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1 Introduction

Ecological Momentary Assessment (EMA) has become a popular method,
in particular, to investigate the benefit and subjective quality of hearing
instruments in the user’s real life (Holube et al., 2020). The main advantage
is that EMA can achieve better ecological validity than conventional tests
performed in a laboratory. In EMA, each study participant is requested
to respond to a questionnaire during normal everyday life, typically several
times per day. Some questions may address the current real-life scenario,
i.e., the physical environment and the user’s activity and intentions in that
particular environment. The participant may also be also asked to rate, e.g.,
the pleasantness of aided sound or the difficulty of understanding speech in
the current scenario, or any other perceptual attribute of interest in the study.

Most conveniently, the questions are presented and responses collected
by a special-purpose app in the user’s smartphone. The smartphone can
also measure some physical characteristics of the current environment, such
as the sound level or noise spectrum. The timing of assessments may be
determined randomly by the app, and users may also be allowed to initiate
an assessment at any time of their own choice.

1.1 EMA Challenges

The data set recorded in an EMA study presents several statistical challenges,
some of which were discussed in depth by Oleson et al. (2021):

• There may be a large amount of data from each participant, but the
number of assessments can vary greatly among respondents.
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• Some of the responses are nominal (categorical). For example, the
current real-life environment may be characterized as one of a fixed set
of Common Sound Scenarios (CoSS) (Wolters et al., 2016), and one of
a few available hearing-aid programs may be selected.

• Other responses are ordinal. For example, the user may rate the sub-
jective speech understanding by selecting one response from a range of
discrete alternatives like “nothing at all”, “very difficult”, “difficult”,
“easy”, “perfect” (e.g., von Gablenz et al., 2021). The number of ordi-
nal response alternatives may differ among questions.

• With many assessments by each participant, the responses collected in
total from all respondents are not statistically independent. Therefore, a
multi-level approach is needed, such that the responses are analyzed as
nested within each individual, separate from the next level of variability
across respondents.

• Typically, the ordinal ratings can not be encoded numerically to repre-
sent points on an interval scale: We cannot take it for granted that the
steps between response categories are perceptually equal in magnitude.
Therefore, it is questionable to aggregate responses within individuals
by conventional measures such as mean and variance of ordinal ratings.

• Individual respondents might interpret and use the ordinal response
scale in different ways, depending on their personality. For example,
some people might tend to use the more extreme response alternatives,
while others hesitate to do so (Rossi et al., 2001). Therefore, it may be
questionable to encode ordinal responses by the same numerical value
for all participants.

• The subjective benefit of a hearing instrument usually depends on the
real-life environment. Therefore, the ordinal responses to performance-
related questions should be analyzed as conditional on the nominal
responses to the scenario questions.

• The nominal responses about the real-life scenario might also be used
as a kind of outcome measure. For example, if the participant is more
likely to visit a challenging sound environment when using a particular
hearing-aid program, this might be interpreted as a benefit of the signal
processing methods in that program.

• A complete experiment may be designed to include two or more stages,
yielding separate series of EMA data. For example, participants may
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be asked to record base-line responses first without hearing aids, and
then to record a similar follow-up series a few months later, after ac-
climatization to their new hearing aids (e.g., von Gablenz et al., 2021).

It has been overwhelmingly common in the behavioral-science literature to
apply conventional statistical measures and models such as mean and vari-
ance, t-test, ANOVA, linear or non-linear regression, using the raw subjective
ratings as input, although all these analysis methods are metric, i.e., they
presume that the input data have interval-scale properties. The main reason
is that these conventional methods are readily available in statistical pro-
gram packages. Oleson et al. (2021) argued that general-purpose statistical
approaches such as linear or generalized-linear mixed regression models can
adequately capture the fundamental characteristics of EMA data, in spite of
the complex nature of the data.

However, analyzing ordinal data as if they were metric can cause errors
(Liddell and Kruschke, 2018). The errors might even have severe scientific
consequences, such as indicating a statistically significant effect in the wrong
direction. These potential errors cannot be detected by calculations such
as conventional normality tests. The only way to detect an error would be
to compare the analysis results with those of another model that does not
presume metric data.

A generalized linear mixed regression model can indeed account for some
of the non-metric properties of ordinal ratings and nominal scenario cate-
gories, but it is not easy to formulate the model in the framework of a general
regression program package. As noted by Oleson et al. (2021), the full com-
plexity of EMA data could be handled properly by a hierarchical Bayesian
model, but no current software is readily available that could perform the
analysis automatically.

The purpose of the present work is to create such a model and make it
freely and easily available for researchers in Audiology. An R package for
advanced Bayesian multi-level generalized regression is available (Bürkner,
2018), but it is not quite equivalent to the present proposal. Although this
advanced general program should give similar results, it may be easier in
practice to use the present special-purpose package.

1.2 Requirements on the Statistical Analysis

The purpose of an EMA-based audiological study is usually to evaluate the
benefit of a new hearing aid, or a new signal-processing feature, or the effect of
some other kind of intervention, in comparison to a base-line reference. Then,
the goal of a statistical analysis is to determine whether the intervention has
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Figure 1: Example of scenario profiles collected from three hearing-aid users
answering questions about Common Sound Scenarios with seven response
alternatives. The profiles are illustrated by spider diagrams where the ra-
dial distance from the center indicates the response count and the angular
directions show the response categories. Perhaps the second and third count
profiles are so similar that the difference is just a random effect?

a true benefit, such that an apparent improvement is not simply a random
effect caused by the limited number of study participants and the limited
number of assessments by each respondent. The present report proposes a
Bayesian probabilistic model that can answer the following types of research
questions:

• Is there a statistically credible change in the scenario profile of users,
i.e., the proportion of daily activities spent in various scenarios, as
exemplified in Fig. 1? For example, does the user participate in more
acoustically demanding daily activities when using hearing aid B than
when using the reference hearing aid A?

• Is there a statistically credible improvement in users’ subjective eval-
uation of some perceptual attribute of hearing-aid performance in a
specific real-life scenario? For example, does hearing-aid program B
make it easier to understand speech in the most demanding scenario,
while program A performs better in other scenarios?

