
A High-Performance Evolutionary Multiobjective
Community Detection Algorithm

Guilherme O. Santos1*, Lucas S. Vieira1, Giulio Rossetti3,
Carlos H. G. Ferreira1, Gladston J. P. Moreira2

1*Departamento de Computação e Sistemas, Universidade Federal de Ouro
Preto, João Monlevade, 35931-008, Minas Gerais, Brazil.

2Computing Department, Universidade Federal de Ouro Preto, Ouro
Preto, 35402-136, Minas Gerais, Brazil.

3Istituto di Scienza e Tecnologie dell’Informazione, National Research
Council of Italy, Pisa, 56127, PI, Italy.

*Corresponding author(s). E-mail(s): guilherme.os1@aluno.ufop.edu.br;
Contributing authors: lucas.sv@aluno.ufop.edu.br;

giulio.rossetti@isti.cnr.it; chgferreira@ufop.edu.br; gladston@ufop.edu.br ;

Abstract
Community structure is a key feature of complex networks, underpinning diverse
phenomena across social, biological, and technological systems. While tradi-
tional methods like Louvain and Leiden offer efficient solutions, they rely on
single-objective optimization, often failing to capture the multifaceted nature of
real-world networks. Multi-objective approaches address this limitation by con-
sidering multiple structural criteria simultaneously, but their high computational
cost restricts their use in large-scale settings. We propose HP-MOCD, a high-
performance, fully parallel evolutionary algorithm based on NSGA-II, designed
to uncover high-quality community structures by jointly optimizing conflicting
objectives. HP-MOCD leverages topology-aware genetic operators and parallelism
to efficiently explore the solution space and generate a diverse Pareto front of
community partitions. Experimental results on large synthetic benchmarks demon-
strate that HP-MOCD consistently outperforms existing multi-objective methods
in runtime, while achieving superior or comparable detection accuracy. These
findings position HP-MOCD as a scalable and practical solution for community
detection in large, complex networks.

Keywords: community detection, complex networks, multi-objective optimization,
evolutionary algorithms, NSGA-II, parallel computing

1

1 Introduction
The study of complex systems, ubiquitous in social, technological, and biological
domains, heavily relies on modeling their underlying connectivity patterns as complex
networks (Boccaletti et al. 2006). Examples range from social media platforms and the
World Wide Web to protein-protein interaction networks and critical infrastructures
(Ravasz et al. 2002). A key characteristic of many such networks is their organization
into communities, groups of nodes with dense internal connections and sparser con-
nections to the rest of the network (Newman 2006). Identifying these communities is
crucial for understanding network organization, function, and dynamics, making com-
munity detection a central research area in network science (Fortunato and Hric 2016;
Flake et al. 2002; Blondel et al. 2008; Shi et al. 2010). Single-objective methods, while
prevalent, often oversimplify the inherent complexity of real-world network structures,
failing to capture their true multifaceted nature.

The task of community detection is commonly formulated as a combinatorial
optimization problem, where the goal is to partition the network into clusters that
maximize internal cohesion while minimizing interconnections between groups (Newman
and Girvan 2004). Since this problem is NP-hard, most practical solutions rely on
traditional heuristic methods that optimize a predefined structural quality metric. In
this work, we adopt a crisp partitioning model, where each node is assigned to exactly
one community, reflecting a hard clustering approach that assumes mutually exclusive
group membership. Among the most widely adopted are the Louvain algorithm (Blondel
et al. 2008), which greedily maximizes modularity (Q), and its improved variant,
Leiden (Traag et al. 2019), which addresses issues such as disconnected communities
through an enhanced refinement process.

While effective and computationally efficient, these traditional heuristic methods
exhibit notable limitations. Their reliance on a single metric like modularity introduces
structural biases, including the well-documented resolution limit, which causes small
but meaningful communities to be absorbed into larger ones (Fortunato and Barthélemy
2007; Newman and Girvan 2004). Modularity-based methods may also suffer from
degeneracy, producing multiple partitions with similar scores but different topologies
(Traag et al. 2019). Although Leiden mitigates some of these issues by ensuring better-
connected communities and more stable partitions, it still operates under a fixed
optimization criterion. This inherently restricts their capacity to navigate the complex
trade-offs that arise in real-world networks, where no single metric fully captures the
richness of the underlying structure (Azevedo et al. 2024).

Recognizing the limitations of traditional heuristic methods, the field has pro-
gressively shifted towards multi-objective evolutionary algorithms (MOEAs) as a
more expressive and flexible framework for community detection. Unlike single-metric
approaches, MOEAs aim to optimize multiple, often conflicting, objectives simulta-
neously. This multi-criteria formulation enables a more nuanced characterization of
community structures by capturing diverse structural features of the network, such as
internal density, inter-community sparsity, and modularity. By design, these algorithms
produce a Pareto front, i.e., a set of non-dominated solutions, offering practitioners
a range of alternatives rather than a single fixed partition (Moreira and Paquete

2

2019). This enables a more comprehensive exploration of the solution space, facilitating
informed decisions based on application-specific trade-offs.

Early works such as MOGA-Net (Pizzuti 2009), which jointly optimized a com-
munity score and a fitness-based criterion, and Shi-MOCD (Shi et al. 2010), which
explicitly targeted intra-community density and inter-community sparsity, demon-
strated the potential of MOEAs to overcome structural limitations of modularity-based
methods, including the resolution limit (Fortunato and Barthélemy 2007). Other meta-
heuristics, including adaptations of the Bat Algorithm (Hussein et al. 2015), further
expanded the design space by exploring alternative population-based strategies. Despite
their theoretical appeal, the practical adoption of MOEAs for large-scale community
detection remains limited. A key challenge is their computational cost. Maintaining
and evolving a population of candidate solutions requires repeated dominance compar-
isons, Pareto sorting, and fitness evaluations, all of which can be expensive in networks
with thousands or millions of nodes and edges. Many existing implementations exhibit
time complexities on the order of O(n2) or worse, primarily due to operations involv-
ing pairwise comparisons and graph traversals (Shi et al. 2010; Pizzuti 2012). This
makes them impractical for real-time or large-scale applications without specialized
acceleration strategies.

Additionally, few high-performance implementations of MOEAs are publicly avail-
able for community detection, which limits accessibility for researchers and practitioners.
Most available tools are either experimental, tied to specific datasets, or lack paral-
lelization and optimization for modern hardware. Finally, designing effective genetic
operators that preserve meaningful community structures while ensuring exploration
of the vast combinatorial search space remains an open problem. Balancing exploita-
tion and exploration in this context is especially difficult due to the discrete and
topologically constrained nature of the community detection problem.

To address these challenges, this paper introduces the High-Performance Multi-
Objective Community Detection (HP-MOCD) algorithm. HP-MOCD is a scalable
evolutionary algorithm based on the Non-Dominated Sorting Genetic Algorithm II
(NSGA-II) framework (Deb et al. 2002), specifically engineered for accuracy and
efficiency in large complex networks. It employs a parallel computing architecture and
custom genetic operators that incorporate topological information, inspired by Shi et al.
(2010), to effectively explore the solution space. Instead of yielding a single partition,
HP-MOCD produces a diverse set of Pareto-optimal solutions, each representing a
different trade-off between conflicting structural objectives, thereby offering a more
holistic understanding of network community structures. Moreover, this solution set
can be flexibly analyzed under multiple evaluation metrics or selected according to the
specific needs of a given application. Our primary contributions are as follows:

(i) We introduce novel crossover and mutation schemes that both refine commu-
nity assignments and maintain population diversity, leading to higher‐quality
partitions.

(ii) By embedding Pareto‐front selection within the NSGA-II framework, we jointly
optimize competing structural criteria, yielding a rich solution set adaptable to
multiple analytical needs.

3

(iii) We prove that, for the sparse graphs typically encountered in practice (|E| =
O(|V |)) with fixed population size Np, the per-generation cost reduces to
O
(
Np |V |

)
, and our experiments confirm runtimes remain well below worst-case

bounds.
(iv) We design a fully multi‐threaded architecture that exploits modern multi‐core

processors, drastically reducing runtime on large‐scale networks.
(v) We provide a Free/Libre and Open Source Software (FLOSS) implementation

of HP-MOCD, enabling researchers and practitioners to apply, extend, and
benchmark our approach.

The remainder of this paper is structured as follows. Section 2 reviews foundational
concepts and prior work in community detection, covering both traditional heuristics
and multi-objective evolutionary approaches. Section 3 introduces the HP-MOCD
algorithm in detail, outlining its architecture, genetic operators, and optimization
strategy. Section 4 describes the experimental setup and presents a comparative evalu-
ation against established methods. Finally, Section 5 discusses the results, highlights
practical implications, and suggests directions for future research.

