
translations in a flat, i18n-compatible
structure.

. Embedded Assets: Supports images (SVG,
PNG, JPG) and downloadable files (ZIP,
etc).

. Portability: Produces a self-contained
JSON

. Extensibility: Supports reusable
components and custom structures.

N\ ol
N () Q
3 @ &o)
. - N\ 7 O o

File Merging Suppont Muttilussirg Support Munticigudal Support

Embedded Assets

&6

0
-
Q= (o)

LAyers

Rune and the Basket of Fruits

e Rune is like a master basket weaver:

« HTML files are apples: structured and
familiar to frontend developers.

« YAML files are oranges: layered and
segmented for backend developers.

« JSON translations are bananas: easy to
peel and ideal for localization.

o Markdown files are grapes: simple and
versatile for documentation.

o Assets are cherries: vibrant and ready
for inclusion.

How It Works

. Prepare a directory with YAML,
HTML, and assets.

. Add translations for
multilingual support.

. Run Rune to consolidate all
content into a single JSON file.

. Use the output JSON in your
application or provide it
through an API.

Example Workflow

. Add a HTML view:

e docs/HelloWorld.html

. Add a translation file:

« docs/translations/HelloWorld.en.json

. Run Rune:

e rune docs json

. The output is an array in JSON which
contains all views, translations, and
embedded assets.

. Output can be extended easily by adding
more items later (e.g. downloadable
attachments in the APl backend)

Advanced Features

e Reusable components with
parameters and nested
children.

e Automatic embedding of
images and assets as Base64
data urls.

e Extensibility for new file types
and custom configurations.

Functional Source License

e License is Functional Source License, Version
1.1, MIT Future License

« Two years after release it’s standard MIT, but
probably we’ll republish it as open source MIT
or AGPL before that.