• Is there a statistically credible overall change in users’ subjective im-
pressions, when averaged across scenarios? For example, is program
A generally better than program B, when weighted by the usage prob-
abilities in various scenarios? Is some perceptual attribute generally
better after an intervention than it was before?

• Are there statistically credible differences between the perceived hearing-
aid performance, or the scenario profiles, in separate sub-populations,
e.g., old versus young respondents?
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Here, the “credibility” can mean three quite different quantities:

1. The predictive probability that the result is true for an unseen random
individual in the population from which the study participants were
recruited.

2. The predictive probability that the result is true for the mean (median)
in the population from which the study participants were recruited.

3. The probability that the result is true for each and any individual par-
ticipant in the study.

The first of these probability measures may be most important in a study
designed by a hearing-aid manufacturer to predict the marketing success of
some new hearing aid feature. The second probability measure is most closely
related to the statistical significance as estimated by conventional hypothesis
tests. The third credibility measure might be most important in a clinical
study to quantify the benefit for individual clients.

2 Theory — Notation and Models

Let us assume a study involves N participants in total, all describing the
scenario at each assessment by a choice among K nominal categories. The
participant may also give an ordinal rating for each of I questions regarding
the perceptual attributes evaluated in the study.

This section will show how all recorded EMA data from the nth partic-
ipant can be encoded in a count profile vector xn = (xn1, . . . , xnJ) with J
integer elements xnj. The likelihood of the observed count profile is quan-
tified by a probabilistic model specified by a parameter vector ξn with D
elements ξnd, such that the log-likelihood of the observed count profile is just
a scalar product

ln p(xn | ξn) = xn · f(ξn) =
J∑

j=1

xnjfj(ξn) ∀n. (1)

Here f = (f1, . . . , fJ) is a vector-valued function determined by the structure
of the EMA responses and the desired analysis results.

The distribution of individual parameter vectors in the population, from
which participants were recruited, is estimated in a separate population model.
The number of EMA recordings may vary greatly among participants. If one
subject provides unusually many EMA recordings, this will tend to improve
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the precision of the individual parameter estimate, but this participant will
still automatically have the same weight as every other participant for the
estimation of population characteristics.

2.1 Individual Response Models

2.1.1 Nominal EMA Scenario Responses

The rth recorded EMA response by the nth participant in the tth test stage
includes a one-of-K binary vector znrt with one element znrt,k = 1, indicating
that the kth scenario category was selected, with all other znrt,j ̸=k = 0.

The scenario response may be just a one-dimensional vector, with ele-
ments only identifying the main scenario (e.g., CoSS) category. If the study
includes one or more scenario dimensions identifying, e.g., the participant’s
intention or the selected hearing-aid program, the scenario response from
each subject might also be indexed as znrt,k1,k2... where k1 is the category
index in the main scenario dimension, and k2 is the index in, e.g., the “HA
program” sub-dimension, etc. The multi-dimensional array index (k1, k2, . . .)
can always be uniquely represented by an equivalent linear index k, and vice
versa. Therefore, we use mainly the one-dimensional index notation in the
mathematical formulation.

The analysis model assumes that all responses from each participant are
determined by a fixed but unknown probability profile unt = (unt,1, . . . , unt,K).
Here, unt,k ∈ [0, 1] is the probability that the nth participant reports from
the kth scenario at any assessment in the tth test stage. The probability
profile is one of the main desired result quantities to be estimated from the
data.

The probability profile is assumed to be the same at all EMA replica-
tions but may vary between participants and between test stages. Thus,
the responses follow a categorical distribution, conditional on the probability
profile,

p(znrt | unt) =
K∏
k=1

uznrtk
ntk ;

K∑
k=1

untk = 1; ∀n, r, t. (2)

It is computationally convenient to express the probability profiles as an
exponential function unt(αnt) with elements

untk(αnt) =
eαntk∑K
j=1 e

αntj

, (3)

given the mapped-parameter vectors αnt = (αnt,1, . . . , αnt,K), with elements
αntk ∈ (−∞,+∞) for all t = 1, . . . , T and k = 1, . . . , K. These parameters
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for the nth subject are from now on denoted as the TK first elements in the
individual parameter vector ξn.

The total array of scenario responses is denoted z = (. . . , znrt, . . .), in-
cluding recordings from all participants in all test stages, and the correspond-
ing array of individual parameters is written ξ = (. . . , ξn, . . .). The model
presumes that all responses are conditionally independent across subjects, as-
sessments, and test stages, given the individual parameters. The probability
mass of all observed nominal scenario data can then be expressed as

p(z | ξ) =
N−1∏
n=0

Rn∏
r=1

T∏
t=1

K∏
k=1

untk(ξn)
znrt,k . (4)

2.1.2 Ordinal EMA Ratings

The ordinal rating responses are analyzed with a variant of Item Response
Theory (IRT). IRT is a family of probabilistic models designed to handle
issues with ordinal ratings which are common to test instruments for any
purpose in social, psychological, or educational research. The model includes
individual parameters that can account for the possibility that different peo-
ple use the ordinal response scale in different ways.

There is a rich literature on IRT, including several text books (e.g.,
Fox, 2010; Nering and Ostini, 2010) with good reviews of the literature.
The Graded Response IRT model (Samejima, 1969), also called Cumulative
Model (Bürkner and Vuorre, 2019), is mathematically very closely related to
signal-detection theory and choice models that have a long history of use in
psycho-acoustical research (e.g., Thurstone, 1927; Bradley and Terry, 1952;
Luce, 1959; Durlach and Braida, 1969). These models are sometimes called
“ordinal-probit” or “ordinal-logit”.

The basic feature of ordinal rating models is that subjective responses are
regarded as indicators (“symptoms”) that are only probabilistically related to
the individual trait or ability that is to be measured. The true individual trait
cannot be directly observed but only indirectly estimated on the basis of test
responses. The model treats each response as determined by an outcome of
a latent random variable. The location (mean or median) of the probability
distribution of that latent variable represents the individual characteristic
to be estimated, whereas the response probabilities also depend on other
parameters that may differ among individuals.