2 Fundamentals and Related Work
Community detection is a fundamental problem in network science, central to under-
standing the structure and function of complex systems. This section first introduces
the foundational definitions and modeling assumptions adopted in this work. We
then briefly review traditional heuristic methods, with emphasis on modularity-based
algorithms such as Louvain and Leiden, analyzing their performance and limitations.
Finally, we present an overview of multi-objective community detection, discussing
its theoretical foundations, algorithmic strategies, and the key contributions from the
literature that inform the design of our proposed method.

2.1 The definition of community
Community structure is a central concept in the analysis of complex networks, referring
to the tendency of nodes to organize into groups with dense internal connections and
relatively sparse connections to the rest of the network. While no universally accepted
definition exists, one of the most common structural formulations is based on the
relative density of intra- and inter-community links (Radicchi et al. 2004). In this
perspective, communities are understood as subgraphs in which internal connectivity
is significantly stronger than external connectivity.

Several formulations of community detection have emerged in the literature, depend-
ing on the nature of the data and the intended application (Fortunato 2010). Among
the most common is node clustering, where the goal is to assign each node to a com-
munity. Other approaches include edge clustering, which focuses on grouping edges
rather than nodes, and overlapping or fuzzy clustering, in which nodes may belong
to multiple communities, either to the same degree or with varying levels of associ-
ation. More specialized formulations incorporate additional structural or semantic
information (Lancichinetti and Fortunato 2009). Attributed clustering, for example,

4

leverages both network topology and node-level features, while bipartite clustering
targets networks composed of two distinct node types. Temporal clustering extends the
task to dynamic networks, capturing how communities evolve over time. In directed
acyclic graphs (DAGs), antichain clustering is used to identify groups based on partial
order relationships (Rossetti et al. 2019).

In this work, we focus on node clustering under a crisp partitioning model, also
referred to as hard clustering, where each node is assigned to exactly one com-
munity. This assumption of mutually exclusive group membership simplifies the
structural analysis and remains the most widely adopted formulation in the evalua-
tion of community detection algorithms. We further restrict our scope to undirected
and unweighted networks, which are commonly used in benchmarks and allow clear
structural interpretations based solely on topology.

Formally, let G(V,E) be an undirected and unweighted graph, where V is the set
of nodes and E the set of edges. The goal of community detection is to find a partition
C = {C1, C2, . . . , Ck} of the vertex set such that:

k⋃
i=1

Ci = V and Ci ∩ Cj = ∅ ∀ i 6= j (1)

In the remainder of this section, we discuss the main algorithmic approaches
developed to tackle this problem. We begin with traditional heuristic methods, which
have dominated the field due to their efficiency and simplicity. We then turn to more
recent efforts based on multi-objective optimization, which more closely align with the
direction pursued in this work.

2.2 Traditional algorithms
Traditional approaches to community detection in complex networks often rely on the
optimization of a structural quality function, the most prominent being modularity.
These methods aim to partition a network such that the density of edges within com-
munities is significantly higher than between them. While modularity-based algorithms
remain dominant due to their efficiency and simplicity, several alternative heuristics
have also shaped the field. Among the earliest and most influential is the Girvan–New-
man algorithm, which detects communities by iteratively removing edges with the
highest betweenness centrality, gradually decomposing the network into disconnected
components (Girvan and Newman 2002). Despite its conceptual elegance, this method
suffers from high computational cost and limited scalability.

Another prominent strategy is label propagation, a fast heuristic where each node
adopts the most frequent label among its neighbors. This process converges to a
partition where nodes in the same community share the same label (Raghavan et al.
2007). Label propagation is highly scalable but can yield unstable results and lacks a
clear objective function, making its outcomes harder to interpret. Among modularity-
based methods, the Louvain algorithm proposed by Blondel et al. (2008) has become
one of the most widely used due to its balance between accuracy and computational
performance. It seeks to optimize the modularity metric, defined for undirected and

5

unweighted networks as:

Q =
1

2m

∑
i,j

(
Aij −

kikj
2m

)
δ(ci, cj) (2)

In this equation, Aij represents the adjacency matrix of the graph, ki and kj
denote the degrees of nodes i and j, m is the total number of edges, and δ(ci, cj) is an
indicator function equal to 1 when nodes i and j belong to the same community and 0
otherwise. The Louvain method operates in two main phases. Initially, each node is
placed in its own community, and the algorithm iteratively moves nodes to neighboring
communities if doing so increases modularity. Once no further local improvement is
possible, communities are aggregated into super-nodes, and the process is repeated on
the resulting coarsened graph. This continues until convergence.

Despite its popularity and efficiency, the Louvain algorithm exhibits several well-
known limitations that affect both the quality and stability of the resulting partitions
(Fortunato and Barthélemy 2007). Some works have attempted to address these
limitations (Wang et al. 2019). One key issue is the production of disconnected
communities, a consequence of how nodes are greedily reassigned based solely on local
modularity gain without enforcing internal connectivity constraints (Fortunato and
Hric 2016). This can lead to communities that are not internally cohesive, violating a
fundamental structural assumption in community detection. Furthermore, Louvain
is sensitive to the order in which nodes are processed during the local moving phase.
Because the algorithm applies greedy updates, different node orderings may lead
to different partitions with comparable modularity scores, introducing a level of
non-determinism that compromises reproducibility.

A more fundamental limitation lies in the modularity function itself, particularly
its susceptibility to the resolution limit problem. As demonstrated by Fortunato and
Barthélemy (2007), modularity optimization tends to favor large communities and may
fail to identify smaller but structurally meaningful groups, especially in networks with
heterogeneous community sizes. This limitation arises because modularity evaluates
gains relative to a global null model, which biases the optimization toward partitions
that absorb smaller communities into larger ones. Additionally, the modularity land-
scape often contains many local maxima, leading to a high degree of degeneracy in
the solution space. This means that multiple partitions with very different community
structures can yield similar modularity values, complicating the interpretation and
comparison of results across runs.

To address some of these issues, the Leiden algorithm was introduced by Traag
et al. (2019). It preserves the modularity optimization framework but improves upon
Louvain by enforcing connectedness within communities and refining the aggregation
process. The algorithm proceeds in three stages. The first is local moving, in which
nodes are reassigned to neighboring communities to improve a quality function. The
second is refinement, which ensures that all communities remain internally connected,
splitting any that are not. The final stage is aggregation, where communities are
collapsed into single nodes, and the process restarts on the simplified graph.

6

While the Leiden algorithm was originally introduced with support for multiple
objective functions, it often employs the Constant Potts Model (CPM) instead of
modularity. CPM defines community quality in terms of internal edge density, controlled
by a resolution parameter γ, and is given by:

H =
∑
c

(
ec − γ

nc(nc − 1)

2

)
(3)

In this expression, ec denotes the number of internal edges in community c, nc is
the number of nodes in that community, and γ sets the minimum internal density
threshold. By tuning γ, the algorithm can control the granularity of the resulting
partition, identifying larger or smaller communities accordingly. Unlike modularity,
CPM does not suffer from the same theoretical resolution limit because it is a local
objective function, and its optimization does not depend on global graph properties
such as the total number of edges.

Nevertheless, in practical applications, CPM introduces its own set of challenges.
The performance of the algorithm can vary significantly with the choice of γ, which often
requires careful, problem-specific calibration. Furthermore, when Leiden is configured
to use modularity as its objective function, as is commonly done for compatibility with
existing benchmarks, it inherits many of the same limitations as Louvain, including the
resolution limit and modularity degeneracy. In either case, whether using modularity
or CPM, Leiden remains fundamentally a single-objective optimization method.

Both Louvain and Leiden represent the current state of practice in scalable,
modularity-based community detection. While they offer practical advantages and
have become fact standard in many applications, their reliance on a single optimization
criterion limits their expressiveness. In particular, they are not designed to capture
multiple, potentially conflicting structural properties simultaneously. These limitations
motivate the investigation of multi-objective optimization strategies, which we explore
in the next section.

2.3 Multi-Objective algorithms
Traditional community detection algorithms are typically designed to optimize a
single objective function, such as modularity. While efficient and widely used, these
approaches exhibit critical limitations. They often produce narrow solutions that
emphasize specific structural properties at the expense of others, show inconsistent
performance across different network topologies, and depend heavily on the choice of
objective function. These factors limit their ability to fully capture the multifaceted
nature of community structure.

To overcome these shortcomings, a multi-objective optimization approach provides
a more expressive and flexible framework. A multi-objective optimization problem
(MOP) involves simultaneously optimizing two or more, often conflicting, objective
functions. Improving one objective may lead to the deterioration of another, making it
impractical to obtain a single solution that is optimal for all objectives. Instead, MOP
aims to find a set of solutions that represent optimal trade-offs among the objectives.
In this study, optimization is approached as the minimization of objective values.

