
Rune

Dynamic Content Preprocessor



What is Rune?

• Rune is a dynamic content 
preprocessor that unifies content from 
multiple sources (YAML, HTML, 
Markdown, SVG, PNG, ZIP, JPG, and 
JSON files) into a single JSON structure. 

• Built for the entire team — developers, 
designers, and content creators —Rune 
simplifies collaboration by providing 
input formats that are familiar and easy 
to use.



Key Features
1. Dynamic Content Processing: Merges 

YAML and HTML files, embeds assets as 
Base64. 

2. Multilingual Support: Integrates 
translations in a flat, i18n-compatible 
structure. 

3. Embedded Assets: Supports images (SVG, 
PNG, JPG) and downloadable files (ZIP, 
etc). 

4. Portability: Produces a self-contained 
JSON 

5. Extensibility: Supports reusable 
components and custom structures.



Rune and the Basket of Fruits

• Rune is like a master basket weaver: 
• HTML files are apples: structured and 

familiar to frontend developers. 
• YAML files are oranges: layered and 

segmented for backend developers. 
• JSON translations are bananas: easy to 

peel and ideal for localization. 
• Markdown files are grapes: simple and 

versatile for documentation. 
• Assets are cherries: vibrant and ready 

for inclusion.



How It Works

1. Prepare a directory with YAML, 
HTML, and assets. 

2. Add translations for 
multilingual support. 

3. Run Rune to consolidate all 
content into a single JSON file. 

4. Use the output JSON in your 
application or provide it 
through an API.



Example Workflow
1. Add a HTML view: 
• docs/HelloWorld.html 

2. Add a translation file: 
• docs/translations/HelloWorld.en.json 

3. Run Rune: 
• rune docs json 

4. The output is an array in JSON which 
contains all views, translations, and 
embedded assets. 

5. Output can be extended easily by adding 
more items later (e.g. downloadable 
attachments in the API backend)



Advanced Features

• Reusable components with 
parameters and nested 
children. 

• Automatic embedding of 
images and assets as Base64 
data urls. 

• Extensibility for new file types 
and custom configurations.



Functional Source License

• License is Functional Source License, Version 
1.1, MIT Future License 

• Two years after release it’s standard MIT, but 
probably we’ll republish it as open source MIT 
or AGPL before that.