Similar to the nominal data, the ordinal rating response to the ith at-
tribute question (with Li ordinal response alternatives) is denoted by a one-
of-Li binary vector ynri with one element ynri,l = 1 indicating that the nth
participant gave the lth ordinal response to the ith question in the rth assess-
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ment, and all other ynri,j ̸=l = 0. The rth assessment is also characterized by
the multi-dimensional scenario index vector k(r) = (k0, k1, . . .)(r). The first
index identifies the test stage k0 = t which is defined by the researcher, and
the other indices (k1, k2, . . .) specify the scenario as recorded by the respon-
dent, in the same way as in Sec. 2.1.1. The multi-dimensional array index
k(r) can always be uniquely represented by an equivalent scalar linear index
k(r), so this notation is used where it is unambiguous.

In the model, illustrated in Fig. 2, each ordinal response is determined
by an outcome of a continuous real-valued latent random variable Ynik(r).
The lth ordinal response is given whenever the latent variable falls in an
interval τni,l−1 < Ynik(r) ≤ τni,l, where the thresholds separating the intervals
form an increasing sequence (−∞ = τni,0 < τni,1, . . . , < τni,Li

= +∞). The
thresholds may differ between respondents and between attribute questions,
but are assumed to be identical in all assessments of the same attribute by
each respondent. The latent variable is drawn from a logistic1 probability
distribution with location θnik and unity2 scale. The location θnik is the
desired outcome measure of the perceptual attribute that is to be estimated
from the observed data. Although all responses are only discrete and ordinal,
the estimated outcome measure θnik is continuous on an interval scale defined
by the model.

The location parameter array for the nth participant can, in principle,
include a very large number of free parameters, one for each combination of
nominal categories from all scenario dimensions. However, just as in linear re-
gression, the model may be simplified to consider only a linear combination of
a smaller set of scenario effects, e.g., by expressing θnik = βnik0+βnik1+βnik2 ,
or θnik = βnik0k1+βnik2 . Here, the value βnikf represents themain effect of the
kf th category in the fth scenario dimension, while βnik0k1 also represents in-
teraction effects between any combination (k0, k1) of categories in the zeroth
and first scenario dimensions. Regardless of these indexing details, the lo-
cation parameter can always be specified as a fixed linear function θnik(βni)
of an effect vector βni = (. . . , βnij, . . .) including all the regression effects
for the ith perceptual attribute that are to be estimated in the statistical
analysis.

Individual response thresholds: To ensure that the response thresh-
olds form a strictly increasing sequence, and for numerical stability, it is
convenient to map the response intervals to the range [0, 1] using the logistic

1The Cumulative Model can also use the normal distribution.
2The unity scale is no restriction of generality, as the model scale is arbitrary anyway.
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distribution function F ( ) from (8), as

F (τnil) =

∑l
j=1 e

ηnij∑Li

j=1 e
ηnij

. (5)

Here the parameter vector ηni = (ηni,1, . . . , ηni,l, . . . , ηni,Li
) includes the log-

arithms of the relative interval widths in this mapped range. The inverse
mapping defines the thresholds as

τni,l(ηni) = ln

∑l
j=1 e

ηnij∑Li

j=l+1 e
ηnij

. (6)

Adding a constant to all elements in ηni does not change the resulting thresh-
olds, so the Li values actually define only Li − 1 free thresholds, as desired.
From now on, we denote the individual ordinal-model parameters βn,ηn as
parts of the total individual parameter vector ξn, with an indexing scheme
determined by the structure of the model and the desired analysis results.

Finally, using this simplified parameter notation, the conditional proba-
bility of any rating response, given the model parameters, is a known function
of the parameters,

P (ynri,l = 1 | ξn) = P (τni,l−1 < Yni k(r) ≤ τni,l | βni) =

= F
(
τni,l − θnik(r)

)
− F

(
τni,l−1 − θnik(r)

)
= vik(r),l(ξn), ∀n, r, i (7)

where F ( ) is the cumulative distribution function for a standard logistic-
distributed random variable,

F (x) =
1

1 + e−x
(8)

This part of the EMA model is very similar to a previous model for paired-
comparison data (Leijon et al., 2019) with the Bradley-Terry-Luce (BTL)
“ordinal-logit” choice model3 (Bradley and Terry, 1952), i.e., assuming a
logistic distribution for the latent sensory variables.

All ratings, gathered in an array y = (. . . ,ynri, . . .), are assumed condi-
tionally independent across subjects, assessments, and questions, given the
individual parameters ξ = (. . . , ξn, . . .). Thus the probability mass for the
total set of observed ordinal response data can be written as

p(y | ξ) =
N∏

n=1

Rn∏
r=1

I∏
i=1

Li∏
l=1

vik(r),l(ξn)
ynri,l (9)

3The implemented model can also use the “ordinal-probit” variant (Thurstone Case V)
assuming normal distribution for the latent variables.
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Since this regression model allows both the trait variables θnik and the thresh-
old variables τnil to be freely variable for each respondent, the model is under-
determined: If a fixed constant value is added to all θnik and all τnil, the prob-
ability (7) of observed responses does not change. The weakly informative
prior distributions slightly favors solutions with parameters near zero, so the
learning always converges. However, the indeterminacy allows some artificial
variability in the parameter values. To avoid this variance, the parameter
values must be somehow restricted.

The current implementation4 allows the researcher either (1, default) to
force the median response threshold to zero, or (2) to force the average
sensory-variable location to zero, for each respondent and each attribute.

2.1.3 Joint Nominal and Ordinal Response Data

With the data representation defined in Secs. 2.1.1 and 2.1.2, all data from
the rth recording of the nth participant can be concatenated into a one-
dimensional vector xn = (zn,yn), just as all individual model parameters
were gathered in a single vector ξn. Using this notation, the total log-
likelihood in (1) obviously follows from (4) and (9).