7

Formally, a MOP can be stated as (Ehrgott 2005):

Minimize f(x) = (f1(x), f2(x), . . . , fm(x))

Subject to
x ∈ Ω

Here, x = (x1, x2, . . . , xn) is a vector of n decision variables residing in the n-
dimensional decision space Rn. The set Ω ⊆ Rn represents the feasible region of
the decision space, containing all permissible solutions. In the context of community
detection, x typically represents a candidate partitioning of the network’s nodes into
communities. The function f : Ω→ Rm maps the decision space to the m-dimensional
objective space, where each fi(x) is an objective function to be minimized. The image
of the feasible set, f(Ω) = {f(x) | x ∈ Ω}, is the set of all possible objective vectors in
the objective space Rm. The problem can also be subject to additional constraints in
Ω and/or f(Ω).

Since the objective space Rm (for m > 1) is only partially ordered, the con-
cept of dominance is used to compare solutions. Let a = (a1, a2, . . . , am) and
b = (b1, b2, . . . , bm) be two objective vectors in Rm. The vector a is said to dominate
b (denoted as a ≺ b) if and only if ai ≤ bi for all i ∈ {1, . . . ,m} and aj < bj for at
least one j ∈ {1, . . . ,m}. A solution x∗ ∈ Ω is Pareto optimal if there is no other
solution x ∈ Ω such that f(x) dominates f(x∗). In other words, x∗ is Pareto optimal
if its corresponding objective vector f(x∗) is non-dominated.

The set of all non-dominated objective vectors is known as the Pareto Front (PF),
and the set of all Pareto optimal decision vectors is the Pareto Optimal set (PO):

PF = {y ∈ f(Ω) | @y′ ∈ f(Ω) such that y′ ≺ y} (4)
PO = {x ∈ Ω | f(x) ∈ PF} (5)

The PF represents the set of optimal trade-off solutions where no objective can be
improved without degrading at least one other objective (Moreira and Paquete 2019).

Multi-objective methods offer several advantages, particularly for community detec-
tion. First, they provide a diverse set of solutions, allowing users to select a partition
based on context-specific priorities or further analysis. Second, the simultaneous con-
sideration of complementary objectives can mitigate structural biases inherent in
single-objective metrics and help avoid premature convergence to suboptimal solutions.
Third, characteristics such as the number of detected communities can emerge naturally
from the optimization process rather than being a predefined parameter. Finally, the
exploration of multiple trade-off solutions often reveals richer structural insights into
the network, potentially highlighting overlapping or hierarchical community structures.

Given the typically non-convex and highly combinatorial nature of the community
detection problem, obtaining the true PF and PO is computationally challenging.
Deterministic optimization methods are often impractical. Consequently, Multi-
Objective Evolutionary Algorithms (MOEAs) have become a prominent strategy (Deb
2001; Handl and Knowles 2007; Coello et al. 2007). MOEAs are well-suited for explor-
ing complex search spaces due to their population-based approach and stochastic

8

operators. While they do not guarantee finding the exact PF and PO sets, MOEAs
aim to produce a finite set of non-dominated solutions that effectively approximate
the true Pareto front.1

Among the earliest applications of evolutionary multi-objective optimization in
this domain is MOGA-Net, introduced by Pizzuti (2009). Her approach uses genetic
algorithms to evolve network partitions that optimize both a community score and
modularity. Although pioneering, the method remains dependent on modularity as a
selection criterion, which reintroduces resolution bias. Additionally, the algorithm’s
computational cost is not thoroughly characterized, leaving its applicability to large
networks uncertain.

Building on the general definition of MOP, the Multi‐Objective Community
Detection (MOCD) algorithm of Shi et al. (2010) can be formulated as follows.
Let C = {c1, c2, . . . , ck} be a partition of the node set V of a graph into k
communities. The set of all valid partitions of V is denoted as the feasible set
Ω = {C | C is a valid partition of V }. The MOCD formulation utilizes a vector
objective function f(C) comprising two objectives:

f1(C) = 1−
∑
c∈C

|E(c)|
m

, f2(C) =
∑
c∈C

(∑
v∈c deg(v)

2m

)2

. (6)

In these expressions, m = |E| represents the total number of edges in the network,
deg(v) denotes the degree of node v, and |E(c)| is the number of edges with both
endpoints lying within community c.

The MOCD problem is then stated as:

min
C ∈Ω

f(C) = min
C ∈Ω

(
f1(C), f2(C)

)
.

To approximate the Pareto Optimal set, MOCD employs the Pareto Envelope-
based Selection Algorithm II (PESA-II), as proposed by Corne et al. (2000). This
evolutionary algorithm maintains both an internal population for exploration and an
external archive of non‐dominated solutions. Its encoding scheme is based on locus-
based adjacency, which ensures that communities remain connected; however, this
restricts the search space to particular types of partitions. While the use of local
mutation and standard two-point crossover operators is computationally simple, it can
potentially reduce genetic diversity and disrupt meaningful substructures within the
solutions.

In terms of computational cost, the algorithm evaluates fitness in O(m+ n) time
per solution, where n = |V | is the number of nodes. PESA-II introduces an additional
computational overhead of O(gs2(m+ n)) across g generations with a population size
of s. Furthermore, MOCD applies a Max–Min Distance selection strategy to promote
diversity among solutions. This step, however, increases runtime due to the necessity
of pairwise comparisons against randomly generated control solutions. Consequently,
MOCD may not scale efficiently to large-scale networks.

1The proximity of the set of solutions obtained by an MOEA to the true PF is a measure of the algorithm’s
convergence.

9

Overall, while existing multi-objective algorithms demonstrate the theoretical
advantages of Pareto optimization, they remain under-explored in terms of implemen-
tation quality, scalability, and general usability. This highlights the need for more
efficient and accessible methods, particularly in large-scale applications, a gap that
this work aims to address.

3 The HP-MOCD Algorithm
This section details the High-Performance Multi-Objective Community Detection
(HP-MOCD) algorithm, a scalable evolutionary method for efficiently identifying high-
quality community partitions in large complex networks. HP-MOCD combines the
NSGA-II optimization framework with a parallel architecture and topology-aware
genetic operators tailored to the structure of real-world graphs. In addition to detailing
its core components, we describe the algorithm’s design choices, solution representation,
and multi-objective selection strategy. The implementation is written in Rust for
performance and exposed to Python via PyO3. The full source code is publicly available
on GitHub.

3.1 Overview and Design Rationale
Let us consider a network represented by G = (V,E). The goal of HP-MOCD is to
uncover community structures in G by minimizing the two objectives proposed by (Shi
et al. 2010) in Equation 6. By jointly optimizing these criteria, the algorithm promotes
partitions in which communities are internally cohesive and externally well-separated,
balancing internal density with structural isolation. To accomplish this, the algorithm
builds upon the NSGA-II framework, a widely adopted and effective method in the
field of multi-objective evolutionary algorithms. NSGA-II was chosen primarily due
to its strong performance in producing well-distributed and convergent Pareto fronts,
especially when compared to earlier algorithms like PESA-II (Diosan and Oltean 2007),
which tend to suffer from loss of diversity or weaker selection pressure.

The HP-MOCD procedure unfolds in two main phases. First, it constructs an initial
population of potential solutions (called individuals), each representing a possible
way to partition the graph into communities. Then, it evolves this population over a
number of generations using genetic operators, continuously selecting and refining the
best trade-offs between the objectives. This process is summarized in Algorithm 1.

Internally, the graph G is stored using a high-performance hash map that maps each
node to its list of neighbors. This representation, based on a fast, non-cryptographic
hashing scheme 2, enables efficient access and mutation operations during the evolution
cycle, which is especially important for large-scale networks. In the subsequent phase,
the NSGA-II algorithm produces a set of non-dominated solutions that collectively
form a Pareto front. A Pareto front comprises multiple optimal solutions, each offering
a different trade-off between the two conflicting objectives. A solution, commonly
referred to as an individual in evolutionary algorithms, is specifically represented as a
mapping (hashmap) that associates each node of the graph with a particular community

2A custom hash algorithm was used by rustc (plus hashmap/set aliases): fast, deterministic, not secure
https://github.com/rust-lang/rustc-hash

10

https://www.rust-lang.org/
https://pyo3.rs/v0.24.0/
https://oliveira-sh.github.io/pymocd/
https://github.com/rust-lang/rustc-hash

Algorithm 1 Overview of the HP-MOCD Algorithm.
1: procedure HP-MOCD(Graph G, Population Size N , Max Generations T ,

Crossover Probability CP , Mutation Probability MP)
2: P ← InitializePopulation(G,N)
3: EvaluatePopulation(P,G) . (Equation 6)
4: for gen← 0 to T do
5: ComputeCrowdingDistance(P)
6: M ← TournamentSelection(P,N) . By rank & crowding
7: Q← CreateOffSpring(M, G, CP , MP , 4) . (Algorithm 2)
8: EvaluatePopulation(Q, G)
9: R← P ∪Q

10: P ← SelectNextGeneration(R,N) . Keep best N by rank + crowding
11: end for
12: F1 ← {x ∈ P | rank(x) = 1}
13: return F1

14: end procedure

identifier. Thus, each individual represents a unique community partitioning of the
graph.