2.2 Individual vs. Population Models

In this model the joint nominal and ordinal response patterns are assumed
probabilistically determined by individual parameters ξn. Of course, these
parameters cannot be directly observed. Their values must be estimated
from the recorded data. In the Bayesian framework, all these parameters are
regarded as random variables.

However, as all participants were recruited at random from the same pop-
ulation, as defined by the researcher, the model treats each individual param-
eter vector ξn as a sample drawn at random from a population distribution
with density function p(ξ | µ,λ, ζ) specified by another set of parameters,
as defined in Eq. A.1 in App. A. In this way the population model acts as a
prior model for the individual parameter distributions.

The distribution of individual parameter vectors in the population might
have been chosen as, e.g., a multivariate Gaussian (normal) distribution with
full covariance matrix, i.e., with a very large number of parameters, or per-
haps with a more restricted correlation matrix with fewer parameters as in
(Bürkner, 2017). For the present purpose it is proposed instead to use a
Gaussian Mixture Model (GMM). Mixture models have the advantage that

4Alternatively, the sampling might be constrained to a manifold, where the restriction
is satisfied. Using a more strongly informative prior can not solve this problem.
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Figure 2: Example of a conditional probability density function of the sen-
sory random variable Y that determines the response to a question about
a perceptual attribute, e.g., speech understanding, given a true mean pa-
rameter θ = 1.8 on the logit scale. Decision intervals are indicated for one
experiment allowing only two responses “bad” or “good”, with a response
threshold τ1 = −0.2, and another experiment with the same attribute dis-
tribution, allowing five ordinal response alternatives, “very bad”, “bad”, ...,
“very good” with response thresholds τ1, . . . , τ4.
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they can represent arbitrarily complex non-linear dependencies between vec-
tor elements, not only ordinary linear correlations5, although each mixture
component has independent elements. Another advantage is that the model
complexity is automatically determined during learning, by the general Oc-
cam’s Razor feature of Bayesian learning. Thus, after learning, the mixture
model might automatically come out as including only a single Gaussian
component with independent (uncorrelated) elements, if this is sufficient for
the given data set, or as a multi-component mixture if the data indicate a
more complex dependency structure.

The population density function belongs to the GMM family with a fixed
mathematical form, but the parameter values (µ,λ, ζ) are unknown a priori
and must be estimated from the recorded data set. A weakly informative
hyper-prior is assigned for these parameters, as discussed in App. A.2.

If the respondents were recruited from G separate sub-populations, e.g.,
younger vs. older people, the subject groups are distinguished by sets Sg

of indices, with n ∈ Sg indicating that the nth respondent is a member of
the group recruited from the gth sub-population. In this way, the complete
population GMM represents individuals in all sub-groups. The separate sub-
population models differ only in the mixture weights, using the same set of
mixture components.

2.3 Variational Model Inference

As described in in App. B, variational learning (e.g., Bishop, 2006, Ch. 10)
is used to derive approximate posterior density functions q(ξn), for the pa-
rameters of all participants, as well as a separate posterior density function
q(µ,λ, ζ) for the population parameters, given all observed data.

The individual results are estimated using the response data from each
participant, but these individual estimates are also somewhat regularized by
the population model: If the response pattern from one respondent deviates a
lot from the data of most other participants, the hierarchical model will tend
to “explain” any such extreme deviations as a random effect of the limited
number of responses rather than an extreme deviation in the true individual
characteristics.

The population model is simultaneously adapted to all the individual data
together with a weakly informative hyper-prior density defined in App. A.2
for the population parameters. The combined hierarchical Bayesian model
automatically includes measures of the uncertainty of each individual result
as well as the inter-individual variability in the population.

5Random variables can be statistically dependent even if their correlation is zero.
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2.4 Predictive Distributions

Both the individual and population models are generative, i.e., they can be
used to calculate three desired predictive distributions as defined in App. C,

1. for an unseen random individual in the population from which the par-
ticipants were recruited,

2. for the population mean,

3. for each individual in the group of participants.

The predictive distributions are used to evaluate the joint credibility for com-
binations of single hypotheses, as described in (Leijon et al., 2016, App. C).

3 Experimental Methods

In order to quantify the precision of the analysis results, it is necessary to
evaluate the difference between estimated model parameters and the corre-
sponding true parameter values. The only way to do this is to use simulated
EMA experiments, because the true values are, of course, never known in
real EMA studies.

3.1 Simulated EMA Data

To illustrate the performance of the analysis model, a synthetic EMA data
set was constructed. An array of 2 × 7 nominal scenario categories was
defined in two scenario dimensions: Two hearing aid programs, called A
and B, were assumed to be freely selected by respondents in seven Common
Sound Scenarios (CoSS), labelled 1, 2, ..., 7. The mean scenario probabilities
were assigned with the highest values in CoSS-category 7 for program A,
and in CoSS-category 1 for program B. Similarly, one perceptual attribute,
called Speech, was simulated with the highest values in CoSS-category 7 for
program A, and in in CoSS-category 1 for program B.

Thus, the simulation assumed that program A performed best in CoSS-
category 7, while program B was best in CoSS-category 1. There was no
difference between the hearing-aid programs if the performance is averaged
across all CoSS categories.

**** Try different intra-individual theta slope by CoSS, i.e., unequal vari-
ability across CoSS categories, similar to the unequal SDs tested by Liddell
and Kruschke..Compare with t-test of difference between HA A and B, using
average rating across CoSS categories. ***
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It was also assumed that these performance differences would cause the
respondents to select each hearing-aid program with higher probability in
CoSS situations where the program performed better, but still with some
random variability in the choice. The simulated true scenario probabilities
and inter-individual variations are shown together with the estimated results
in Figs. 3a and 3b. The simulated true latent sensory variables and the inter-
individual variations are shown together with the estimated results in Figs.
4a and 4b. The true response thresholds were chosen to yield a uniform
distribution of ordinal response categories when the true sensory-variable
location is zero. The thresholds were identical for all simulated subjects.

EMA data were generated for 20 simulated respondents, yielding 971
EMA records in total. The number of EMA records was randomly chosen
for each respondent, with uniform distribution between 20 to 80 EMA records
per subject.

3.2 Real EMA Evaluation of Hearing Aids

xxxx

4 Results

4.1 Population Results for Simulated EMA Data

The estimated scenario probability profiles are shown in Figs. 3a and 3b.
The regression results for the latent sensory variables for the simulated at-
tribute Speech, and its dependence on scenarios, are shown in Figs. 4a and
4b. These results were obtained using the logistic (Bradley-Terry-Luce) dis-
tribution for the latent variables. The results were quite similar with the
normal distribution (Thurstone model). The mixture model initially allowed
20 separate Gaussian components, but the learning converged on using only
a single component for all subjects. This seems reasonable since the simu-
lation generated random data with independent elements of the parameter
vector.

4.2 Individual Results for Simulated EMA Data

*** Compare with NAP analysis results ??? **********
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Figure 3: Scenario probability profiles estimated for a random unseen indi-
vidual in the population and for the population mean. Vertical lines show
90% credible intervals. Marker symbols show 25-, 50-, and 75-percentiles.
Short black horizontal lines indicate the corresponding true 90% credible in-
tervals and the population mean. This simulated experiment included 20
subjects with a total of 971 EMA records.
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Figure 4: Sensory attribute Speech estimated by regression as a function
of scenarios, for a random unseen individual in the population and for the
population mean. Vertical lines show 90% credible intervals. Marker symbols
show 25-, 50-, and 75-percentiles. Short black horizontal lines indicate the
corresponding true 90% credible intervals and the population mean. This
simulated experiment included 20 subjects with a total of 971 EMA records.
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4.3 Real EMA Evaluation
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5 Discussion

The estimated 90% credible intervals for the population mean in Figs. 3b
and 4b include the corresponding true value in nearly all cases, as expected.
The 90% credible intervals for random individuals in the population, in Figs.
3a and 4a, somewhat over-estimated the true 90% range of inter-individual
variations in the population. Thus, the simulation results suggest that the
estimation yields a rather conservative estimate for the inter-individual vari-
ance, probably because of the limited number of participants and limited
number of EMA records. The simulation generated about 50 EMA records
per subject. Thus, with 14 separate scenario categories, some subjects might
show no response at all for some scenarios.

The proposed analysis method has been implemented as a python package
EmaCalc, freely available at the Python Package Index (PyPi). The code
package also includes simulation functions allowing the user to validate the
performance of the method and to plan a practical experiment.

6 Conclusions

A new Bayesian parametric analysis method for EMA data was presented.
The method was evaluated with simulated experimental data and exempli-
fied using data from a real experiment. The results of the simulation study
indicate that the model could estimate the true population values with good
accuracy.
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A Population Model

The nominal and the ordinal response patterns from the nth participant were
assumed determined by parameters ξn = (. . . ,αnt, . . . ,βni, . . . ,ηni, . . .)

T as
defined in (4) and (9). In the following, the elements in this vector are
denoted either as ξnd or, equivalently, by the separate symbols α, β, η for
the three subtypes of parameters. The total number of parameters and the
indexing depends on the experimental structure and the types of regression
effects to be estimated, but this notational equivalence is defined once and
for all when the analysis model is set up.

A.1 Gaussian Mixture Model

The individual parameter vectors are assumed drawn from a population dis-
tribution in the form of a Gaussian mixture model (GMM),

p(ξn | µ,λ, ζ) =
M∏
c=1

[
D∏

d=1

√
λcd

2π
e−(ξnd−µcd)

2λcd/2

]ζnc

(A.1)

where µc = (µc,1, . . . , µc,D) is the mean vector, and λc = (λc,1, . . . , λc,D) is
the precision vector (inverse variance) of the cth mixture component, with
µ = (µ1, . . . ,µM) and λ = (λ1, . . . ,λM) denoting the total set of parameters
for the complete set of mixture components. It is no serious restriction to
assume independent elements (diagonal covariance) in each mixture compo-
nent, because the complete mixture model can still capture any statistical
dependence between elements of ξn.

The chosen mixture component is indicated by a latent 1-of-M binary
array ζn = (ζn1, . . . , ζnM), where ζnc = 1 indicates that the nth respondent
has a probability profile drawn from the cth mixture component, and all
other elements are ζn,j ̸=c = 0.

Of course, it is never known exactly from which mixture component the
individual parameter vector ξn is actually generated. Therefore, the resulting
mixture density can be equivalently written as a weighted sum across all
mixture components,

p(ξn | µ,λ) =
M∑
c=1

⟨ζnc⟩
D∏

d=1

√
λcd

2π
e−

1
2
(ξnd−µcd)

2λcd . (A.2)

with weights equal to the means ⟨ζnc⟩ = E [ζnc] ∈ (0, 1) of the estimated
categorical distribution of ζn.
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In the Bayesian framework, all these parameters are again modelled as
random variables with weakly informative prior distributions reflecting the
prior knowledge and assumptions about the model.

A.2 GMM Parameter Priors

Gauss-gamma priors are defined for all GMM components, as

p(µ,λ) =
M∏
c=1

p(µc,λc); (A.3)

p(µc,λc) =
D∏

d=1

p(µcd | λcd)p(λcd); (A.4)

p(µcd | λcd) =

√
ν ′λcd

2π
e−

1
2
(µcd−m′

cd)
2ν′λcd ; (A.5)

p(λcd) =
b′d

a′

Γ(a′)
λa′−1
cd e−b′dλd . (A.6)

Here, Γ(z) =
∫∞
0

xz−1e−x dx is the gamma function. In the absence of prior
information, we assign all m′

cd = 0. The Jeffreys prior for the mean and
precision of a Gaussian distribution would suggest ν ′ → 0, a′ → 0, b′d → 0.
However, to avoid computational indeterminacy causing numerical overflow
in case of extreme response patterns, we must use a weakly informative prior.