To better illustrate this concept, consider the toy network shown in Figure 1. Based
on this graph, HP-MOCD may generate many different community configurations
over time. These solutions reflect different compromises between internal density and
external sparsity, and none is necessarily superior to the others in all aspects.

1

2

3

4 5

6

7

8

9

10

11

12

Fig. 1 A simple network with some nodes that shows aspects of a community.

All these individuals belong to the final Pareto front produced by the algorithm.
Since no single partition can simultaneously minimize both objectives without com-
promising the other, the algorithm instead returns a diverse set of non-dominated
solutions. Each one represents a valid alternative, offering different structural insights.
An individual (solution) produced by our algorithm is stored as a mapping,

M : V −→ {A,B,C, . . . },

11

For example, consider the decoded individual for the graph in Figure 1:

M = { 1:A, 2:A, 3:A, 4:A, 5:B, 6:B, 7:B, 8:B, 9:C, 10:C, 11:C, 12:C}.

If we choose φ(A) = blue, φ(B) = green, and φ(C) = red, then nodes {1, 2, 3, 4}
appear in blue, {5, 6, 7, 8} in green, and {9, 10, 11, 12} in red, as shown in Figure 2.
And this can be just one of a large set of solutions that the proposed HP-MOCD can
return to us.

1

2

3

4 5

6

7

8

9

10

11

12

Fig. 2 The same network, but with distinct communities. Nodes within each community (blue, green,
and red) are more densely connected internally, with sparser connections between communities.

This example illustrates a key advantage of the multi-objective approach: instead
of converging to a single solution, HP-MOCD yields a diverse set of high-quality
alternatives. This flexibility allows to select the partition that best fits the specific
needs or constraints of their application domain.

3.2 Genetic Operators and Offspring Generation
3.2.1 Crossover
The crossover operator is responsible for combining multiple parent solutions to generate
a new offspring. Let P = (P1, . . . , Pn) denote a collection of n parent individuals, where
each individual Pi represents a partition of the graph G = (V,E), that is, a mapping
from each node v ∈ V to a community label c ∈ C. The operator is controlled by a
crossover threshold parameter CR ∈ [0, 1]. Initially, a random number x is sampled
uniformly from the interval [0, 1]. If x > CR, the crossover is skipped, and one of the
parent partitions is selected uniformly at random to serve as the offspring:

x > CR ⇒ Pchild = Random(P1, . . . , Pn). (7)

If x ≤ CR, the offspring is constructed by aggregating community assignments
from all parent individuals. The process starts by considering the common node set V ,
and initializing an empty offspring mapping Pchild. For each node v ∈ V , the algorithm

12

counts the number of times each community label c ∈ C has been assigned to v across
all parent individuals, using the following expression:

count(c, v) =
n∑

i=1

1{Pi(v) = c}, (8)

where 1{·} denotes the indicator function. The community (or communities) with the
highest count is then identified as

c∗(v) ∈ argmax
c∈C

count(c, v). (9)

In the event of a tie, one of the top-scoring communities is selected uniformly at
random. The selected label c∗(v) is then assigned to node v in the offspring partition,
that is, Pchild(v) = c∗(v). This procedure is applied to all nodes in V , producing
a complete offspring partition. The resulting solution tends to preserve dominant
structural features from the parents while still allowing for variability and exploration
through random tie-breaking.

3.2.2 Mutation
To introduce variation and avoid premature convergence, HP-MOCD applies a mutation
operator after crossover. This operator modifies the community assignment of selected
nodes based on the structure of their local neighborhood. The mutation operator
uses the same individual representation as described in Section 3.2.1, along with a
mutation threshold parameter MR ∈ [0, 1]. Each node v ∈ V is considered for mutation
independently: a random number rv ∈ [0, 1] is sampled, and nodes satisfying rv < MR

are selected for mutation. The set of selected nodes is defined as:

Vm = {v ∈ V | rv < MR}. (10)

For each selected node, the frequency of community assignments among its neigh-
boring nodes is computed. To improve performance, the nodes are processed in batches.
For a given node v, its set of neighbors N(v) is retrieved, and for each neighbor
u ∈ N(v), the community to which u belongs is noted. The algorithm then determines
the most frequent community using the same Equation 9.

The community assignment of v is updated to this most common community. After
all selected nodes have been processed, the original mapping is updated with these
new community assignments. The Offspring Generation procedure, which is presented
in detail in Algorithm 2, is performed as follows.

3.2.3 Parameters
The evolutionary process in HP-MOCD is governed by two key hyperparameters:
population size and number of generations. To determine appropriate values, we
conducted empirical experiments on synthetic benchmarks, using the same configuration
as in our main experiments, except for varying n (see Section 4.1.1). We analyzed the

13

Algorithm 2 Offspring Generation
1: procedure CreateOffspring(M , G, CP , MP , ES)
2: Q← [] . Initialize offspring population
3: for i← 1 to |M | do
4: x← random(0, 1)
5: if x < CP then . Use Es parents to crossover
6: Parents← SelectRandom(M,ES)
7: Pchild ← Crossover(Parents)
8: else
9: Pchild ← Random(M)

10: end if
11: Mutate(Pchild, G,MP)
12: Append Pchild → Q
13: end for
14: return Q
15: end procedure

convergence behavior of the algorithm under these settings. As shown in Figure 3, 100
generations provided a favorable trade-off between solution quality and computational
cost; for the other parameters and scenarios, we will leave them in the supplementary
material (See 5).

(a) 10 Generations (b) 30 Generations (c) 50 Generations

(d) 80 Generations (e) 100 Generations (f) 110 Generations

Fig. 3 Performance results across varying maxgen values with µ = 0.1. Refer to Section 4.1.1 for
details on the experimental setup.

14

3.3 Pareto Selection
As discussed in Section 2, multi-objective optimization algorithms such as NSGA-II do
not return a single “optimal” solution. Instead, they produce a Pareto front, a set of
non-dominated solutions, in which no solution is strictly better than another across all
objectives. This naturally raises the question: how can one select the most appropriate
solution from the Pareto front?

Following the strategy proposed by Shi et al. (2010), we adopt a scalarization-based
criterion to identify the solution that maximizes the following quality function:

Q(C) = 1− intra(C)− inter(C) (11)

This score favors solutions with low intra-community penalty and low inter-
community connectivity, as defined in Equations 6, thus promoting partitions that
are both cohesive and well-separated. Figure 4 illustrates this behavior: the red dot
indicates the solution that maximizes Q(C). We observe that this selection strategy
consistently identifies partitions that also perform well under widely used external
validation metrics such as modularity, NMI, and AMI.

0.5 0.6 0.7 0.8 0.9 1.0
Intra

0.00

0.01

0.02

0.03

0.04

0.05

In
te

r

Pareto Frontier

(a) Pareto Frontier

0 200 400 600
Number of Communities

0.0

0.1

0.2

0.3

0.4

0.5

Q

Q vs. Number of Communities
All solutions
Best Q = 0.4807

(b) Q(C) vs. Number of Communi-
ties

0.0 0.1 0.2 0.3 0.4 0.5
Modularity

0.0

0.1

0.2

0.3

0.4

0.5

Q

Q vs. Modularity

(c) Q(C) vs. Modularity

0.6 0.7 0.8 0.9 1.0
NMI

0.0

0.1

0.2

0.3

0.4

0.5

Q

Q vs. NMI

(d) Q(C) vs. NMI

0.0 0.2 0.4 0.6 0.8 1.0
AMI

0.0

0.1

0.2

0.3

0.4

0.5

Q

Q vs. AMI

(e) Q(C) vs. AMI

Fig. 4 Analysis of the scalarization-based selection method. The red dot highlights the solution with
the highest value of Q(C).