The effective weight of the prior on the population mean, relative to the
weight of one real test participant, is assigned as ν ′ = 0.2. The gamma
shape parameter is assigned a′ = ν ′/2. For most parameters the inverse scale
as b′d = σ2

d/2. These settings conform with the update equations (B.22) and
(B.23). The prior probability density for the precision λd is then concentrated
near zero. This choice prevents the Gaussian components from becoming
centered on a single data point with infinite precision, and allows large inter-
individual variance. With a′ ≤ 1 the prior expectation of the inter-individual
variance is undefined, but the mode is

mode [1/λd | a′, b′d] =
b′d

a′ + 1
≈ σ2

d/2. (A.7)

This means that individual deviations from the population mean have a typ-
ical prior scale σd, i.e., with most deviations in the range (−

√
2σd,+

√
2σd).

This prior scale is assigned as σd = 1 for all elements related to the
logarithmic parameters αnt for the nominal scenario patterns in (4). This
prior typically allows a ratio e1.4/e−1.4 ≈ 16 between occurrence probabilities
of the most and least likely scenario.
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The same prior scale is also assigned for all elements related to the loga-
rithmic parameters ηnl for the ordinal-rating thresholds in (6) and (9). This
means we expect similar ratios between the largest and the smallest decision
intervals when mapped to the [0, 1] range. As the scale of a standardized
logistic distribution is σ = π/

√
3 ≈ 1.8, the prior scale is assigned to this

value for all elements related to the effect parameters βnij in (9).

A.3 Mixture Weights — Sub-population Models

In case the experiment includes participants from separate sub-populations,
e.g., young versus old people, the probability-mass (mixture weight) of profile
components might be different for each of the G sub-populations from which
the separate subject groups were recruited.

To allow for separate sub-populations, the prior mixture weights are de-
noted vg = (vg1, . . . , vgc, . . . , vgM), where vgc is the probability that any ran-
dom individual in the gth sub-population has a probability profile drawn
from the cth mixture component. The array of all weight vectors in the
model is denoted v = (v1, . . . ,vG). Thus, the prior conditional probability
that the nth respondent has a response profile from the cth component, given
that this subject was recruited from the gth sub-population, is

p(ζnc = 1 | v, n ∈ Sg) = vgc. (A.8)

The prior distribution of mixture weights vg for the gth sub-population is
assigned as a Dirichlet distribution with concentration γ ′ = (γ′

1, . . . , γ
′
M),

p(vg) =
1

B(γ ′)

M∏
c=1

vγ
′
c−1

gc , ∀g. (A.9)

(The normalizing B( ) is the multivariate Beta function.) We follow the
conventional approach for training Bayesian mixture models and assign fixed
small concentration parameters with equal small values for all c in order for
the learning to favor sparse solutions. We choose the non-informative Jeffreys
prior γ′

c = 0.5 for all c, but this value is not critical. This prior value plays
the role of pseudo-counts in the estimation of mixture weights vg for each
group.

Even if none of the respondents in gth group is related to, say, the cth
mixture component, the predictive distribution for a random individual in the
gth sub-population will in effect be calculated as if 0.5 subject had actually
had a response profile related to this component. The use of the Jeffreys
prior as pseudo-count is a theoretically well-defined way to account for the
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very real possibility that a subject recruited from this sub-population in a
future study might actually have a response profile in the cth component,
although no such subjects were found in the given data set.

B Model Learning

B.1 Total Log-likelihood

Using (1), (A.1), (A.5), (A.6) and (A.9), the total log-likelihood of all ob-
served data and all model parameters is6 (omitting irrelevant constants)

ln p(x, ξ,µ,λ, ζ,v) = const. +
N−1∑
n=0

J∑
j=1

xnjfj(ξn)

+
N−1∑
n=0

M∑
c=1

ζnc

D∑
d=1

1

2
lnλcd −

1

2
(ξnd − µcd)

2λcd

+
M∑
c=1

D∑
d=1

1

2
lnλcd −

1

2
(µcd −m′

cd)
2ν ′λcd + (a′ − 1) lnλcd − b′dλcd

+
G∑

g=1

M∑
c=1

(γ′
c − 1) ln vgc +

∑
n∈Sg

ζnc ln vgc (B.1)

Here the first line represent the log-likelihood of observed nominal and ordinal
EMA data, given the individual models, the secocnd line represents the log-
likelihood of individual model parameters as samples from the population
model, and the remaining two lines specify the population model, possibly
including sub-populations. The functions fj( ) are just a shorthand notation
for the log-likelihood of observed data given parameters ξn, as specified in
(1).

B.2 Variational Inference

The model is trained from data with a variant of the standard Variational
Inference procedure (Bishop, 2006, Ch.10). A partially factorized density
function q( ) is adapted to be a good approximation of the exact posterior
density p( ) of all model parameters, given the observed data, as

p(ξ,µ,λ, ζ,v | x) ≈ q(ξ,µ,λ, ζ,v) = q(ξ)q(µ,λ)q(ζ)q(v). (B.2)

6The summation signs on each line are meant to include all terms on the same line,
but not those on other lines.
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This variational approximation factorizes the density for the total set of
model parameters between the individual parameter distributions q(ξ), the
set of population mixture components q(µ,λ), the individual component
selector variables q(ζ), and the component probabilities q(v).

The VI procedure maximizes a lower bound to the data log-likelihood7,

L(q) =
〈
ln

p(x, ξ,µ,λ, ζ,v)

q(ξ,µ,λ, ζ,v)

〉
q()

≤ ln p(x) (B.3)

and minimizes the Kullback-Leibler divergence

KL (q ∥ p) =
〈
ln

q(ξ,µ,λ, ζ,v)

p(ξ,µ,λ, ζ,v | x)

〉
q( )

(B.4)

between the approximate and exact posterior parameter distributions. The
procedure is iterative and theoretically guaranteed to converge.