An important advantage of the Pareto-based approach is the flexibility it affords
in selecting solutions based on application-specific preferences. While we adopt the
scalarization function Q(C) as a default selection criterion, practitioners are not
constrained to this choice. Depending on the context, alternative metrics can be
employed to guide selection from the Pareto front. For instance, one might prioritize

15

solutions based on modularity, the number of detected communities, average community
size, or even the variance in community sizes. Other structural properties, such as
conductance, cut ratios, or expansion scores, may also be relevant in certain domains.
This flexibility allows users of HP-MOCD to serve as a general-purpose tool, as it
provides not just one partition, but a rich set of candidate solutions from which the most
appropriate can be chosen using auxiliary metrics or domain-specific constraints. This
is a fundamental departure from single-objective methods, which collapse the search
space into a single score and, therefore, offer limited interpretability and adaptability.

3.4 Complexity Analysis
Complexity time of HP-MOCD per generation is driven by its genetic operators
(crossover and mutation) and the key NSGA-II routines (non-dominated sorting and
crowding distance). Let |V | be the number of nodes, |E| the number of edges, Np the
population size, and MR the mutation rate.

3.4.1 Operators Complexity Analysis
Crossover & Mutation
For each node in the graph, the algorithm crossover identifies the most frequent
community label assigned to that node among a fixed number of parent solutions. Since
hash map operations have an expected constant time complexity, O(1), processing
each node takes O(1) time. Assigning the most frequent label also takes constant time
per node. Consequently, for all |V | nodes, the expected time complexity of a single
crossover operation is linear in the number of nodes, i.e., O(|V |).

The mutation iterates through each of the |V | nodes, selecting a node for mutation
with a given probability MR ∈ [0, 1]. This selection phase involves a random draw for
each node, costing O(|V |) time, and, for each node selected for mutation, inspects its
local neighborhood to determine a new community assignment (by finding the most
frequent community label among its neighbors). This requires visiting all adjacent
nodes, so the cost for mutating a single node v is proportional to its degree, d(v).
The expected number of nodes selected for mutation is MR · |V |. The total time
for recalculating assignments for these mutated nodes is proportional to the sum of
their degrees. In expectation, this sum is MR

∑
v∈V d(v) = MR · 2|E|. Therefore, the

expected time complexity for this part of the mutation is O(MR · |E|). Combining the
node selection phase and the assignment update phase, the total time complexity for
one mutation operation is O(|V |+MR · |E|). For sparse graphs, where |E| = O(|V |),
and assuming MR is a constant, this simplifies to O(|V |).

Non-Dominated Sorting & Crowding Distance Calculation
These operators act upon a combined population of 2Np individuals (current population
Pt and offspring population Qt, each of size Np). This process sorts the 2Np individuals
into different non-domination fronts. The non-dominated sorting of N individuals can
be performed in O(N logN) time with fixed 2 objectives. Thus, for the 2Np individuals,
this step takes O((2Np) log(2Np)) = O(Np logNp) time.

16

For each front of size Fi, solutions are sorted based on each of the M objective
functions. This takes O(MFi logFi) time per front. Summing over all fronts

∑
Fi =

2Np, the total time complexity for crowding distance calculation across all fronts is
O(M(2Np) log(2Np)). For M = 2, this becomes O(Np logNp).

Overall Complexity
The dominant cost per generation is the sum of: Tgen = O(Np|V |) +O(Np logNp) +
O(Np logNp) which simplifies to Tgen = O(Np|V | + Np logNp). Since |V | in G is
typically much larger than logNp, the O(Np|V |) term usually dominates. Thus, the
complexity per generation effectively becomes: O(Np|V |) for sparse graphs. Over G
generations, the total time complexity of HP-MOCD is: O(G ·Np|V |).

4 Experiments
This section presents a series of experiments designed to assess the performance of the
proposed HP-MOCD algorithm in large-scale networks. Our goal is to evaluate both
the quality of the detected communities and the scalability of the method in terms of
runtime. All experiments are fully reproducible, with code and data generation scripts
publicly available on GitHub.

4.1 Evaluation Setup
To evaluate the performance of the proposed HP-MOCD algorithm, we conducted a set
of experiments using synthetic benchmark networks. This setup enables the controlled
variation of structural properties, such as size, noise, and community separability,
while providing known ground-truth partitions for external validation.

4.1.1 Synthetic Benchmark Networks
We used the LFR benchmark generator (Lancichinetti et al. 2008), implemented via
the NetworkX Python library, to generate realistic artificial networks with built-in
community structure. These benchmarks are widely used due to their ability to replicate
real-world network features, such as power-law degree distributions and heterogeneous
community sizes. Two main experimental settings were considered:

• Scalability test: The number of nodes n varied from 10,000 to 100,000, while all
other parameters remained fixed. This setup evaluates how each algorithm scales
computationally and structurally with increasing network size.

• Robustness test: With network size fixed at n = 100,000, the mixing parameter
µ ∈ [0.1, 0.8] was varied. This parameter controls the proportion of each node’s
links that connect to other communities. Smaller values of µ correspond to well-
separated communities, while higher values represent noisy, overlapping structures
that are harder to detect.

All LFR graphs were generated using the following fixed parameters: maximum
degree = 50, average degree = 20, minimum community size = 20, maximum community

17

https://github.com/oliveira-sh/pymocd/blob/master/unit_tests/pymocd/lfr_experiment.py
https://networkx.org/documentation/stable/reference/generated/networkx.generators.community.LFR_benchmark_graph.html

size = 100, degree exponent τ1 = 2.5, and community size exponent τ2 = 1.5. It
is important to note that in all generated synthetic networks, the proportion of
overlapping nodes and the number of communities per overlapping node were both set
to zero. This choice reflects our focus on non-overlapping community detection. The
known ground truth structure of these LFR benchmark networks allowed us to directly
measure and evaluate the accuracy and effectiveness of the HP-MOCD algorithm.

4.1.2 Algorithms and Parameter Configuration
We compared HP-MOCD to two multi-objective evolutionary algorithms (MOEAs)
and two classical greedy heuristics:

• MOCD (Shi et al. 2010): Optimizes intra-community density and inter-community
sparsity using the PESA-II framework.

• MOGA-Net (Pizzuti 2009): A modularity-based evolutionary algorithm with
population-based search.

• Louvain (Blondel et al. 2008): Greedy modularity maximization, widely used for
its speed and simplicity.

• Leiden (Traag et al. 2019): Improves Louvain by ensuring connected communities
and more stable refinement.

All algorithms were configured based on their original publications. HP-MOCD
used the following configuration, tuned empirically based on preliminary trials (see
Section 3.2.3): crossover probability CP = 0.8, mutation probability MP = 0.2, and
number of parents per crossover ES = 4. Table 1 summarizes the configurations.

Table 1 Parameter settings and types of the compared algorithms. CP and MP denote crossover and
mutation probabilities, and ES is the number of parents per crossover.

Algorithm Type Generations Population CP MP ES Reference

MOCD MOEA 100 100 0.9 0.1 - (Shi et al. 2010)
MOGA-Net MOEA 100 100 0.9 0.1 - (Pizzuti 2009)
Louvain Greedy - - - - - (Blondel et al. 2008)
Leiden Greedy - - - - - (Traag et al. 2019)
HP-MOCD MOEA 100 100 0.8 0.2 4 Ours

All algorithms were implemented in Python, with the exception of HP-MOCD,
which is implemented in Rust and exposed to Python via PyO33. Although HP-MOCD
benefits from parallel execution, none of the evaluated algorithms exploit parallelism in
their algorithmic logic (e.g., population-level operators), making runtime comparisons
consistent.

3https://pyo3.rs/v0.25.0/

18

https://pyo3.rs/v0.25.0/

4.1.3 Evaluation Metrics
We evaluate performance using three complementary metrics:

Normalized Mutual Information (NMI):
This metric quantifies the agreement between the detected community partition C
and the ground-truth partition C ′ (Yao 2003; Vinh et al. 2010), defined as:

NMI(C,C ′) =
−2

∑n1

i=1

∑n2

j=1 Mij log
(

MijN
Mi.M.j

)
∑n1

i=1 Mi. log
(
Mi.

N

)
+
∑n2

j=1 M.j log
(

M.j

N

) , (12)

where Mij is the confusion matrix between partitions, N is the number of nodes, and
Mi., M.j are marginal sums. NMI ranges from 0 (no agreement) to 1 (perfect match).

Adjusted Mutual Information (AMI):
AMI corrects the mutual information for chance (Vinh et al. 2010), offering greater
robustness when the number or size of communities varies:

AMI(U, V) =
MI(U, V)− E[MI(U, V)]

max(H(U),H(V))− E[MI(U, V)]
, (13)

where MI(U, V) is the mutual information between partitions U and V , E[MI] is its
expected value under random labeling, and H(·) denotes entropy.

4.1.4 Execution Environment
All experiments were executed on a Linux server equipped with a single Intel Core
i7-4790 CPU @ 3.60 GHz (4 physical cores, 2 threads per core, 8 threads total) and 16
GB of RAM. HP-MOCD employed multithreaded execution, while all other algorithms
were run in single-threaded mode to ensure a fair comparison. Each reported result
corresponds to the mean over 20 independent runs initialized with different random
seeds.

4.2 Impact of Network Size on Performance
Figure 5 presents a comparative evaluation of the algorithms’ performance across
synthetic networks of increasing size, ranging from 10,000 to 100,000 nodes, with a
fixed mixing parameter of µ = 0.3. Each result corresponds to the average over 20
independent runs, each initialized with a different random seed to account for stochastic
variability and improve robustness. For all experiments, 95% confidence intervals were
also computed to capture variability between runs.

The results show a clear advantage for HP-MOCD in terms of both detection quality
and computational scalability. In Figures 5(a) and (b), HP-MOCD consistently achieves
high NMI and AMI scores across all tested network sizes. Its detection quality remains
stable and close to optimal, with NMI values near 1.0 and AMI values exceeding
0.9, indicating a strong alignment with the ground truth community structure. This

19

20000 40000 60000 80000 100000
n

0.4

0.5

0.6

0.7

0.8

0.9

1.0

NM
I

HPMOCD
Moga-NET
MOCD
Louvain
Leiden

(a) NMI Value

20000 40000 60000 80000 100000
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

AM
I

HPMOCD
Moga-NET
MOCD
Louvain
Leiden

(b) AMI Value

20000 40000 60000 80000 100000
n

100

101

102

103

104

105

Ti
m

e
(s

) HPMOCD
MogaNET

 MOCD

Louvain
Leiden

(c) Execution Time (s)

Fig. 5 AMI, NMI, and runtime (seconds) comparison of algorithms on LFR benchmark networks of
different node counts (n) with a fixed mixing parameter (µ = 0.3), averaged over 20 independent runs.

consistency highlights HP-MOCD’s robustness to increasing graph size and suggests
that the algorithm does not degrade as the problem scales. In contrast, the other
MOEA-based methods (MOGA-Net and MOCD) demonstrate considerably lower
accuracy at larger scales. Both exhibit modest improvements in NMI as n increases, but
plateau at significantly lower levels, and their AMI scores remain markedly below those
of HP-MOCD. This confirms that the optimization strategies and genetic operators
employed in HP-MOCD offer a more effective exploration of the solution space.

Figure 5(c) reveals the effects of network size on runtime. Note that the y-axis
is presented on a logarithmic scale to accommodate the wide disparity in execution
times. While the greedy algorithms (Louvain and Leiden) maintain a sublinear scaling
as expected, their detection quality remains consistently inferior to that of HP-MOCD.
Among the MOEA-based approaches, HP-MOCD exhibits a much lower runtime—up
to many orders of magnitude faster than MOCD and significantly faster than MOGA-
Net. This improvement can be directly attributed to HP-MOCD’s parallel architecture
and efficient implementation. Importantly, when the network size exceeds 40,000 nodes,
MOCD becomes impractical due to its steep runtime increase, whereas HP-MOCD
remains computationally viable. These findings emphasize the algorithm’s scalability
and practical utility in real-world settings where large graphs are common. In summary,
HP-MOCD achieves the best balance between scalability and detection accuracy among
the evaluated methods.

4.3 Resilience to Community Mixing
Figure 6 presents the performance of the algorithms under increasing levels of structural
noise, as controlled by the mixing parameter µ in the LFR benchmark networks. Only
algorithms with satisfactory performance from the previous experiment were included
in this phase. MOCD and MogaNET algorithms that performed poorly at µ = 0.3
were excluded, as their performance is expected to deteriorate further with higher
noise and their prohibitively long execution times, which exceeded 25 hours for a single
run, making them impractical for this analysis.

Higher values of µ correspond to a greater proportion of edges connecting nodes
across different communities, thereby reducing the separability of community structure
and making the detection task more difficult. All experiments were conducted on

20

networks with 100,000 nodes, averaged over 20 independent runs with different seeds.
Results include 95% confidence intervals.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

0.2

0.4

0.6

0.8

1.0

NM
I

HPMOCD
Louvain
Leiden

(a) NMI Value

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.0

0.2

0.4

0.6

0.8

1.0

AM
I

HPMOCD
Louvain
Leiden

(b) AMI Value

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

102

Ti
m

e
(s

)

HPMOCD
Louvain
Leiden

(c) Execution Time (s)

Fig. 6 AMI, NMI and runtime (s) of the algorithms under comparison on LFR networks with different
values of the mixing parameter µ and 100,000 nodes, averaged over 20 independent runs.

As shown in Figures 6(a) and (b), the proposed HP-MOCD algorithm achieves
superior detection quality across most values of µ. Both NMI and AMI remain high
and stable up to µ = 0.5, indicating strong resilience to moderate levels of noise
and community overlap. This suggests that HP-MOCD maintains accurate partitions
even when the boundary between communities becomes less distinct. As expected,
all algorithms decline in performance for µ ≥ 0.6, where communities are heavily
intermixed. In this regime, the structural signal weakens, and the task of community
detection approaches the limit of observability. Though HP-MOCD also degrades
beyond this point, it consistently outperforms Louvain and Leiden in NMI and AMI,
especially for µ = 0.6 and µ = 0.7, where the difference remains substantial.

The runtime analysis in Figure 6(c) shows that HP-MOCD maintains stable
execution times across all tested values of µ, demonstrating robustness to changes in
edge density. In contrast, Louvain and Leiden exhibit more variability, including notable
runtime spikes near µ = 0.6, likely due to instability in the community structure
causing convergence delays. Despite being a multi-objective evolutionary algorithm,
HP-MOCD offers competitive and consistent runtime performance. This is due to the
linear expected time complexity of its genetic operators regarding the number of edges,
allowing the algorithm to scale efficiently even as network complexity increases as
detailed in Section 3.

Overall, these results confirm that HP-MOCD is well-suited for detecting commu-
nities in networks with varying degrees of structural clarity. Its resilience to increasing
µ highlights its ability to balance multiple structural criteria without succumbing to
premature convergence or overfitting to noise.

4.4 Discussion
Experimental results highlight HP-MOCD’s performance, scalability, and robustness.
First, with increasing network sizes (Figure 5), HP-MOCD maintained high detection
quality and showed a clear computational advantage over other evolutionary algorithms.
It was the only EA-based method to process networks over 40,000 nodes within a

21

reasonable time. The greedy heuristics (Louvain, Leiden) were faster, but mostly
produced lower quality partitions, which was confirmed by the NMI and AMI values.
This highlights HP-MOCD’s strong parallelized architecture, enabling effective scaling
while preserving detection accuracy.

Second, in resilience tests with the mixing parameter µ (Figure 6), HP-MOCD out-
performed baselines in moderate-noise conditions, up to approximately µ = 0.6. In this
regime, its detection quality remained high, indicating its ability to uncover community
structures even in networks with significant inter-community connectivity. Practically,
HP-MOCD offers several unique advantages. Unlike traditional methods that return a
single solution, it produces a diverse Pareto front of high-quality alternatives. This
allows practitioners to select community partitions based on application-specific cri-
teria, such as the desired number of communities, modularity, or community size
distribution. Its flexibility in balancing multiple structural objectives is valuable for
real-world, context-dependent trade-offs.

Despite these strengths, several limitations remain. While robust across increasing
n and µ, further studies should assess its behavior in networks with other structural
properties (e.g., varying degree distributions, hierarchical structures, overlapping
communities). Lastly, while AMI and NMI assessed partition quality, they still have
shortcomings. NMI can inflate scores, while AMI provides reliable corrections for chance.
However, the main conclusions drawn from these experiments are consistent across
both metrics, reinforcing the validity of the observed trends. Overall, HP-MOCD shows
promise as a high-quality, scalable solution for multi-objective community detection,
especially in large and moderately noisy networks, ideal for social networks.

5 Conclusion and Future Work
We introduced HP-MOCD, a high-performance evolutionary multi-objective algorithm
for large-scale network community detection. Built on the NSGA-II framework, HP-
MOCD incorporates topology-aware crossover and mutation operators, coupled with a
parallelized, efficient implementation, ensuring scalability and practical applicability.
Unlike traditional single-objective heuristics and earlier MOEA-based approaches, HP-
MOCD provides a principled mechanism to capture diverse structural trade-offs via
Pareto-optimal partitions. The algorithm consistently outperformed other evolutionary
methods in runtime and scalability, maintaining competitive or superior accuracy, even
in complex or noisy networks.

These results significantly advance the state-of-the-art in multi-objective community
detection. While most existing methods are limited by high computational costs or
inflexibility, HP-MOCD demonstrates multi-objective expressiveness combined with
high-performance execution. Furthermore, its ability to yield diverse, high-quality
partitions makes the algorithm especially suitable for exploratory network analysis
and downstream tasks benefiting from structural alternatives.