Since (B.1) includes only a sum of terms across n for the individual pa-
rameters, and only a sum across c for the mixture components, while the
individual and the population parameters are linked only by the selector pa-
rameters ζ, the variational distributions are naturally factorized without any
further approximation, as

q(ξ) =
N−1∏
n=0

q(ξn) (B.5)

q(ζ) =
N−1∏
n=0

q(ζn) (B.6)

q(µ,λ) =
M∏
c=1

q(µc,λc) =
M∏
c=1

D∏
d=1

q(µcd, λcd) (B.7)

q(v) =
G∏

g=1

q(vg) (B.8)

Since the prior Gauss-gamma are conjugate distributions for the Gaussian
mixture components, the variational q(µcd, λcd) will naturally get the same
Gauss-gamma form as the priors, without any further approximation. Sim-
ilarly, the variational q(vg) will also naturally become Dirichlet densities.
However, the individual densities q(ξn) cannot be expressed as a member
of a known distribution family and are therefore approximated by a large
number of equally probable sample vectors ξns, generated by Hamiltonian
sampling.

7The notation ⟨ ⟩ means expectation calculated using the current q( ) distribution
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B.2.1 Individual Component Selector Variables

The joint variational distribution q(ζ) is obtained by averaging (B.1) across
the distributions of other parameters, as

ln q(ζ) =
〈
ln p(x, ξ,µ,λ, ζ,v)

〉
q(ξ,µ,λ,v)

+ const. =
N−1∑
n=0

ln q(ζn) (B.9)

yielding

ln q(ζn) = const.+

+
M∑
c=1

ζnc

[
⟨ln vgc⟩+

1

2

D∑
d=1

⟨lnλcd⟩ −
〈
(ξnd − µcd)

2λcd

〉]
︸ ︷︷ ︸

ln r̃nc

, n ∈ Sg (B.10)

This is just the logarithm of a new categorical distribution for ζn with nor-
malized probabilities (“responsibilities”) rnc = p(ζnc = 1),

q(ζn) =
M∏
c=1

rζnc
nc , with rnc = ⟨ζnc⟩ =

r̃nc∑M
i=1 r̃ni

(B.11)

B.2.2 Mixture Weights in Sub-populations

As (B.1) is a sum of terms involving ln vgc for each sub-population, the vari-
ational mixture-weight distribution is defined by

ln q(vg) = const. +
M∑
c=1

γ′
c − 1 +

∑
n∈Sg

⟨ζnm⟩

 ln vgc. (B.12)

Thus, the variational distribution again has the Dirichlet form,

q(vg) ∝
M∏

m=1

vγgc−1
gc (B.13)

with concentration parameters γg = (γg1, . . . , γgM) updated as

γgc = γ′
c +

∑
n∈Sg

⟨ζnc⟩ (B.14)
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B.2.3 Gauss-gamma Mixture Components

As (B.1) is a sum across terms for every element in every mixture component,
the variational distributions are defined by

ln q(µcd, λcd) + const. =

=
1

2
lnλcd −

1

2
(µcd −m′

cd)
2ν ′λcd −

1

2

N−1∑
n=0

⟨ζnc⟩
〈
(ξnd − µcd)

2
〉
ξ
λcd

+ (a′ − 1) lnλcd − b′dλcd +
1

2

N−1∑
n=0

⟨ζnc⟩ lnλcd =

=
1

2
lnλcd −

1

2
(ν ′ +

∑
n ⟨ζnc⟩)︸ ︷︷ ︸

νc

µ2
cdλcd + µcd (ν

′m′
cd +

∑
n ⟨ζnc⟩ ⟨ξnd⟩)︸ ︷︷ ︸

νcmcd

λcd

− 1

2
m′

cd
2
ν ′λcd −

1

2

N−1∑
n=0

⟨ζnc⟩
〈
ξ2nd
〉
λcd

+ (a′ − 1) lnλcd − b′dλcd +
1

2

N−1∑
n=0

⟨ζnc⟩ lnλcd (B.15)

As this is a second-degree polynomial in µcd, this part can be written as the
logarithm of a Gaussian density

ln q(µcd | λcd) + const. =
1

2
lnλcd −

1

2
(µcd −mcd)

2νcλcd (B.16)

Thus, the variational density is again a conditional Gaussian

q(µcd | λcd) =

√
νcλcd

2π
e−

1
2
(µcd−mcd)

2νcλcd (B.17)

with parameters updated as

νc = ν ′ +
N−1∑
n=0

⟨ζnc⟩ (B.18)

mcd =
1

νc

(
ν ′m′

cd +
N−1∑
n=0

⟨ζnc⟩ ⟨ξnd⟩

)
(B.19)
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Similarly, the variational density for the precision parameters is defined by

ln q(λcd) = ln q(µcd, λcd)− ln q(µcd | λcd) =

= const. +

(
a′ − 1 +

1

2

∑N−1
n=0 ⟨ζnc⟩

)
lnλcd

−

(
b′d +

1

2
m′

cd
2
ν ′ − 1

2
νcm

2
cd +

1

2

N−1∑
n=0

⟨ζnc⟩
〈
ξ2nd
〉)

λcd (B.20)

This is again the logarithm of a gamma density

q(λcd) ∝ λac−1
cd e−bcdλcd (B.21)

with parameters updated as

ac = a′ +
1

2

N−1∑
n=0

⟨ζnc⟩ (B.22)

bcd = b′d +
1

2
ν ′m′

cd
2 − 1

2
νcm

2
cd +

1

2

N−1∑
n=0

⟨ζnc⟩
〈
ξ2nd
〉

(B.23)

B.2.4 Individual Parameters

As (B.1) is a sum of terms for the individual parameters ξn, the variational
distributions are defined by the log-likelihood

ln q(ξn) = const. +
〈
ln p(x, ξ,µ,λ, ζ,v)

〉
q(µ,λ,ζ,v)

=

=
J∑

j=1

xnjfj(ξn)

+
M∑
c=1

⟨ζnc⟩
D∑

d=1

1

2
⟨lnλcd⟩ −

1

2

〈
(ξnd − µcd)

2λcd

〉
µcd,λcd

(B.24)