Future work can extend the algorithm to support overlapping communities and
more general network types, such as weighted, directed, or temporal graphs. Another
promising path involves improving robustness under high mixing regimes (µ → 1),
potentially through hybrid strategies or advanced selection mechanisms. Finally, we

22

intend to explore integration with NSGA-III (Deb and Jain 2014), and other recent
MOEA frameworks to further improve performance in scenarios involving more than
two objectives, such as modularity, conductance, or community balance.

Acknowledgements
This work was supported by the Conselho Nacional de Desenvolvimento Científico
e Tecnológico (CNPq, grant 307151/2022-0, 445324/2024-4), Fundação de Amparo
à Pesquisa do Estado de Minas Gerais (FAPEMIG, grant APQ-01647-22). We also
thank the Universidade Federal de Ouro Preto (UFOP) for its support.

References
Azevedo, B.F., Rocha, A.M.A.C., Fernandes, F.P., Pacheco, M.F., Pereira, A.I.: Com-

parison between single and multi-objective clustering algorithms: Mathe case study.
In: Optimization, Learning Algorithms and Applications, pp. 65–80. Springer, Cham
(2024). https://doi.org/10.1007/978-3-031-77426-3_5

Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of commu-
nities in large networks. Journal of Statistical Mechanics: Theory and Experiment
2008(10), 10008 (2008) https://doi.org/10.1088/1742-5468/2008/10/P10008

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks:
Structure and dynamics. Physics Reports 424(4), 175–308 (2006) https://doi.org/
10.1016/j.physrep.2005.10.009

Corne, D.W., Knowles, J.D., Oates, M.J.: The pareto envelope-based selection algo-
rithm for multiobjective optimization. In: Parallel Problem Solving from Nature
PPSN VI (2000). https://doi.org/10.1007/3-540-45356-3_82

Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving
Multi-Objective Problems (Genetic and Evolutionary Computation). Springer, Berlin,
Heidelberg (2007). https://doi.org/10.1007/978-0-387-36797-2

Deb, K.: Multiobjective Optimization Using Evolutionary Algorithms. John Wiley
& Sons, New York (2001). https://www.wiley.com/en-us/Multi+Objective+
Optimization+using+Evolutionary+Algorithms-p-9780471873396

Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i: Solving problems with
box constraints. IEEE Transactions on Evolutionary Computation 18(4), 577–601
(2014) https://doi.org/10.1109/TEVC.2013.2281535

Diosan, L., Oltean, M.: Who’s better? pesa or nsga ii? In: Seventh International
Conference on Intelligent Systems Design and Applications (ISDA 2007), pp. 869–874
(2007). https://doi.org/10.1109/ISDA.2007.106

23

https://doi.org/10.1007/978-3-031-77426-3_5
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1007/3-540-45356-3_82
https://doi.org/10.1007/978-0-387-36797-2
https://www.wiley.com/en-us/Multi+Objective+Optimization+using+Evolutionary+Algorithms-p-9780471873396
https://www.wiley.com/en-us/Multi+Objective+Optimization+using+Evolutionary+Algorithms-p-9780471873396
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1109/ISDA.2007.106

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2),
182–197 (2002) https://doi.org/10.1109/4235.996017

Ehrgott, M.: Multicriteria Optimization, 2nd edn. Lecture Notes in Economics and
Mathematical Systems, vol. 491. Springer, Berlin, Heidelberg (2005). https://doi.
org/10.1007/3-540-27659-9 . Second edition

Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proceedings
of the National Academy of Sciences 104(1), 36–41 (2007) https://doi.org/10.1073/
pnas.0605965104

Fortunato, S., Hric, D.: Community detection in networks: A user guide. Physics
Reports 659, 1–44 (2016) https://doi.org/10.1016/j.physrep.2016.09.002

Flake, G.W., Lawrence, S., Giles, C.L., Coetzee, F.M.: Self-organization and identifica-
tion of web communities. Computer (2002) https://doi.org/10.1109/2.989932

Fortunato, S.: Community detection in graphs. Physics Reports 486(3), 75–174 (2010)
https://doi.org/10.1016/j.physrep.2009.11.002

Girvan, M., Newman, M.E.J.: Community structure in social and biological networks.
Proceedings of the National Academy of Sciences 99(12), 7821–7826 (2002) https:
//doi.org/10.1073/pnas.122653799

Hussein, E., Hafez, A., Hassanien, A.E., Fahmy, A.: A discrete bat algorithm for
the community detection problem, vol. 9121 (2015). https://doi.org/10.1007/
978-3-319-19644-2_16

Handl, J., Knowles, J.: An evolutionary approach to multiobjective clustering. Evolu-
tionary Computation, IEEE Transactions on 11, 56–76 (2007) https://doi.org/10.
1109/TEVC.2006.877146

Lancichinetti, A., Fortunato, S.: Community detection algorithms: A comparative
analysis. Phys. Rev. E 80 (2009) https://doi.org/10.1103/PhysRevE.80.056117

Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community
detection algorithms. Phys. Rev. E 78, 046110 (2008) https://doi.org/10.1103/
PhysRevE.78.046110

Moreira, G., Paquete, L.: Guiding under uniformity measure in the decision space. In:
2019 IEEE Latin American Conference on Computational Intelligence (LA-CCI),
pp. 1–6 (2019). https://doi.org/10.1109/LA-CCI47412.2019.9037034

Newman, M.E.J.: From the cover: Modularity and community structure in networks.
Proceedings of the National Academy of Science 103(23), 8577–8582 (2006) https:
//doi.org/10.1073/pnas.0601602103

24

https://doi.org/10.1109/4235.996017
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1073/pnas.0605965104
https://doi.org/10.1073/pnas.0605965104
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1109/2.989932
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1007/978-3-319-19644-2_16
https://doi.org/10.1007/978-3-319-19644-2_16
https://doi.org/10.1109/TEVC.2006.877146
https://doi.org/10.1109/TEVC.2006.877146
https://doi.org/10.1103/PhysRevE.80.056117
https://doi.org/10.1103/PhysRevE.78.046110
https://doi.org/10.1103/PhysRevE.78.046110
https://doi.org/10.1109/LA-CCI47412.2019.9037034
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1073/pnas.0601602103

Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks.
Phys. Rev. E 69, 026113 (2004) https://doi.org/10.1103/PhysRevE.69.026113

Pizzuti, C.: A multi-objective genetic algorithm for community detection in networks.
In: 2009 21st IEEE International Conference on Tools with Artificial Intelligence,
pp. 379–386 (2009). https://doi.org/10.1109/ICTAI.2009.58

Pizzuti, C.: A multiobjective genetic algorithm to find communities in complex networks.
Evolutionary Computation, IEEE Transactions on 16, 418–430 (2012) https://doi.
org/10.1109/TEVC.2011.2161090

Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect
community structures in large-scale networks. Phys. Rev. E 76, 036106 (2007)
https://doi.org/10.1103/PhysRevE.76.036106

Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying
communities in networks. Proceedings of the National Academy of Sciences 101(9),
2658–2663 (2004) https://doi.org/10.1073/pnas.0400054101

Rossetti, G., Milli, L., Cazabet, R.: CDLIB: a Python Library to Extract, Compare
and Evaluate Communities from Complex Networks. Applied Network Science 4(1),
52 (2019) https://doi.org/10.1007/s41109-019-0165-9

Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabási, A.-L.: Hierarchical
organization of modularity in metabolic networks. Science 297(5586), 1551–1555
(2002) https://doi.org/10.1126/science.1073374

Shi, C., Zhong, C., Yan, Z., Cai, Y., Wu, B.: A multi-objective approach for community
detection in complex network. In: IEEE Congress on Evolutionary Computation,
pp. 1–8 (2010). https://doi.org/10.1109/CEC.2010.5585987

Traag, V.A., Waltman, L., Eck, N.J.: From Louvain to Leiden: guaranteeing well-
connected communities. Scientific Reports 9(1), 5233 (2019) https://doi.org/10.
1038/s41598-019-41695-z

Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings compari-
son: Variants, properties, normalization and correction for chance. Journal of Machine
Learning Research 11, 2837–2854 (2010). http://jmlr.org/papers/v11/vinh10a.html

Wang, L., Zeng, Y., Li, Y., Liu, Z., Ma, J., Zhu, X.: Research on resolution limit
of community detection in location-based social networks. In: 2019 International
Conference on Networking and Network Applications (NaNA), pp. 90–95 (2019).
https://doi.org/10.1109/NaNA.2019.00025

Yao, Y.Y.: Information-Theoretic Measures for Knowledge Discovery and Data Min-
ing, pp. 115–136. Springer, Berlin, Heidelberg (2003). https://doi.org/10.1007/
978-3-540-36212-8_6

25

https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1109/ICTAI.2009.58
https://doi.org/10.1109/TEVC.2011.2161090
https://doi.org/10.1109/TEVC.2011.2161090
https://doi.org/10.1103/PhysRevE.76.036106
https://doi.org/10.1073/pnas.0400054101
https://doi.org/10.1007/s41109-019-0165-9
https://doi.org/10.1126/science.1073374
https://doi.org/10.1109/CEC.2010.5585987
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1038/s41598-019-41695-z
http://jmlr.org/papers/v11/vinh10a.html
https://doi.org/10.1109/NaNA.2019.00025
https://doi.org/10.1007/978-3-540-36212-8_6
https://doi.org/10.1007/978-3-540-36212-8_6

Appendix A Space Complexity Analysis
Let |V | represent the number of nodes, |E| the number of edges, Np the population
size, and dmax = maxv∈V d(v) the maximum node degree. The graph G itself is stored
once, requiring O

(
|V | + |E|

)
space. Each individual in the population is a labeling

of all |V | nodes, thus one individual occupies O
(
|V |

)
space. At any generation, HP-

MOCD holds both the parent population Pt and the offspring population Qt. This
amounts to 2Np individuals, consuming

O
(
2Np · |V |

)
= O

(
Np |V |

)
space.

Regarding algorithmic components:

• For Crossover, a hash-map is employed to count labels dynamically. This map is
reused for each node, resulting in O(1) auxiliary space per node, which does not
accumulate across nodes.

• For Mutation, apart from storing the new individual (requiring O
(
|V |

)
), a fre-

quency map of size at most the node’s degree (d(v)) may be allocated when
mutating a single node. Since this map is reused across nodes, the total auxiliary
space for this operation is O(dmax).

The non-dominated sorting and crowding distance calculations (as in NSGA-II)
are performed on 2Np individuals. The space required for these operations includes:

O
(
Np

)︸ ︷︷ ︸
domination counts
and front indices

+ O
(
Np

)︸ ︷︷ ︸
crowding

distance array

= O
(
Np

)
.

A.1 Total Space Complexity
The total space complexity is the sum of these components:

O
(
|V |+ |E|

)
(graph storage)

+ O
(
Np |V |

)
(populations Pt, Qt)

+ O
(
dmax

)
(mutation auxiliary space)

+ O
(
Np

)
(NSGA-II auxiliary space)

= O
(
Np |V |+ |V |+ |E|+ dmax +Np

)
.

In typical scenarios involving sparse graphs (where |E| = O
(
|V |

)
) and for realistic

algorithm parameters where Np |V | is the overwhelmingly largest term (i.e., Np |V | �
|V |, |E|, dmax, Np), the dominant space complexity is

O
(
Np |V |

)
.

26

Appendix B Role of Multi-Threaded Architecture in
Algorithm Performance

The inherent parallel design of our algorithm necessitates an investigation into its
scalability with an increasing number of logical threads and the identification of
optimal threading levels. Understanding this relationship is paramount to harnessing
the algorithm’s full potential.

To quantify the impact of multi-threading, we benchmarked the algorithm on a
high-performance system featuring an AMD Ryzen Threadripper 3960X processor (24
physical cores, 48 logical threads, @ 3.70GHz) and 128GB DDR4 RAM. The number
of execution threads was systematically varied from 1 to 48. These tests utilized the
same synthetic graph datasets with n ∈ [10, 000, 30, 000, 50, 000] nodes as detailed in
our scalability analysis (Section 4.1.1). Each configuration was executed five times, a
sufficient number given the consistently low standard deviation observed in execution
times.

Figure B1 illustrates the performance gains. Initially, increasing the number of
threads yields substantial reductions in runtime. However, a performance plateau
is reached beyond a certain threshold (approximately 8 threads for 10,000 nodes,
15 for 30,000 nodes, and 20 for 50,000 nodes). Beyond these points, adding more
threads provides marginal benefits. This is likely attributable to the increased overhead
associated with managing a large number of concurrent threads.

10 20 30 40
Number of Threads

20

40

60

80

Ru
nt

im
e

(s
)

AVG ± STD

(a) 10,000 nodes

10 20 30 40
Number of Threads

50

100

150

200

250

300

350

Ru
nt

im
e

(s
)

AVG ± STD

(b) 30,000 nodes

10 20 30 40
Number of Threads

100

200

300

400

500

600

700
Ru

nt
im

e
(s

)
AVG ± STD

(c) 50,000 nodes

Fig. B1 Average runtime (mean± σ) as a function of the number of logical threads for graphs with
10,000 (a), 30,000 (b), and 50,000 (c) vertices. The results underscore the significant speedup achieved
through multi-threading compared to single-threaded execution.

The most compelling evidence for the importance of the multi-threaded architecture
lies in the stark contrast with single-threaded execution. As shown in Figure B1, a
linear (single-thread) approach is dramatically slower across all scenarios. Specifically,
when compared to utilizing the maximum available logical threads, single-threaded
execution was 10.27 times slower for 10,000 nodes (Figure B1(a)), 16.45 for 30,000
nodes (Figure B1(b)), and 17.83 times for 50,000 nodes (Figure B1(c)). These figures
unequivocally demonstrate that the algorithm’s parallel processing capability is not
merely an optimization but a fundamental requirement for achieving practical execution

27

times, rendering it viable and effective for real-world applications. Without its multi-
threaded design, the algorithm would be impractically slow for datasets of meaningful
scale.

Appendix C Selection of Genetic Algorithm
Parameters

The performance of the NSGA-II algorithm depends critically on two GA parameters:
the population size P and the number of generations G. These parameters control the
total search effort and must be tuned to trade off clustering quality—measured here
via AMI and NMI—against computational cost.

Aggregate Quality Metric
To summarize clustering quality in a single scalar, we compute the harmonic mean of
AMI and NMI:

H =
2
(
AMI×NMI

)
AMI + NMI

,

which balances the two scores and more strongly penalizes configurations where either
AMI or NMI is low. While AMI and NMI are widely used, the methodology remains
compatible with other external or internal evaluation metrics, depending on application
context.

0 10000 20000 30000 40000 50000 60000
E

0.93

0.94

0.95

0.96

0.97

0.98

H

n = 10000
n = 20000
n = 30000

(a) H versus E

0 10000 20000 30000 40000 50000 60000
E

0

100

200

300

400

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

n = 10000
n = 20000
n = 30000

(b) Execution Time versus E

Fig. C2 Harmonic mean of AMI and NMI versus GA effort E = P ×G, and execution time versus
GA effort E = P ×G, for different graph sizes.

GA Effort Metric
As a proxy for total computational investment, we define:

E = P ×G,

28

i.e. the total number of candidate evaluations across all generations. This single metric
captures both population diversity (P) and evolutionary depth (G).

A systematic grid search was performed over various (P,G) pairs for graph sizes
n ∈ [10 000, 20 000, 30 000]. For each configuration, we recorded H and the execution
time.

Figure C2(a) and Figure C2(b) display, respectively, the harmonic-mean quality
and runtime as functions of E, with separate curves for each n.

From these figures, we observe that clustering quality H increases rapidly with E
up to approximately 104, after which gains become marginal. Meanwhile, execution
time grows roughly linearly with E for all tested graph sizes. This behavior highlights
a clear trade-off regime where further computational effort yields diminishing returns.

Chosen Configuration
To balance near‐peak quality with reasonable runtime, we select:

P = 100, G = 100, (E = 104)

as this setting reaches near-optimal H before the saturation point, while keeping
execution time moderate and scalable.

29

	Introduction
	Fundamentals and Related Work
	The definition of community
	Traditional algorithms
	Multi-Objective algorithms

	The HP-MOCD Algorithm
	Overview and Design Rationale
	Genetic Operators and Offspring Generation
	Crossover
	Mutation
	Parameters

	Pareto Selection
	Complexity Analysis
	Operators Complexity Analysis
	Crossover & Mutation
	Non-Dominated Sorting & Crowding Distance Calculation
	Overall Complexity

	Experiments
	Evaluation Setup
	Synthetic Benchmark Networks
	Algorithms and Parameter Configuration
	Evaluation Metrics
	Normalized Mutual Information (NMI):
	Adjusted Mutual Information (AMI):

	Execution Environment

	Impact of Network Size on Performance
	Resilience to Community Mixing
	Discussion

	Conclusion and Future Work
	Space Complexity Analysis
	Total Space Complexity

	Role of Multi-Threaded Architecture in Algorithm Performance
	Selection of Genetic Algorithm Parameters
	Aggregate Quality Metric
	GA Effort Metric
	Chosen Configuration