Because of the non-linear functions fj, this log-likelihood can not be associ-
ated with a known distribution family. The variational distribution is instead
approximated by a large number of samples drawn from q(ξn) by Hamilto-
nian sampling. This sampling procedure uses only the known log-likelihood
function (B.24) and its gradient with regard to ξn which is defined by the
known gradients of fj(ξn). The sampling is done separately for each par-
ticipant model, and must be repeated for each iteration of the variational
procedure to account for the current estimate of the population model.
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B.3 Log-likelihood Lower Bound

To monitor the progress of variational learning the variational lower bound
(B.3) is most conveniently calculated at each iteration as

L(q) =
〈
ln

p(x, ξ,µ,λ, ζ,v)

q(ξ,µ,λ, ζ,v)

〉
q()

=

=
∑
n

⟨ln p(xn | ξn)⟩ξ +
〈
ln p(ξn

∣∣ µ,λ, ζ)〉
q
− ⟨ln q(ξn)⟩q

−
〈
ln

q(µ,λ)

p(µ,λ)

〉
q

−
〈
ln

q(ζ)

p(ζ | v)

〉
q

−
〈
ln

q(v)

p(v)

〉
q

(B.25)

This lower bound is theoretically guaranteed to be non-decreasing for each
step of the learning procedure. Here the first two terms were already calcu-
lated during sampling by (B.24). The third term is the sum of entropy for
each ξn, which is calculated from the samples using a nearest-neighbour
(“Kozachenko-Leonenko”) estimator (Singh and Poczos, 2016). The last
three terms subtract the Kullback-Leibler divergence KL (q ∥ p) between pos-
terior and prior distributions for the three types of population parameters.

The subtraction of Kullback-Leibler divergences represent the cost of
model complexity which is the basis of the Occam’s Razor effect. The vari-
ational learning tends to push parameter distributions toward the priors for
any mixture component that is not really needed to model the observed data,
because this reduces the Kullback-Leibler divergence and increases L(q).

C Predictive Results

The learned individual and population models are used to calculate two pre-
dictive distributions:

C.1 (Sub-)Population Mean

The predictive distribution of the mean vector µg = (µg1, . . . , µgD) (equal
to the median) for the gth sub-population is a mixture density, based on
(B.17) and (B.13), integrated over the variational distributions (B.21) of the
precision parameters.
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p(µg) =
M∑
c=1

⟨vgc⟩
D∏

d=1

∫
q(µcd | λcd)q(λcd) dλcd

∝
M∑
c=1

⟨vgc⟩
D∏

d=1

(
1 +

(ξNd −mcd)
2νc

2bcd

)− 2ac+1
2

(C.1)

The resulting marginal density for the mean is a mixture including a univari-
ate Student-t distribution for each element of each mixture component, with
location mcd, scale

√
bcd/acνc, and degrees-of-freedom 2ac.

C.2 Random Individual

The predictive distribution of parameters ξNg = (. . . , ξNgd, . . .) for a future
(Nth) unknown individual randomly drawn from the gth sub-population,
from which the gth test group was recruited, is a mixture density, based
on (A.2) and (B.13) for the gth sub-population, integrated over the learned
variational distributions for the Gaussian mean and precision parameters:

p(ξNg) =
M∑
c=1

⟨vgc⟩
D∏

d=1

∫ ∫ √
λcd

2π
e−

1
2
(ξnd−µcd)

2λcdq(µcd | λcd)q(λcd) dµcd dλcd

∝
M∑
c=1

⟨vgc⟩
D∏

d=1

(
1 +

(ξNd −mcd)
2νc

2bcd(νc + 1)

)− 2ac+1
2

(C.2)

Using the learned variational distributions (B.17) and (B.21) for the Gaussian
component mean and precision, the result is a univariate Student-t distribu-
tion for each element of each mixture component, with location mcd, scale√
bcd(νc + 1)/acνc, and degrees-of-freedom df = 2ac.

Proof: For any c, d the inner integral over µcd can be evaluated as (indices
omitted)∫

p(ξ | µ, λ)q(µ | λ) dµ =

√
λ

2π

√
νλ

2π

∫
e−

1
2 [(ξ−µ)2λ+(µ−m)2νλ] dµ =

=

√
λ

2π

√
νλ

2π

∫
e−

1
2 [(ξ−m)2λ−2(ξ−m)(µ−m)λ+(µ−m)2λ+(µ−m)2νλ] dµ = [µ−m → z]

=

√
λ

2π

√
νλ

2π

∫
e−

1
2 [(ξ−m)2λ−2z(ξ−m)λ+z2(ν+1)λ] dz (C.3)
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Noting that the exponent is just a second-degree polynomial in µ, we com-
plete the square using the central location z̄ = (ξ−m)/(ν+1) defined by the
mixed term 2z(ξ−m)λ = 2z̄(ν +1)λ. Then the integral can be simplified as∫

p(ξ | µ, λ)q(µ | λ) dµ =

=

√
λ

2π

√
νλ

2π
e−

1
2 [(ξ−m)2λ−z̄2(ν+1)λ]

∫
e−

1
2
(z−z̄)2(ν+1)λ dz =

=

√
λ

2π

√
νλ

2π
e−

1
2 [(ξ−m)2λ−(ξ−m)2λ/(ν+1)]

√
2π

(ν + 1)λ
=

=

√
λ

2π

√
ν

ν + 1
e−

1
2

(ξ−m)2ν
ν+1

λ (C.4)

Finally, the outer integral over λ is evaluated using the gamma density q(λ)
as∫ √

λ

2π

√
ν

ν + 1
e−

1
2

(ξ−m)2ν
ν+1

λq(λ) dλ =

=

∫ √
λ

2π

√
ν

ν + 1
e−

1
2

(ξ−m)2ν
ν+1

λ ba

Γ(a)
λa−1e−bλ) dλ

∝
∫

λa+ 1
2
−1e

−
[
b+ 1

2
(ξ−m)2ν

ν+1

]
λ
dλ

∝
(
b+

1

2

(ξ −m)2ν

ν + 1

)− 2a+1
2

(C.5)

which concludes the derivation of the Student-t factors in (C.2).
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